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Abstract

Distributed File Systems suffer from a well-known
network latency bottleneck, and caching has long been
used to alleviate this problem. Indeed, many re-
searchers have proposed enhancements to the basic
cache-on-demand and LRU mechanisms, suggesting
various ways future file access patterns can be pre-
dicted and files prefetched into the local cache accord-
ingly. Our insight is that we can do better by combin-
ing multiple predictors, or properties, into one global
mechanism that listens to all suggestions and com-
bines them into one final prediction. We do this by
allowing our system to learn how each property per-
forms over time and then splitting the cache between
the properties based on performance. When the envi-
ronment changes, our algorithm dynamically adjusts,
or “re-learns”. QOur resulting model is simple and ro-
bust, as it supports an arbitrary number of properties
that can be easily integrated with the rest of the system
as long as they export a predefined interface consist-
ing of only three functions. We have implemented the
system proposed here within the Coda distributed file
system and ran a series of benchmarks. Our results
indicate up to 89 percent improvement in average ac-
cess latency as compared to the baseline implemena-
tion for low-bandwidth connections.

1 Introduction
Disk and network latency bottlenecks have been on

the minds of Systems researchers for many years, and
caching has long been used to alleviate this prob-

lem. However, as the average workstation becomes
increasingly powerful, the significance of these bottle-
necks only seems to increase. Even though we have
entered the era of Gigabit Ethernet, network latency
is still an issue, and, generally, once the client leaves
the server’s LAN, the problem very quickly becomes
critical. Thus, improving the performance of caching
can dramatically enhance overall performance. Since
we are looking to improve performance over high-
latency network connections, we concentrate on mo-
bile devices with limited local storage capacity. If
the storage capacity is large, our system will not be
of much help, since working sets tend to be relatively
small and may, in fact, fit entirely in the local cache.

Cache performance improvement can be ap-
proached in two ways: one may try to improve the
cache replacement strategy or to make better deci-
sions regarding which files should be cached. Both
have been explored, albeit independently, by a num-
ber of researchers. We concentrate on the latter.
More specifically, we have developed an algorithm
that predicts future file accesses from different pa-
rameters, or properties, using on-line learning. Our
algorithm dynamically learns the effect that various
properties have on successful file access prediction
and adjust their relative importance accordingly. If
the environment (user’s working set) does not change
very frequently, allowing enough time for the algo-
rithm to learn the access patterns, it should perform
quite well. This assumption is supported by Kuen-
ning’s findings[9, 10, 11].

One of the major strengths of the system we devel-
oped is its modular design and the simple interface
between the algorithm module, which performs all



the organizational operations and the actual learn-
ing, and the properties, which collectively predict a
set of files to be prefetched. The properties are com-
pletely isolated from each other, and are not aware
of each other’s existence. The algorithm itself ac-
cesses all the properties through a uniform interface
and does not care about their individual identities.
This level of isolation is precisely what allows us to
add and remove the properties at will.

The actual prefetching is performed by the
prefetcher module, which interfaces directly with the
Coda cache manager, Venus. Our system is currently
implemented inside Venus, though the prefetcher is
the only component that actually relies on it. The al-
gorithm module relies only on the interface provided
by the prefetcher and does not interact with Coda
code. This allows easy portability of our system to
other environments!. Again, such portability was an
important design goal, and we believe that we have
succeeded in achieving it.

Finally, the flexibility of our system is one of its
most unique aspects. It can be expected to perform
well in different environments, as different properties
may be designed to work well in very specific settings,
but collectively will work in the union of these. This
is expected due to the convergence property of our al-
gorithm: it will dynamically redistribute the weights
to assign a relatively high proportion of the cache
to the properties that are successful in the current
environment.

The Related Work section which follows spends
some more time discussing the various approaches
to file prefetching that we have encountered in lit-
erature. Section 3 delves deeply into the design and
implementation aspects of our system, including a
description of the properties we have implemented.
This will include a detailed discussion of the internal
workings of the Algorithm Module (Section 3.3), and
the description of how all the components in the sys-
tem fit together. To test our system, we have done a
performance evaluation using Coda Traces? to drive

!n fact, the algorithm module and all properties have been
compiled and tested both under Linux and Microsoft Windows
2000

2These traces were collected at Carnegie Mellon University
in 1991-1993

the file access simulations. Additionally, we tried to
evaluate the performance of our system in a devel-
opment environment by running a make of Apache
server. Qur simulations and results are described in
detail in Section 4.

