
Dynamic Group Membership and Quiescence in a Supply Chain

Daniel Peek, L Julian Schvartzman, Yevgeniy Vorobeychik
Electrical Engineering and Computer Science

University of Michigan
{dpeek, lschvart, yvorobey}@eecs.umich.edu

12 March, 2003

Abstract

Supply Chain management has been a widely re-
searched topic in Business, as well as Computer Sci-
ence. While there has been a tremendous amount of
theoretical work on the subject, few research imple-
mentations exist that explore issues such as market
organization and quiescence detection within the sup-
ply chain. Our goal is to fill this gap. Consequently,
we have implemented a supply chain that uses a group
level abstraction to manage the markets for input and
output goods at each level of the supply chain. Goods
are sold at auctions managed by Market Servers.
Auctions clear only when quescence is detected in the
entire system, ensuring the designer’s control over
global efficiency of the system. Autonomous agents
were implemented to take advantage of this frame-
work and simulate behavior of actual economic agents
participating in a supply chain. In general, though,
any agent can be designed to participate in our supply
chain system, as long as it adheres to the interface
specifications. We also introduce a complication to
the common theoretic model of supply chains by drop-
ping the assumption that agents will be correct (i.e.
non-buggy). Our system can handle crash failures of
agents through the use of well-understood group mem-
bership semantics. Finally, as a strong incentive for
agents to behave appropriately (and for designers to
eliminate agent errors that would negatively impact
other agents), we introduce a reputation system, in
which an agent’s reputation score affects the proba-
bility of that agent’s participation in a given round of
transactions.

1 Introduction

Distributed electronic auctions are becoming increas-
ingly popular in e-Commerce, and much research ac-
tivity has been devoted to organizing autonomous
agents into electronic markets to increase efficiency
and reduce transaction costs. Several important
problems inherent to many distributed systems are
relavant here: termination (quiescence) detection,
dynamic membership, and performance and failure
control. Quiescence detection has been explored by
Dijsktra and Scholten [3], Mattern [5], and others in
the context of generic distributed systems, as well as
Wellman and Walsh [9] in the context of supply chain
management, which is the area of particular inter-
est to us. Dynamic membership is another age-old
problem in distributed systems, and is especially dif-
ficult when the system relies on quiescence detection
to end a period of activity, since agents can enter and
leave the auction at any point without notifying the
servers. Finally, we implemented the reputation sys-
tem that serves to reduce the incentives of individual
agents to cheat, and thereby address the question of
performance and failure control.

As already mentioned, we will develop a supply
chain that relies on central auction servers to “run”
each respective market along the supply chain. Auc-
tion servers are assumed to be reliable and to have
reliable links between them. At the beginning of the
quiescence detection protocol, an activator process
propagates activation through the supply chain net-
work. After that, termination detection proceeds on
two levels: the inter-group and intra-group level. On

1

the inter-group level, termination detection process
is very similar to Dijsktra and Scholten, while within
groups it primarily uses time outs and agent activa-
tion counters to detect when agents become passive.
An important additional assumption imposed here is
that markets will eventually terminate, since at some
point global equilibrium will be reached and no agent
will have an incentive to continue bidding. Further-
more, to prevent auctions from lasting indefinitely,
we will impose a minimum bid increment. Other-
wise, agents can bid infinitesimally small increments
above previously winning bids.

The dynamic membership problem complicates
termination detection, as members can enter and
leave any market at any point during the auction. If
an agent leaves the market after having submitted a
winning bid, a quiescent state may be incorrectly as-
sumed by the activator. Instead, bids of non-existent
agents must be automatically “decommitted” – with-
drawn from the markets – as other agents will prob-
ably change their bidding behavior based on this ad-
ditional information. Decommitment (voluntary or
automatic) may also result in a penalty imposed on
the agent, which is reflected in the agent’s reputation
score and effectively reduces the agents expected fu-
ture payoffs. The agents may also incur a pecuniary
penalty for decommitments. In our current imple-
mentation, we impose no decommitment penalty, but
do reduce the agents’ reputation scores when they de-
commit by failing.

The reputation system works through authentica-
tion. When an agent enters the group (any group
along the supply chain), it is authenticated by the
group leader. The purpose of authentication and the
reputation system is to discourage the agents from
“misbehaving” by entering spurious bids or deviating
from the bidding and quiescence protocol. The repu-
tation system may also serve to detect faulty (buggy)
agents and exclude them from the market after an ex-
cessive number of violations.

Babaioff and Nisan [1] suggest using double-
auctions across the supply chain, and this is the road
we will take. When quiescence is detected, all sell
bids are matched against the corresponding winning
buy bids and the markets clear at a price specified
by the auction rule. At this point, there must not be

any lingering bids from non-existing agents, as those
would have been cleaned up in the process of termina-
tion and dynamic membership detection mechanisms.
After “cleaning up” all the markets, the activator ini-
tiates the next period of exchange by activating all
auction servers again.

2 Design and Implementation

2.1 Groups and Group Membership

2.1.1 Preliminaries

A typical supply chain consists of multiple markets at
which input goods are purchased and output goods
sold by the agents. All transactions between agents
are centralized, with market servers mediating these
transactions using an auction mechanism. We as-
sume for convenience that each market server medi-
ates a sale of a single good from some supplier agents
to some other consumer agents. Figure 1 shows an
example of a supply chain as we envision it.

A1

A2

A3

A4

A5

A6

A7

A8

M1

M2

M3

Figure 1: An example of a supply chain

As the number of market servers and agents grows,
the need arises to separate the supply chain into a
set of linked components, or groups, in the spirit
of the divide-and-conquer approach. Such treatment
allows us to view each group as a monolythic com-
ponent, and globally be concerned primarily about
inter-group communication and some minimal global
state. Naturally, this will only reduce complexity if

2

we can make some assumptions that limit interdepen-
dence between members of different groups. Thus,
before proceeding with a more detailed discussion
of our group membership and quiescence detection
protocols, we will explicitly state our assumptions
and observations that we can make given these as-
sumptions. Also, to clarify our logical framework, we
present the definitions for supply and demand groups
that will be used in the remainder of the paper.

Definition 1 A supply group of a market server in-
cludes the server itself, all the agents that are sell-
ing goods at that server, and all the market servers
through which these agents are buying goods.

Definition 2 A demand group of a market server
includes the server itself, all the agents that are buy-
ing goods through that server, all the other market
servers through which these agents are buying inputs,
and all the market servers through which these same
agents are selling goods their goods.

It is apparent from the above definitions that a
particular group is a Supply or Demand group from
the perspective of some market server, and can thus
be referred to as simply a group if further specifi-
cation is of no consequence. Thus, since each agent
belongs to some group that is a supply group from the
perspective of the market server through which that
agents sells its output good, and a demand group
from the perspective of the market server through
which it buys its inputs. Figure 2 shows how groups
in a supply chain are formed based on our definitions.

Having defined groups, we can now use them to ab-
stract away the details of the supply chain in Figure
2 by viewing it as a graph of groups, as in Figure 3.

In order to simplify our design and analysis, we
made the following assumptions to restrict our model
of the supply chain:

Assumption 1 Agents in the same group can only
sell their goods through exactly one market server.

Fortunately, with this assumption we lose no general-
ity, since an agent that wants to sell multiple products
can simply acquire multiple agent profiles at registra-
tion.

A1

A2

A3

A4

A5

A6

A7

A8

M1

M2

M3

G1

G2

G3

G4

Figure 2: Formation of groups in a supply chain

G4G3

G2

G1

Figure 3: Viewing supply chain as a graph of groups

Assumption 2 Agents that sell their goods through
the same market server must also buy their inputs
from the same set of servers.

While this assumption limits generality, we believe
that it is valid for a large number of real supply
chains. Still, in the future we hope to relax it to
gain generality.

Assumption 3 Agents that buy their goods from the
same set of market servers must also sell their goods
through the same market server.

While this assumption also greatly limits generality,
it ensures that the market servers in our supply chain
form a tree. While we do not believe this necessarily
to be a typical case, we do think it is common enough
to deserve special attention. As with other restrictive

3

assumptions, however, we will attempt to remove it
in the future.

To reiterate an assumption stated slightly earlier,

Assumption 4 Each market server mediates a sale
of exactly one good.

This assumption is here only for convenience of ex-
position, as we can easily envision a market server
that mediates multiple auctions as multiple logical
market servers.

Armed with these assumptions, we can now make
several observations that help us with the design of
our group membership protocol.

Observation 1 Each market server belongs to ex-
actly two groups: a supply group and a demand group.
Both are formed from its perspective according to the
Definitions 1 and 2.

Proof: It follows directly from Definitions 1 and 2
that each market server will form a supply and a de-
mand group. Thus, we only need to show the follow-
ing for some market server M1: first, if some other
market server, M2, forms a demand group which in-
cludes M1, this group is identical to the supply group
that M1 itself forms; and second, if some other mar-
ket server, M3, forms a supply group which includes
M1, this group is identical to the demand group that
M1 forms.

Let us start with the first part. The members of the
demand group formed by M2 are the set of agents,
A, that are buying goods from M2, the set of all
market servers, Msupply , through which these agents
are buying goods (note that this set includes M2),
and the set of all market servers, Mdemand, through
which agents in A are selling their outputs. From As-
sumptions 1 and 3 it follows that Mdemand contains
exactly one market server, which is M1, while As-
sumption 2 ensures that the set Msupply is the same
as the set of market servers that are members of M1’s
supply group.

The argument for the second part is symmetric to
the one just presented, with M1 now serving the role
of M2 above, and M3 forming the identical supply
group.✷

Observation 2 No two market servers can form
identical supply groups. In fact, market servers must
form unique supply groups.

Proof: We can prove this by contradiction. Let’s
suppose that some two market servers, M1 and M2

form identical supply groups. The composition of
both of their supply groups is a set of agents, A,
which sell through both of these servers, and a set
of market servers, Msupply , through which agents
in A are buying goods. Clearly, agents that buy
their goods through the same set of market servers
Msupply are selling through both M1 and M2, which
is a violation of Assumption 1.✷

Observation 3 No two market servers belong to the
same two groups.

Proof: Let’s suppose that some market server M1

forms the same supply and demand groups as some
other market server M2 (any other way for two mar-
kets to belong to the same two groups would violate
Observation 1). It follows from Observation 2 that
M1 and M2 must form unique supply groups.✷

Observation 4 Each group contains at least one
market server.

Proof: This follows directly from the difinition of a
group, since a group is formed from the perspective
of a market server (if there were no market server in
a group, no group would have been formed).✷

Observation 5 Each agent is a member of exactly
one group.