2 Related Work

One of the early ideas for file prefetching was to uti-
lize application hints that specify future file accesses.
This deterministic prefetching was explored by Pat-
terson et al. in several articles on Informed Prefetch-
ing and Caching[15, 18]. While this technique pro-
vided some important insights into the tradeoffs of
prefetching, it is not very generalizable, as few appli-
cations produce the required hints.

At around the same time, the SEER project was
born at UCLA[9, 10, 11]. The goal of SEER was
to allow disconnected operation on mobile comput-
ers using automated hoarding. A rather successful
attempt was made to group related files into clusters
by keeping track of semantic distances between the
files and downloading as many complete clusters as
possible onto the mobile station as can fit into the
cache prior to disconnection. They defined seman-
tic distance between some two files, A and B, as the
number of references to other files between adjacent
references to A and B. In its later development phase,
SEER also incorporated directory membership, “hot
links”, and file naming conventions into the hoarding
decision process.

In 1994 Appleton and Griffioen published their
work on prefetching[4, 5]. Their approach used a
directed graph, the nodes of which represented pre-
viously accessed files, with arcs emanating from each
node to the node (file) that was accessed within some
lookahead period afterwards. The weight of each arc
is the number of times it has been visited (i.e.,the
number of times the second file was accessed within
the lookahead period of the first). Thus, if some file
is accessed, the probability of some other file being
accessed “soon” can be estimated from the ratio of
the weight of the arc to that file to the cumulative
weights of all arcs leaving the current file.

The next important work in the field was by



Kroeger[7, 8]. His work included a multi-order con-
text model implemented using a trie, each node of
which represented the sequence of consecutive file
accesses from the root to that node. Each node
kept track of the number of times it had been vis-
ited. Slightly reminicent of Appleton and Griffioen’s
model, the children of a node represented the files
that have in the past followed the access to that file.
The probability of each child node being the next vic-
tim can be estimated from the ratio of its visit count
to the visit count of its parent less one (since the
parent’s visit count has just been incremented). In
a later work[8], Kroeger enhanced his model by par-
titioning the trie at its first level and maintaining a
limit on the size of each partition.

Several other projects tried to improve on those
discussed above. The CLUMP project[2] attempts
to use the concept of semantic distance developed
as a part of the SEER project to prefetch file clus-
ters. Lei and Duchamp built a unique probability tree
similar to Kroeger’s for each process[12]. Vellanki
and Chervenak revisted the Patterson’s Cost-Benefit
analysis, but adapted it to a probabilistic prefetch-
ing environment[19]. Geels unsuccessfully attempted
to use Markov Chains for file prefetching[3]. Finally,
an adaptive cache replacement algorithm that uses
learning techniques was presented by Ari et al[l].
This adaptive algorithm is the closest model to our
that we have found in literature. The main differ-
ence is that we concentrate on prefetching, whereas
this algorithm deals with replacement strategies.

Still, all the prefetching models that we have seen
only concentrate on one prediction method, and,
thus, our project can be seen as an extension to the
efforts mentioned above. We combine the probabil-
ity trie proposed by Kroeger, probability graph per
Appleton’s work with several other properties that
we feel are good predictors of future accesses, such as
file extension and directory membership. Given all
of these potential predictors, we developed an algo-
rithm that learns their relative importance in a given
environment. Indeed, we feel that one of the main
shortcomings common to all the approaches to date
is their inability to perform well in different environ-
ments. Our solution allows a set of predictors to dom-
inate the prefetching decisions in the environments to

which they are best suited, and to give way to others
when those become more successful.

3 Design and Implementation
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3.1 Design Overview

PREFETCHER ALGORITHM
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Figure 1: System Design

Quite unsurprisingly, we believe that network file
prefetching should be done within a Distributed File
System. We chose Coda [17] as our framework. Coda
is an attractive choice for several reasons. It was de-
veloped primarily as an academic research tool, and
is often used/cited in research, providing us with a
wealth of file traces and examples of valid measure-
ment techniques [14]. It has also been ported to
many combinations of hardware and operating sys-
tems. This dovetails nicely with our goal of keeping
OS-specific code to a minimum. If we are designing
our system to be portable, it follows we should choose
a base DFS that can follow us where we want to go.

As one can see from Figure 1, we have broken our
logic into several parts. The primary motivation for
this was portability. Only the Prefetcher module con-
tains OS-specific code, and would therefore be the
only code to change in order to port our system to
new operating systems.

The Prefetcher module is invoked at critical points
in Venus execution, such as when servicing a file open
request, or when about to fetch a file from network. It
keeps the higher-level modules informed of file activ-



ity, and acts on the prefetching suggestions provided
by the Algorithm Module.

The Algorithm Module consists of the Algorithm
logic (the block labeled “Algorithm” in Figure 1)
and various property datastructures. We have de-
fined class algorithm as a singleton; as it is only
accessed from the File System thread. However, ex-
clusive access control on the object is not a concern.

3.2 Prefetcher Module

In order to successfully implement prefetching within
the context of the Coda distributed file system, we
need to be able to:

1. Monitor all open calls to files which are part of
the mounted network volume(s), and

2. Monitor all fetch-from-server operations, so
that our logic may suggest appropriate files to
prefetch at that time.

We can accomplish both these goals through modi-
fication of the Coda client software alone, which sim-
plifies our development effort. Even better, the code
which we are concerned with on the client all resides
in the cache manager Venus, which is a user-level
process. The fact that we do not have to modify the
kernel is a major plus.

Venus is comprised of many threads, but has only
one file system thread. Fortunately for us, this
thread handles all the functions described above, so
we do not have the headache of thread coordina-
tion and concurrency. We have defined a C++ class,
prefetcher, which encapsulates the functionality re-
quired to perform intelligent, adaptive prefetching.
An instance of this class is a member of Venus’ class
fsdb (which defines the file system thread).

At the point where Venus receives an upcall from
the kernel requesting a file open, prefetcher ob-
serves this and notifies the Algorithm Module of the
file which was accessed, so that the latter may in turn
inform the properties. Once the FS thread receives
an open request, it first checks if the file is already
in the Coda cache. If not, it issues a Fetch() re-
quest to retrieve the file from the server. At this
point, the Prefetcher calls the Algorithm Module,

with the file name currently being accessed. It ex-
pects in return a list of files which are suggested for
prefetching at this time. The Prefetcher parses the
list and removes those files from the list that are al-
ready resident in the cache (we get those for free!).
The remaining files the Prefetcher “prefetches” from
the server, using the standard Fetch() call. There-
fore, the standard Venus code is not aware of which
files are being fetched due to a legitimate cache miss,
and which fetch requests are as a result of actions
of the Prefetcher. Clearly, the Prefetcher must keep
track of which requests it generated, and not invoke
the prefetch logic on those, avoiding an endless loop.

3.3 Algorithm Module

3.3.1 Decision-Making
Module

in the Algorithm

The algorithm module decides which files are likely
to be accessed in the near future. As it is expected
to manage all data necessary for the prediction, it is
notified of all file accesses synchronously®. In turn,
the algorithm itself relies on a set of properties to
make their local predictions, which it then manipu-
lates to come up with a global set of predicted files.
While all properties are created equal, they diverge in
importance, as some may be observed by the global
decision-making unit to be “weak” predictors. Thus,
the algorithm is analogous to a president delegating
decisions down to advisors, with some advisors given
more trust than others as a consequence of their past
service. The final decision, of course, is left up to the
global decision-maker, which evaluates each potential
file from the pool of all files and selects the subset
that should be prefetched.

We have attempted to answer the following ques-
tions during the algorithm design process:

e Which properties should be used to rank files?
e How do the properties rank files?

¢ How do we determine the final list of files to
prefetch?

3This is important because some properties (for example,
the trie) need to know the actual sequence of file accesses.



The answer to the first question is still open, as
there is a very large number of file properties which
could be potential predictors of access patterns. In-
stead of trying setting our choices in stone, we created
a modular architecture which would allow any addi-
tional predictor to be simply “plugged-in” into the
algorithm. This allowed us to concentrate on evalu-
ating our model using only a small set of properties,
which we hypothesize will produce the best results.
We chose to use the Trie[7, 8], Last Successor[8],
Probability Graph Successor[4, 5], Directory Mem-
bership, and File Type (extension) as our initial prop-
erties, which are described in greater detail in the
following sections.