Proof: Let’s say that some agent, A1, belongs to
a supply group G formed by some market server,
M1. From Observation 2 we know that it can be-
long to only this supply group. Let Msupply be the
set of market servers through which A1 buys its in-
puts. Since all agents in M1’s supply group must buy
their goods through Msupply and sell through M1, we
can suppose without loss of generality that A1 is the
only agent in this supply group (it can be some meta-
agent that represents all the agents in this group).
Since M1 forms exactly one supply group, and each
of the market servers in Msupply forms exactly one

4

demand group which is identical to G, G must be the
only group to which A1 belongs.✷

Since each market server uniquely belongs to some
two groups, it can serve as the medium of communi-
cation between these groups. This would be a moot
point if there was a source of interrelationship be-
tween the groups other than a particular market, but
to combat this difficulty, we will make another inde-
pendence assumption:

Assumption 5 The only source of interrelation be-
tween any two groups is through the state of the mar-
ket server that belongs to both.

While this assumption limits the communication
between agents and market servers, it ensures, along
with the assumptions 2 and 3 (agents that buy/sell
their goods in the same set of markets must buy/sell
their goods in the same set of markets as well), that
our supply chain groups form a tree with links repre-
senting interrelations between groups. As was true of
several other assumptions, this one is made to ensure
tractability of protocols we devise with this model,
and in the future we will look to gain generality by
eliminating assumptions.

Finally, our most heroic assumption:

Assumption 6 Market servers are reliable and
trusted.

Actually, we do not believe that the first part of
this assumption is particularly constraining, as there
are numerous methods to ensure reliability of each in-
dividual market server, the most obvious being repli-
cation. Recall that any market server is just a logical
component, and can internally be arbitrarily com-
plex. While replication will not ensure 100% reliabil-
ity, we think probability of failure can be made small
enough to be of no concern.

Trust is slightly more worrisome, as we can envision
malicious servers on the network masking as members
(possibly, by compromising one of the trusted market
servers). For now, the problem of trust in this context
is beyond the scope of this work, although we will try
to address it in the future.

2.1.2 Group Membership Protocol

Since we had already made the assumption that our
market servers are reliable, we can assign some mar-
ket server in each group to be that group’s leader
without concern about centralizing the point of fail-
ure. Note that if we actually allowed any market
server to fail, our supply chain would have no hope
of functioning, since each market server represents
a unique and essential good. This makes reliabil-
ity of individual servers orthagonal to our discussion
(though no less important). If a group has only one
market server, this server becomes the group leader.
If, however, there are multiple market servers in a
group, the leader of this group is the server that views
this group as its Supply group.

Observation 6 There is exactly one group leader in
each group.

Proof: Certainly, this will be true for groups with
only one market server. In a group with multiple
market servers, only one will view it as its Supply
group. To show this, suppose that (without loss of
generality) two servers view this group as their Sup-
ply group. Agents that sell to through the first server
will purchase from a different set of market servers
than agents that sell through the second, per obser-
vation that agents buying from the same set of servers
must also sell through the same market server. But
then their is no direct interrelation between these two
servers and agents that are selling through them, and
so they must belong to different groups.✷

An agent can join a group at any time by authen-
ticating with the group leader – a process which is
described in more detail in the Authentication sec-
tion. Once authenticated, it is added to the group
leader’s member list and can now sell goods at some
market server in that group and purchase input goods
from others. It does not need to communicate with
any other agents, since all transactions are mediated
by the market servers.

Agents can also leave the group at any point in
time. If they have any winning bids outstanding at
the auctions, they must explicitly decommit (in other
words, withdraw their bids). However, it is possi-
ble that agents will leave without decommitting (for

5

example, because of a crash or network partition-
ing), potentially causing quiescence to be detected
prematurely. To guard against this possibility, the
group leader will exchange heartbeat messages with
all agents. Thus, an agent’s disappearance will be
discovered within a bounded time period. Once the
leader concludes that some agent is no longer a mem-
ber of the group, that agent is removed from the
membership list and all its bids are automatically de-
committed. Any further messages from that agents
are subsequently ignored until it explicitly rejoins the
group. Upon rejoining, the agent will find that it no
longer has any outstanding bids, and is completely
responsible for making its state consistent with cur-
rent group state and resubmitting bids.

2.2 Quiescence Detection Mechanism

Our quiescence detection protocol takes advantage
of the abstraction layer provided by the groups by
separating the tasks of global (inter-group) detection
and local (intra-group) detection. Global detection is
handled by an entity we will refer to as an activator,
which initiates a period of transactions by sending a
“New Auction” (activation) message to a group with
“consumer” agents – agents that purchase good for
final consumption1 Once a group is activated, the
group leader activates (by sending the “New Auc-
tion” message) all the groups that are providing in-
puts to agents in this group. Since this pass of the
protocol only stops when there are no more groups
that can be activated by any already active group, all
relevant groups will eventually be activated. A group
is considered relevant if there exists a path from the
activator to that group. Otherwise, a group is irrel-
evant. Note that since the interconnections between
groups form a tree in our model that is rooted at the
activator, a group is relevant if and only if it is a node
in this tree.

Once a group is activated, it activation within it is
trivial: the group leader simply broadcasts the “New
Auction” message to all group members, agents and
market servers alike. As we had mentioned earlier,
every market server activated in such a way belongs

1More formally, this group cannot be a supply group for
any market server.

uniquely to some two groups. Additionally, by the
definition of a group leader such a market server must
be mediating some input market (in other words, it
views this group as its Demand group).2 Given that
each input good will be an output good in some group
the market server mediating its sale will be the group
leader in the group in which this good is sold. What
follows from this sequence of observations is that the
group activation process is a result of local activa-
tion, with market servers providing the connections
between groups.

Now that we have demistified the process of inter-
and intra-group activation, we must explain how the
subsequent detection and finalization (clearing of all
markets after quiescence was detected) takes place.
The process proceeds as follows. In general agents
are passive. However, once an agent is activated, it
is allowed to submit at most one bid at each of the
markets in its group, after which it becomes passive,
after which it is unable to bid again (any subsequent
bid requests are ignored, until the agent is explic-
itly activated). Agents also become passive by ex-
plicitly notifying the market server or by taking no
action within a fixed amount of time (the timeout
period). Agents can be reactivated (and therefore
made able to submit bids again) if there is a change
in the top bid of any market that agent is connected
to. This change may occur because some active agent
had submitted a winning bid, decommitted a winning
bid, or had dropped out of the group (explicitly or
implicitly). Market server that detects some change
in its state notifies the leader of its demand group
of this change, and all market servers at its supply
group. Subsequently, it activates all agents in its sup-
ply group, while the group leader of its demand group
first sends State Change Notification to all the mar-
ket servers in that group, and then activates all the
agents in the group. Since we are assuming reliable
point-to-point communication, we are confident that
when the reactivated agents submit bids, these bids
will be expected. Finally, to account for the pos-
sibility of multiple nearly concurrent state changes,
we allow agents to bid multiple times at each mar-
ket server, but no more than the number of activa-

2Recall that unless it is the only market server in the group,
a group leader must view this group as its Supply group.

6

tions. Market servers accomplish this by keeping a
counter for each active channel. When the value of
the counter reaches zero, the corresponding channel
(and, therefore, agent) is considered passive.

Eventually all markets will consider all agents to be
passive. Rational agents will reach a maximum price
they are willing to pay and stop bidding. Broken
agents may bid prices higher and higher if buying
or lower and lower if selling, but this is limited by
a maximum price and the inability to sell for less
than zero price. Conversely, broken agents may never
communicate at all, but would then be considered
quiescent after the timeout period has elapsed.

Markets are considered quiescent when each agent
attached to that market is quiescent. To detect the
situation in which every market is quiescent, the ac-
tivator periodically sends out quiescence queries to
the top level markets. If those markets are quies-
cent, they send a similar query to each of their input
markets. If those markets are quiescent, they send
the query on to their input markets and so on. If
the query reaches a market which is not quiescent, a
negative response is returned. If the query reaches a
quiescent market without input markets, a positive
response is returned. Each market collects responses
to the query and if any are negative responses, re-
turns a negative response. Finally, the accumulated
response is returned to the activator. If the response
is negative, it knows that the system is not yet qui-
escent. If the response is positive, then the system
is quiescent. The activator then notifies the markets
that the system is quiescent and that they may clear
their auctions. Then activation messages are sent out
again and the whole process repeats.

There is an unfortunate case in which the quies-
cence detection process can result in a false positive.
If an agent with the top bid disconnects after an affir-
mative response to a quiescence query has been sent,
one or more markets may not be quiescent, but the
activator may still receive an affirmative response. To
reduce the likelihood of this event, each market can
send a message directly to the activator to request
that any outstanding quiescence queries are consid-
ered to have negative responses. However, there is
still a possibility that quiescence is detected falsely.
For example, an agent can fail precisely when qui-

escence is detected by the activator, and since there
is non-zero message transmission delay between any
market server and the activator, the activator will
not “catch” the problem in time. Note that waiting
a finite time period after detecting quiescence does
not solve this problem! The reason that this situa-
tion cannot be completely eliminated is that solving
this problem is equivalent to solving the distributed
agreement problem and our system does not have suf-
ficient communication capabilities to solve it.

2.3 Authentication

In order to join a group, the agent contacts the appro-
priate Group Leader with an authentication request.
The Group Leader validates the agent according to its
local database. If the validation is unsuccessful, the
error message is returned to the agent. Otherwise,
the server caches a unique agent id, adds the agent
to its group membership list, and responds with a
positive acknowledgement. Agent id is used as a key
into the agent reputation database.

There are several purposes of authentication in our
system. One is allowing an agent to identify which
group it wants to join, in order to maintain the group
level abstraction we had started with. Another is to
support our reputation system, which identifies an
authenticated agent by its name. Without some form
of security, both of these are moot, and it was our goal
at first to implement a public key/private key system
to ensure authenticity of agent messages. What we
did not realize at the time is that CAEN machines
have a relatively old version of Java VM, and the Java
library that facilitates implementation of cryptogra-
phy is more recent. Since we had to run multiple mar-
kets, agents, and an activator on separate machines
(all agents can run on the same machine, however),
we had to use the computing facilities of CAEN to
attain any meaningful results. Thus, security is not
a part of the current version of our system.

2.4 Reputation System

In order to police the agents and ensure reasonable
behavior in the system, we implemented a reputation
system. Our first requirement from the reputation
system was that it would allow agents to recover from

7

bad reputation in the long term. Second requirement
was that agents with no reputation score have an in-
centive to improve their reputation (in other words,
there is sufficient disincentive to behaving badly and
then starting back at zero with no penalty; agents
can rid themselves of bad reputations quite easily in
general, since they can simply register a new profile,
as is the case with eBay).