Each property exports the following simple inter-
face to the algorithm:

e file_accessed(file): notify the property of a file
access event

o get_prefetched_list(size): ask for the list of pre-
dicted files that fits into size

e confidence(size): ask for the confidence of the
property in the currently suggested list of pre-
dicted files (sum of probabilities); if not pro-
vided, confidence of 1 will always be assumed

The list of prefetched files that is returned must be
sorted by priority that the respective property assigns
to it. We refer to the relative position of a file within
this list as the ranking of this file with respect to the
property.

So how do the properties rank files? We tend to
leave this decision up to the properties, with one con-
straint: the ranking should be an indicator of impor-
tance that the property attributes to the file, with the
importance decreasing as one moves from the head to
the tail of the predicted file list. The rankings of the
files in the returned list are normalized to 0<r<1 by
substituting the index of the file within the list into
the function r = f(p) = 37 when p = 0,1,... is the
index.

3.3.2 Omn-line Learning in the Algorithm

Module

So how does this black box reconcile all the infor-
mation contained in the properties? The answer, of
course, is online learning. Our learning approach is
similar to the Rosenblatt algorithm, though we have
revisited the process which makes the final decision.
The Rosenblatt algorithm [16] reacts to counter-
examples (misses) by adding the current input to the
weights; otherwise, the weights remain fixed. We
used this algorithm when the input is the ranking
of the files by each property. During a cache miss,
each property predictor is asked to supply its ranking.
This policy leads to boosting the weights of proper-
ties that considered the missed file more important.

At this point, we had several options for using the
learning scheme just described to combine predictions
made by the properties into one list. A traditional
approach would have been to calculate overall rank-
ing as Y-, cproperties Wp " Tp and to use it, or a revised
monotonic transformation of it, to check whether it is
sufficient to fill the target size the prefetcher specified.
Another approach is to divide the available prefetch-
ing storage space according to the weights, and allow
each property to use its proportion of the total space
as its own cache to fill with predicted files. We chose
the latter approach, referred to as Size Division, for
several reasons. First of all, it is more fair towards
the properties with small but significant weights. We
are concerned about such properties, since they may
become significant in unstable situations, such as a
change of the working set. Additionally, Size Divi-
sion allowed us to leave the ranking decisions com-
pletely encapsulated within the properties, making
the primary decision-making of the algorithm sim-
pler and more general. The downside of the Size
Division method is that it requires more computa-
tion from the module, which will have to deal with
common files that will inevitably be returned by the
properties. It also punts much of the complexity onto
the properties. We think this is acceptable because
properties are inherently more volatile units, which
may be changed a number of times, while the body
of the algorithm is stable. Furthermore, the prop-
erty/algorithm interface is greatly simplified, facili-



tating dynamic adjustments that may often be made
to the properties, as well as the process of adding and
removing properties.

Thus, our algorithm uses weights to decide on the
proportion of the cache it allocates to each property.
This calculation is straight forward: a property gets
a proportion of the cache equivalent to its weight di-
vided by the sum of all weights.

The more difficult question of determining the
weights for all properties is answered as follows:

for (each property) {
if (cache miss) {

//emulate retrieving prefetch list with property thinking
//that it has the entire cache
//This is done for the file ranking information to be
//stored internally by the property class that will be
//returned by the susequent notify_file_accessed call
//note: the list of files returned here is never used
property —get_prefetch list(entire_cache)

//notify each property of the access

//receive the ranking of the file

//according to its placement

//in the prefetch list previously

//retrieved (get_prefetch list call above)

rank_of_file = property—notify file_accessed(file)

if (cache miss) {
//update weights according to the rankings retrieved
weight[property] = weight[property]+rank_of_file

Figure 2: Pseudocode for computing weights

As can be seen from the pseudocode in Figure 2,
1. weights are only updated on cache misses

2. the ranking of the file is calculated based on the
emulation call to get all prefetching suggestions
that would fit into the entire cache, since this is
the maximum amount of space any property can
ever service

3. the ranking is calculated based on po-
sition, p, in the list returned by the
get_prefetch list(entire_cache) call from the for-
mula, ranking:ﬁ, which is just an arbitrary
decreasing function in p

When the algorithm module receives file lists from
all the properties, it has to merge them in order

to send one complete list back to the perfetcher.
This merge generally needs multiple iterations of the
get_prefetch_list queries, since existence of files that
are common to several properties frees space for ad-
ditional suggestions.

3.3.3 Boosters

While our learning mechanism is very flexible, it does
not account for short-time variations in the success
of the properties, concentrating, instead, on the long
term stability. Many environments, however, may be
inherently unstable (context switching, for example,
can confuse the predictors), and to account for this
we decided to create a set of boosters within the Algo-
rithm Module logic. We have currently implemented
two boosters described below, but our Future Work
section provides descriptions of several others that
could improve the performance or usefulness of our
system.

CI: Confidence Indicator Although weights are
a good indicator of the level of success of each prop-
erty, at different points in time different properties
may have varying “confidence” about their predic-
tions. To account for this, we added a method to the
property interface that returns a number between 0
and 1 indicating how confident the property is about
its current predictions. Each time the algorithm is
asked for a list of files to prefetch, it multiplies each
weight by the confidence indicator of the respective
property and then goes on to do the usual operations
to put together the predicted file list it will send back.

In designing CI, we had to make sure its defini-
tion is globally meaningful and fair to all properties.
We decided that cumulative probability of files that
fit into the cache slice allocated to a property satis-
fies both of these constraints: all properties sort pre-
dicted files by probability of these files to be accessed
in the future, and fairness is achieved in the long term
since if CI reduces cache slice of a “good” property,
the corresponding increase in the weight over time
will eventually compensate for this.

PRO: PRoperty Observer Weight alone does
not indicate the absolute usefulness of a property —



a property may be ineffective when it suggests files
that are already suggested by other properties. This
module simply checks which property uniquely pre-
dicts the currently accessed file. If no such property
is found, the aging indicator of all is incremented. If,
however, such property is found, its aging indicator
is cleared. If the aging indicator of any property ex-
ceeds some threshold, this property becomes passive:
it is no longer used by the algorithm to compile its
list of predicted files, though it still learns of all file
accesses and its weight is still being maintained ac-
cording to the previously described scheme. If at any
point a property that is passive uniquely predicts any
file, it is immediately activated. To make sure that
similar properties do not become passive simultane-
ously, PRO only makes one property passive during
each file access.

3.3.4 Properties

In the previous sections we have alluded to the prop-
erties that perform most of the thinking for the al-
gorithm module, but have thus far been very vague
in describing what they are. The following subsec-
tions describe the seven properties that we have im-
plemented.

Trie The trie property was created using a multi-
order context model as described by Kroeger[7, 8].
We chose to use second order context, since the size
of the trie is exponential in the context order, and
Kroeger showed no improvement in predicting ability
beyond second order.

The insight of this property is that it is very likely
that many applications or utilities access the same
sequences of files at different times. This can be easily
seen in a development environment, where a make file
will tend to compile files in the same sequence.

An interesting problem we ran into during the im-
plementation of the trie is that of determining the
best files (according to cumulative probability) to
place in a fixed sized space. This problem turns out
to be NP-Complete?, and, therefore, we ended up us-
ing a heuristic that placed as many files as possible

41t can be reduced from the Knapsack problem.

into the fixed size, ordered by probability of future ac-
cess, and then iteratively replaced the last file with a
number of smaller files with higher cumulative prob-
ability.

After having implemented the trie, we found that
the overhead imposed by storing the complete his-
tory of file accesses is unacceptable. As can be easily
seen, the space requirements of a trie of context m to
store a database of n accesses is O(n™*!), so in our
case it is O(n®). As n grows over time, adding files to
the database, as well as retrieving predicted file lists
becomes slow. To remedy this problem, we followed
Kroeger’s advice[8] and implemented constant parti-
tions. Indeed, our results show that varying partition
size had a significant affect on the trie overhead.

Probability Graph This is exactly the probability
graph proposed by Appleton and Griffioen[4, 5]. The
graph stores each file access as a node and tracks sub-
sequent file accesses, recording the number of times
a given file was a successor. Successor relationships
are represented as directed arcs in the graph, and
access counts are recorded as the weights of these
arcs. When the get_prefetch_list method is in-
voked, the property returns all files that succeeded
the currently accessed file within a specified looka-
head window. This lookahead window can be seen as
the access distance, which is similar to the semantic
distance used in SEER.