To satisfy the above constraints, we decided to use
reputation score as a determinant of probability of
an agent participating in a period of transactions.
We assume, of course, that the probability of par-
ticipating in a period of supply chain transactions is
directly proportional to agent’s expected future pay-
offs. This seems reasonable, since an agent will have
some expected payoff for each game, which would be
multiplied by probability of participating in a game.
Additionally, this also excludes misbehaving agents
from the system (in the limit, since probability ap-
proaches zero with increasingly low reputation score),
which is a convenient side-effect.

Now that we know that probability of an agent
participating in a supply chain at any given period
is a function of its reputation score, we need to spec-
ify precisely what this function is. We chose it to be
an S-curve with the lower bound of zero and the up-
per bound of one. This suits our purpose quite nicely,
since we are bounded by the minimum and maximum
probability values, and, as we would expect, negative
reputation score causes the probability of participa-
tion to approach zero in the limit, while the probabil-
ity approaches one as the reputation score rises. The
point of inflection is at the reputation score of zero:
this is the probability with which an agent starts out.
We can vary this as a part of the system design to im-
pose a certain type of behavior on the system based
on our expectation of agent behavior and its effects
on the system. The particular function that we chose
is

p(r) =
1

1 + (1
k − 1)e−B·r

where p(r) is the probability of participation as a
function of reputation, k is the probability of par-
ticipation of an agent with zero reputation, and B
adjusts the speed of convergence to zero or one with
reputation score, and will depend on the behavior

that we want from the system, as well as the dimen-
sionality of reputation scores.

In our current implementation, reputation is ad-
justed in the following cases:

• When the market clears and a buy bid matches
a sell bid; senders of those bids receive a boost
to their reputation scores.

• When the market clears; all agents that partic-
ipated in the auction receive a reputation score
boost.

• When an agent decommits (e.g. by disconnect-
ing explicitly or through crashing); its bid is
erased from the auction server and the agent’s
reputation score is lowered.

Before the markets open, each group leader has an
opportunity to prevent agents in their group from
participating. Group Leader of each group computes
the participation probability for each agent and then
“flips the coin” to decide whether each agent partic-
ipates in the next period of exchange. After deter-
mining the group membership for the next period as a
result of the coin flip and agents simply entering and
leaving, the Group Leader sends a message to each
supply market to indicate the group view change.
Banned agents are not activated when the markets
open or when changes are made in related markets.
Bids received from banned agents are ignored. The
ban on participation expires when quiescence is de-
tected. At that point, the group leader can decide
whether to renew the ban.

2.5 Market Server Design

At the application level, Market Server runs an auc-
tion to mediate the sale of a unique good.

At the application level, a Market Server (or simply
a Market) runs an auction to mediate the sale of a
unique good. The auction is characterized as Double-
sided since it admits bidding from both buyers and
sellers.

A Market is said to be open when it is activated,
and it remains in that status until quiescence is de-
tected. While open, a Market is responsible for re-
ceiving bids and enforcing bidding rules, erasing bids

8

of those agents that decommit (i.e. agents that dis-
connect), updating the state of the auction (which
includes bookkeeping for all the bids received), re-
vealing information to agents, and updating the rep-
utation of each agent (as described in 2.4). Upon
quiescence notification the Market clears, matching
buy offers with sell offers and notifying transactions
appropriately.

Each bid is a price-quantity pair. For simplicity, we
did not implement bids with multiple price-quantity
points. To enforce a discrete good rule, only integer
quantities are accepted. In addition, prices are re-
stricted by a minimum possible amount change MPC,
and agents are required to submit bids that dominate
their previous bid. A buy bid for a price pnew is said
to dominate a previous bid for a price pold if pnew ≥
pold + MPC. Similarly, a sell bid dominates a pre-
vious bid if pnew ≤ pold - MPC. Note that an agent
could submit a bid that does not dominate its pre-
vious one by decommitting and later bidding again.
This behavior, however, is discouraged, and the rep-
utation system penalizes it.

Information revealed to agents during an auction
consist of the standard price quote, which is the bid-
ask spread. Bid is the maximum price that any agent
is willing to pay for a good. Ask is the minimum price
that any agent is requiring to sell a good. This bid-
ask quote is pushed to agents as soon as the quote
changes, which occurs upon receiving a new highest
buy bid or a new lowest sell bid, or upon agents de-
committing the highest buy or lowest sell bids.

When quiescence is detected, the Market clears and
executes a simple allocation policy that determines
which agents transact, at what price and for what
quantity. The algorithm proceeds as follows. Bids
are sorted by price, and highest buy bids are matched
to lowest sell bids. If the buy price is greater than
or equal to the sell price, they transact for a single
unit and the owners of the bids are informed. The
price of the transaction is the average between the buy
and sell prices. The algorithm loops and evaluates
bids unit by unit until no more units are offered or
demanded, or until no match is found because the
buy offer is lower than the sell offer. Ties between
bids for the same price are broken arbitrarily.

A more general and parameterizable auction server

can be found in The Michigan Internet AuctionBot
[11]. We decided not to use AuctionBot for our pur-
pose, since it is more complicated that our purpose
requires, and would need to be modified to interface
with our middleware. Thus, it was easier to write our
own auction server instead of modifying AuctionBot.

2.6 Agent Design

Each agent in our supply chain is an instantiation of
the agent class, and can follow one of a set of poten-
tial generic strategies based on the parameters that
are set as a part of object instantiation. We will rely
on the extensive body of strategic agent literature
and Trading Agent Competition experience (e.g. [2])
to design reasonable agent strategies in this environ-
ment. Further, we will assume that agent’s prefer-
ences are exogenous to the system. Based on these
preferences, each agent bids for supplies in the sup-
ply markets by sending its bids to the appropriate
supply-side auction servers until the prices for goods
exceed its value for them. Similarly, it attempts to
sell its outputs at the demand-side auction. Current
implementation of the agent does not withdraw bids
from auctions. We will now describe the agent im-
plementation and strategy in greater detail.

Implementation Overview The agent is imple-
mented as a subclass of Rational Agent. Rational
Agent is an abstract class that encapsulates much of
common agent functionality in our system and im-
plements the Java interface Agent. The extension of
Rational Agent is then responsible for “filling in the
gaps”, i.e. providing an initial and interim bid func-
tion, enforcing bidding rules, implementing the drop
out predicate, etc. We developed three implementa-
tions of the actual agent subclass:

• Competitive Agent : a generic agent, which bids
for inputs and sells some output

• Consumer Agent : the agent that perform the fi-
nal consumption in the supply chain, i.e. does
not produce any goods. The values of input
goods to this agent are derived from its utility,
which is exogenous.

9

• Producer Agent : the agent that provides initial
production inputs. This agent already has the
input goods and either resells them or resells the
immediate product from them. Its input prices
are exogenous prices of procuring the raw mate-
rials or producing the immediate output good.

Agent Parameters Since our goal was to make
the agent flexible to facilitate future development,
the agent was parametrized. Several of the obvious
parameters are fixed cost and opportunity cost. An-
other is decommitment cost, which is currently sim-
ply added to the value computation. This and other
system-wide (or group-wide) parameters will in the
future be supplied by the system. Finally, auction
rules and internal bidding rules are provided as pa-
rameters. These may be either system-wide or exoge-
nous parameters (e.g. the agent may wish to enforce
rules beyond auction requirements).

Price Prediction In order to determine what
amount to bid for a particular good, the agent needs
to estimate its value for that good. Since a rational
agents tries to maximize expected future value, it is
typical to estimate value for a particular good using
predicted price of that good. In general, price predic-
tion is not trivial, as can be seen from the design of
trading agents in the Trading Agent Competition [8].
The most common approach is using some form of a
historical average, and since it is also the simplest to
implement, this is the approach we took. Our initial
price prediction for the price of the good is arbitrary,
and we do not use it in our moving average calcula-
tions. It may be worth noting, however, that since all
agents that we deploy use essentially the same strat-
egy, it is likely that the final price will be not far from
the predicted price.

Computing Value of Goods The value for a
good is computed based on additional profit we col-
lect by owning this good. For now, our production
model involves only one unit of each good, and, con-
sequently, value of each good is our total profit (i.e.
we need exactly one unit of each input good to pro-
duce the output good, and we need to sell the output
good to make any money). Profit is computed as to-

tal revenue less total cost. Our cost is composed of
fixed cost, opportunity cost, and variable cost com-
ponents. Variable cost is per unit of each good.

Computing Bids Since the agent participates in
an English auction which allows agents to bid incre-
mentally, our buy bids start at the lowest possible
value (in this case, zero), while our initial sell bids
are some initial high value (for now, 2*value of good).
We then incrementally raise the buy bids and lower
sell bids, with the increment being a specified param-
eter (we use ten to speed up convergence).

We submit a computed bid if it is higher/lower
than our previous bid, higher/lower than current
quote, and below/above our value for the good. Once
the current quote exceeds our value for a good, we
stop bidding3.

Bid Validation Here we use the auction and bid-
ding rule parameters to validate the bids before sub-
mitting them to the auctions. If validation passes,
bids are submitted, otherwise, the agent may either
revise the bids or simply return.

Drop Out Predicate To allow agents to drop out
of the supply chain, we implemented a drop out pred-
icate, which is checked at the beginning of every pe-
riod. If this predicate ever becomes true, the agent
exits the supply chain. Currently, this is implemented
at the Rational Agent level, but the derived agents
do not use it.

3 Experiments and Results

In order to evaluate our system, we ran a series of ex-
periments to determine how time to quiescence varies
in the numbers of agents and markets. What we
found, as we describe in the next several sections,
is that the effect of an increase in agents and markets
is minimal, and, thus, we can conclude from these ini-
tial results that our system is relatively scalable. This
is not completely justified, since we ran at most 32

3Typically, if we at this point believe that we cannot get a
complete bundle of inputs or cannot sell our output, we would
decommit all of our bids. We had not implemented this, since
it is a trivial detail and does not add any value to our work.

10

Scalability in Agents

31

31.1

31.2

31.3

31.4

31.5

31.6

31.7

31.8

31.9

32

0 5 10 15 20

Number of Agents

T
im

e
to

 Q
u

ie
sc

en
ce

VaryProducers

VaryConsumers

VaryBoth

Figure 4: Time to quiescence dependence on number
of agents

agents and 4 markets (1 market for each level in the
supply chain), but the evaluation gives us an idea of
the kind of an effect agents will have on performance.
The experiments were run on University of Michigan
CAEN computers, with activator and each market
server running on a separate machine, and all agents
running on the same machine.