Last Successor This property relies on long-term
temporal locality of file accesses. In other words, it
“records” the immediate successor of each accessed
file and, when asked, releases this object to the al-
gorithm. While this is the simplest property that
we deal with, intuitively it should be fairly effective,
as we would expect people to often follow the same
working patterns.

Directory Distance Directory Membership prop-
erty tries to relate file system locality to temporal
locality of access, since files that reside in the same
folder are likely to be a part of the same working
set. This property keeps track of the directory in
which the accessed file resides and its predictions are



based on directory distance. Distance of 0 between
two given files indicates that they are in the same
directory, distance of 1 means one file is the direct
descendant of the other, and so on. Predictions are
made by following the directory hierarchy and rank-
ing files according to directory distance.

Directory Probability Graph This property
maintains a successor graph of directories in the same
way as the Probability Graph property described
above maintains a successor graph of files.

Directory LRU Directory LRU maintains a FIFO
queue of directories. When a directory is accessed, it
is added to a queue, possibly displacing the Least Re-
cently Used directory. When returning the prefetch-
ing suggestions, it follows the queued directories from
the top of the queue, ranking files accordingly.

File Extension Intuitively, this again seems like
a good indicator of access locality, as it is easy to
envision users opening several StarOffice or pdf doc-
uments within a relatively short time, particularly
since it takes extra effort and time to open and close
such applications, and few like to spend more effort
than the minimum necessary.

File Extension property works by saving the direc-
tory of the last file accessed and records extension
sequences (shifts) similar to the Probability Graph
property. It creates its prediction list by scanning
the directories in the order of increasing directory dis-
tance metric as described earlier, returning only the
files with the extensions corresponding to the succes-
sor database.

4 Performance Evaluation

Our test setup consisted of two Dell Latitude laptops,
both with Pentium IIT 900 MHz processors, 512 MB
RAM, and 10/100 Mbit/s Ethernet cards. We used
a Linux kernel module (NistNet) to simulate vari-
ous network latencies, although our test server and
client were in fact directly connected via an Ethernet
crossover cable. Both test machines ran Linux ker-
nel 2.4.18-3 (Red Hat Valhalla), and Coda software

release 5.3.19. The Coda server software is unmodi-
fied; the client was running our modified Venus cache
manager as described above.

We identified two scenarios we wanted to explore.
First, (as described below), we obtained traces of ac-
tual file access on a server at Carnegie Mellon Univer-
sity. We replay these traces to compare the perfor-
mance of our modified system to baseline Coda, to a
Trie approach (Kroeger’s solution), and combinations
thereof.

As stated below, these traces are not the most cur-
rent, so we also defined two additional tests. We
placed the source tree of the Apache web server in a
Coda-shared directory, and measure the compile time
for our system, baseline, and Trie. JSince these tests
involve transferring a great deal of data, we expect
see a high miss rate for the baseline system, and are
interested to see how much our system will mitigate
this.

4.1 Evaluations using Coda Traces

The following evaluations were performed with file
access calls simulated from the Coda Traces taken
from the mozart computer at CMU in 1993 for a pe-
riod of about one month. This particular machine
was chosen because it is described as being a “typi-
cal” workstation. While the Coda Traces are almost
eleven years old, they were the most convenient for
us to use, partly due to our preliminary experience
with them. Our goal for the future is to involve traces
that are considerably more recent and rerun the same
tests.

A few words need to be said about how these tests
were set up. One notable shortcoming in the Coda
traces was the lack of file size information for files
that were never opened during the tracing period.
Since some of our properties may prefetch these files,
we had to assign some realistic sizes to these files.
We did this by following a depth first search through
the file hierarchy and assigning any zero-byte files the
last size encountered. While we understand that this
is not statistically the most appropriate solution, we
felt that since we will still mostly prefetch files with
known size, this workaround would not have much
impact on the results. In the future we intend to



improve this by selecting the sizes for zero-byte files
(files for which the size information is missing) from a
realistic distribution reported by a recent file system
study.

4.1.1 Network Latency Evaluation

We hypothesized our system would be more benefi-
cial as network latency to the file server increased.
As network delay increases, whatever computational
overhead our system has introduced should be over-
shadowed by the network delay to fetch a file. Since
our system should reduce the overall number of fetch-
on-demand operations, this is of interest, for such
bandwidth limited devices as wireless PDAs.

We ran the Coda traces described above for the
following Prefetcher configurations:

e no properties active (baseline)

Trie only

all properties (our full system)

all properties + boosters

DirLRU property only
e Trie + Dir property + DirLRU property
e Trie 4+ Dir property + DirExtension property

We added the last three tests out of curiosity. If a
subset of our properties performed much better than
the whole suite, it would lead us to believe we need
to adjust more quickly to those properties which are
performing well and those which are not.

For each test listed above, we used the network
latency simulator to replicate roundtrip time (RTT)
to the file server of 1ms, 10ms, 50ms, and 100ms. We
experimentally verified RTT of 1-10ms is comparable
to a LAN connection, 50ms to that of a cable modem
/ DSL link, and 100 ms and above are typical for
wireless links or dial-up modem connections.

Table 1 shows the average access latency vs. RTT,
for each prefetcher configuration. Average access la-
tency is calculated as the total time required to replay
the Coda traces divided by the total number of file
accesses.
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Figure 3: Avg. Access Latency (ms) vs. RTT

Prop 1ms | 10ms | 50 ms | 100 ms
none 1010 | 1923 | 9296 | 20844
Trie only 1684 | 2455 | 8784 13059
DirLRU only 598 1248 | 7389 16188
Trie4+Dir+DirLRU | 1630 | 3529 | 5027 | 18147
Trie4+Dir+DirExt | 1530 | 2930 | 6717 | 15442
all 3910 | 4318 | 8494 12785
all+PRO booster 2362 | 2940 | 9503 15922

Table 1: Average Access Latency (ms) for Coda traces
vs. RTT to Server, per Property Configuration

The results show our system starts at approxi-
mately 3X the baseline access latency for LAN speeds
but as the RTT increases, it begins to out-perform
the base Coda implementation. One can conclude
that on the small RTT runs, our poor performance
is due to our inherent system overhead. As file ac-
cess latencies increase for higher RTTs, this overhead
becomes less important, and the fact that we are
prefetching files causes enough cache hits to make
the difference. At the high-end of the RTT spec-
trum (100ms), we show a 39% improvement in access
latency over the baseline for the 100ms RTT case.
This corresponds to our target application (weakly-
connected mobile devices).

In comparision to an optimized Trie, we perform
quite well. Our avg. access latency is nearly iden-
tical for the higher-RTT cases (50ms, 100ms). We
expected this, as our system is a prototype, and



the Trie we used is optimized, benefiting from the
work already done by Kroeger and others. One can
see that 3 subset runs (DirLRU, Trie+Dir+DirLRU,
Trie+Dir+DirExt) actually beat the Trie for the 50
ms case. This suggests that our overall performance
(running with “all” properties) could be improved if
we can improve the process of assigning weights, to
ensure the best properties of the moment are con-
tributing fully, since these properties are more accu-
rate than the Trie in those cases.

An interesting side-note is the performance of the
PRO booster. It seems to improve performance in
low-latency cases but in the longer term does worse
than our regular “all properties” configuration. It is
possible it may be ejecting properties prematurely,
that might be useful. This is an optimization we will
pursue.

4.1.2 Trie Overhead

Our ultimate goal is to make this system adaptive
to network speeds, and a necessary step is to learn
how our parameters affect both latency and over-
head. This information can be later used to create
algorithms that maximize end-user utility function,
which we assume to be an inverse function of average
file access latency per byte.
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Figure 4: Trie Overhead vs. Partition Size

While doing our preliminary experiments, we
found that Trie property accounts for a good pro-
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portion of the system overhead, and, thus, is a good
place to start our overhead analysis. We collected
Trie overhead information for partition size varying
between 0 and 100. The results are shown in Figure 4.
It can be noted that the relationship appears linear,
so we ran a linear regression to determine the coef-
ficients of the TrieOverhead(partition size) function.
The R? of the regression was over 0.99, indicating
that this relationship can indeed be approximated by
a linear function with regression coefficient of 9.79
and the intercept of 40.77.

Partition Size | Avg. Access Latency (ms)
-1 1151
0 961
10 876
20 1174
30 1331
40 1325
50 1664
60 1749
70 1668
80 1980
90 1797
100 1946

Table 2: Trie Partition Size vs. Average Access Latency

We then experimentally evaluated the effect of
varying trie partition size on access latency in the
trace tests described above. The network speed was
100 MBit LAN connection to the server. The results
are shown in Table 2. This shows optimal partition
size is small for a high-bandwidth connection. The
results would be more interesting for higher latencies,
where Trie overhead does not play as much of a role,
and we plan to investigate this in the future.