3.1 Scalability in Agents

We ran a series of experiments to determine how our
system scales with the number of agents. All of these
experiments were run with 1 market server.

We varied the number of agents between 1 and 16,
doubling the number of agents at each subsequent
experiment. This was done for demand side agents,
supply side agents, and then both. The results are
presented in Figure 4. As can be seen from the graph,
variations are insignificant, mostly due (we speculate)
to variations in network congestion during the exper-
imentation.

3.2 Scalability in Markets

To test how our system scales with the number of in-
termediate markets (i.e. levels in the supply chain),
we ran similar experiments to those described in the
previous section. The number of markets was var-
ied between 1 and 4, all running on separate ma-
chines. The results are presented in Figure 5. We
can see from the results that, just as in the case of

Scalability in Markets

31

31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

33

0 1 2 3 4 5

Number of Markets

A
ve

ra
g

e
Q

u
ie

sc
en

ce
 T

im
e

average quiescence time

Figure 5: Time to quiescence dependence on number
of markets

agents, number of markets has little effect on time to
termination. This is somewhat surprising, and it is
likely that a considerably larger number of markets
will have an impact. We had not at this point tested
this hypothesis, but intend to create a more sophis-
ticated supply chain in the future. Since it would be
difficult to manually start up a large number of mar-
kets, and since agents will need to know the locations
of the markets, and, finally, since all markets need to
run on separate computers, it is a non-trivial task to
set up a large scale experiment in terms of market
servers.

3.3 Effects of Joining and Leaving

We only present informal results here, since the ef-
fects of a given agent dropping out of a supply chain
are negligible. The only actual effect is that, since its
bid is erased, a state change occurs at the market at
which its bid was registered, though only if this was
a winning bid. The semantics of state change noti-
fication are as described by our quiescence detection
algorithm, and there are only insignificant transient
effects. Having said this, an agent may possibly drop
out as quiescence is nearly detected. Thus, we will
have lost this detection period, which is at most 30
seconds, to a spike in activity. Effects of joining are
even more minimal, since the new agent does not bid
on any auction until it is notified of a new auction or
a state change.

11

4 Conclusion

As one of very few research implementations of Sup-
ply Chain Management systems, our system attempts
to address the issues of detecting termination and in-
creasing reliability through an incentive system in a
very specific supply chain structure. The structure
we examine is a tree, though we are unsure whether
the same basic framework will work if some of our
assumptions are dropped. That is a topic of future
research. We tested an idea of a probabilistic reputa-
tion system as a means to create incentives for agents
to behave correctly (and for agent designers to create
correctly behaving agents). After running some tests
to determine scalability of our system in the numbers
of agents and markets, we discovered that, as far as
we can tell, there are few scalability problems. Ob-
viously, problems may only arise after some critical
number of agents or markets is exceeded. We have
no intuitions to offer regarding such a case, and it
remains to be seen what our scalability behavior is
like in increasingly complex environments. For now,
we have only begun validating some of our ideas, and
have gained some invaluable experience about supply
chain design and implementation.

5 Acknowledgements

We would like to thank Michael Wellman, Rick Wash,
and others for their helpful comments and sugges-
tions.

Appendix A: Programming In-
terface

Agent API

Upon program execution, the AgentInterface loads
the class implementing the logic of the agent named
as a command line argument and instantiates that
class. During execution, it manages the quiescence
state of the agent.

The interface exposed to the application level agent
is referred to as Market Representation, since pre-
sumably the agent will be “talking” to some Market

Server. This interface includes the following func-
tionality:

• GetQuote: Asks the Market Server for the cur-
rent price quote.

• SubmitBid: Submit a bid to Market Server.
Returns bid state (whether bid was accepted or
rejected).

• WithdrawBid: Decommit a bid from an auc-
tion. There is a cost for decommitting a bid, but
for now we consider this an “offline” cost.

• GetBidState: Asks the Market Server for the
current state of its bid.

Agent Interface

The agent at the application layer will expose the
following interface to the middleware layer by imple-
menting a Java interface Agent:

• AuctionCompletionNotification: Agent is
notified that the auction has completed and re-
ceives the quantity it had won and the price it
must pay.

• StateChangeNotification: This is the activa-
tion message, notifying the agent that it can now
submit a bid to the auctions (it is active).

• NewAuctionNotification: Agent is notified
that the new auction had begun. Equivalent to
an activation message.

Market Server API

The Market Server interface first loads the class im-
plementing the logic of the Market Server specified
on the command line and creates an instance of that
class. During continued operation it handles requests
incoming requests and passes them on to the Market
as necessary. It is also responsible for detecting the
quiescence of the agents associated with it and pass-
ing that information onto the quiescence detector.

At this level, the middleware layer exposes an in-
terface to communicate with market agents to the

12

application layer. We call this interface Agent Rep-
resentation, as it is an abstraction of the agent with
which the Market Server is communicating. This in-
terface supports the following functionality:

• AcceptBid: Notifies the agent of acceptance of
the bid submitted by that agent.

• RejectBid: Notifies the agent that its bid was
rejected.

• NotifyNewAuction: Notifies the agent of the
start of the new auction period.