4.1.3 Apache Source Compilation

For an additional, real-life test, we placed the source
code tree of the Apache web server in a coda direc-
tory. We then ran three test runs, starting from cold
cache, and did “make clean” and “make” on this
source. Qur results for baseline, Trie only and all
properties are shown in Table 3.



Prop Set | Build Time (ms)
all 550
trie 561
none 438

Table 3: Apache Build Time for each property set (ms),
5 ms RTT

Our system performs better than the Trie alone
but still slower than the baseline. We believe this is
due to our inherent overhead which becomes visible
for fast connections (5ms RTT in this case).

5 Future Work

5.1 Reducing the Magic

Our system right now relies on several parameters
which we manually set according to our intuition
about the trade-offs of performance vs. overhead.
We believe that this is the wrong way to do it and
simply did not have time to implement these away.
Time limitation is not our only excuse for keeping
around many floating parameters tbat we tweak in
the configuration file. We have to do this first in or-
der to collect data on how these parameters vary the
effectivenes of our prefetcher, and using that data (af-
ter a few regressions) to create functions we can later
use in the optimization algorithms that set these dy-
namically.

One of the most important parameters we set
is the cache slice (percentage) alloted to our
system.  The algorithm for setting it dynami-
cally will maximize a “worthiness” function, which
is defined as w(size, speedran) (Tpan —
Thit) - (hit_ratio_prefetcher(size) — hit_ratio lru) —
Toverhead- Note the similarity between this and Pat-
terson’s cost-benefit analysis[15, 18].

In addition to the cache slice parameter, trie parti-
tion size and threshold can be dynamically set by the
system depending on the current connection speed.
Again, this can be done by defining some utility func-
tion as U(partition_size) = benefit - cost, with benefit
being an inverse function of average latency, and cost
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being the prefetching overhead and execution over-
head. For execution overhead estimation, we will use
the regression results from Section 4.1.2 to create the
TrieOverhead function:

5.2 Enhancing the Algorithm with
Monitor Modules

To further enhance the performance of our algorithm,
we came up with several ideas for modules we called
monitors. These are described below.

STAD: STAbility Detector Keeps track of how
stable the weights of the properties are by comparing
the sum of absolute variations of all weights to some
threshold and updating the status in the algorithm
module accordingly.

KNOWR: KNOWledge Recorder This moni-
tor simply dumps all the learning database informa-
tion to file either for backup or to use on different
workstations or for different users.

HUMAD: HUman versus MAchine Detector
The file access behavior of a human versus an appli-
cation often affects the file access pattern, and this
monitor would try to take advantage of this addi-
tional information by measuring time between con-
secutive file accesses for some number of files, and if
this time is “too short” (i.e. below some threshold),
the “machine mode” is assumed by the algorithm.
Conversely, if the time between consecutive accesses
is “long”, it must be a human opening the files. This
information may be useful in determining the set of
properties that the algorithm favors when working in
a human or machine mode.

SICO: SIze COnsultant This monitor module re-
lies on feedback from the prefetcher module about the
proportion of files last suggested by the algorithm
that was actually prefetched (the rest ignored since
they already were in the cache). The algorithm may
use this information to decide that it needs to increase
the size of the predicted file list it returns to the
prefetcher in order to compensate for this “waste”.



Conversely, algorithm may decide that it is using too
high a percentage of total cache and evicting some
important files. An additional subtle usefulness of
this monitor is to implement that actual fraction of
the cache that the algorithm uses to prefetch files, as
long as we are assuming that our algorithm module
is not going to maliciously oversaturate the cache (if
this assumption doesn’t hold, we may be in trouble
anyway).

6 Summary

Considering our system is an initial prototype, it ap-
pears to have performed very well in this evaluation,
showing a 39% improvement in access latency over
the baseline for the 100ms RTT case. This corre-
sponds to our target application (weakly-connected
mobile devices). It is reasonable to expect perfor-
mance can be improved to approach baseline for
strongly-connected cases, as our currently poor per-
formance is due to inherent computational overhead.
Furthermore, our results are as good or better than
a Trie alone for high RTT, which leads us to con-
clude our composite approach is a promising one, and
worth of further study.
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