• NotifyStateChange: This is essentially the ac-
tivation message to the agent, as it tells the lat-
ter that the Market Server state had changed,
implicitly asking the agent to react (possibly, by
submitting a new bid). A price quote (current
high bid) is sent as a part of this message.

• ClearAuction: Notifies the agent that the auc-
tion has cleared and sends this agent quantity
and price of the good it won. This message is
sent to all agents, and if a particular agent had
not won any quantity of the item, the “quantity”
field of the message is set to zero.

• Ban: Bans the specified agent(s) from partici-
pation in the next round of transactions. This is
done by the Group Leader.

Market Server Interface

At the application layer, the following functional in-
terface is exposed to the middleware layer by imple-
menting a Java interface Market:

• NewAuction: Server resets its state and gets
ready to receive new bids from agents.

• BidNotification: Server is notified of a new
bid submitted by an agent. It updates its state
accordingly and responds to the agent with the
results of the call (i.e. bid accepted or rejected).
If the state change requires activation of other
agents, the server notifies them of such a change.

• Decommit: Server is notified of a bid with-
drawal (decommitment request).

• GetQuote: Server returns current price quote
to the requesting agent.

• GetBidState: Server returns its state, i.e.
price (BID/ASK) quotes, and most recent bid
of the agent issuing the call.

• NotifyQuiescent: Server is notified that quies-
cence was achieved in the whole supply chain. It
calculates allocation of goods and notifies agents
of the outcome.

Appendix B: Process Communi-

cation Details

Communication Between Agent and
Market Server

Agent communicates with the Market Server through
a TCP socket connection. Agent sends the following
messages to the server:

• Join: Establish connection

• Leave: Disconnect

• Bid: Place a bid

• Decommit: Withdraw a bid

• GetQuote: Gets quote from the market

In return, the Market Server will send the following
messages:

• Join-ACK: Accept a request to join

• Join-NACK: Reject a request to join

• Bid-ACK: Bid Accept a bid

• Bid-NACK: Reject a bid

• NewAuction: Notify about the start of a new
auction

• ClearAuction: Notify the agent of its winnings

• StateChange: Notifies the agent of a change in
the ongoing auction

13

Communication Between Agent and
Group Leader

Besides talking to Market Servers, each agent will
need to exchange some messages with the group
leader of its respective group. Here are these mes-
sages:

• Auth: Agent asks the group leader to be added
to the group and submits authentication infor-
mation (i.e. username and password).

• Auth-ACK: Group Leader inform agent that
authentication was successful

• Auth-NACK: Group Leader inform agent that
authentication was unsuccessful

Communication Between Market
Server and Group Leader

Finally, Market Server needs to exchange a few mes-
sages with the Group Leader as a part of our protocol:

• Activate: Group Leader (or, initially, the ac-
tivator process) notifies Market Server that the
new round (period) had begun.

• Quiescence-Query: Group Leader (or activa-
tor) asks the Market Server if the latter is qui-
escent.

• AuthNotify: Group Leader notifies the Market
Server of a group membership (view) change.

• Quiescence-ACK: Market Server notifies the
Group Leader that it is quiescent.

• Quiescence-NACK: Market Server notifies
the Group Leader that it is not quiescent.

• Ban: Group Leader notifies Market Servers in
its group that the specified agent (by id) is
banned for one round.

References

[1] M. Babaioff and N. Nisan. Concurrent auctions
across the supply chain. In The Proceedings of
the Third ACM Conference on Electronic Com-
merce, pages 1–10, 2001.

[2] Shih-Fen Cheng, Evan Leung, Kevin M.
Lochner, Kevin O’Malley, Daniel M. Reeves,
L. Julian Schvartzman, and Michael P. Wellman.
Walverine: a walrasian trading agent. In Pro-
ceedings of the Second International Joint Con-
ference on Autonomous Agents and Multi-Agent
Systems, 2003.

[3] Edsger W. Dijkstra and C.S. Scholten. Termi-
nation detection for diffusing computations. In-
formation Processing Letters, 11(1):1–4, 1980.

[4] Se-Joon Hong. Supply chain management and
electronic auctions.

[5] Friedemann Mattern. Global quiescence detec-
tion y based on credit distribution and recover.

[6] William E. Walsh, Michael P. Wellman, and
Fredrik Ygge. Combinatorial auctions for supply
chain formation. In ACM Conference on Elec-
tronic Commerce, pages 260–269, 2000.

[7] Michael P. Wellman. A market-oriented pro-
gramming environment and its application
to distributed multicommodity flow problems.
Journal of Artificial Intelligence Research, 1:1–
23, 1993.

[8] Michael P. Wellman, Daniel M. Reeves,
Kevin M. Lochner, and Yevgeniy Vorobeychik.
Price prediction in a trading agent competition.
Technical report, University of Michigan, 2002.

[9] Michael P. Wellman and William E. Walsh. Dis-
tributed quiescence detection in multiagent ne-
gotiation. In Proceedings of the Fourth Interna-
tional Conference on Multiagent Systems, 2000.

[10] Peter R. Wurman, William E. Walsh, and
Michael P. Wellman. Flexible double auctions
for electronic commerce: theory and implemen-
tation. Decision Support Systems, 24:17–27,
1998.

[11] Peter R. Wurman, Michael P. Wellman, and
William E. Walsh. The michigan internet
auctionbot: A configurable auction server for
human and software agents. In Second In-
ternational Conference on Autonomous Agents
(Agents-98), pages 301–308, 1998.

14

