
Ygge and Akkermans: Background

Yevgeniy Vorobeychik

1 Introduction

It is a very natural habit of mankind to search for
easy answers to hard problems. However, such dis-
coveries are sufficiently rare to be on guard whenever
a new one appears, and yet it is all too easy to al-
low the power of apparent convenience lure a sound
mind from careful inspection of the solution. Thus,
when Huberman and Clearwater [2, 6] discovered a
market-based method for controlling a building en-
vironment that considerably outperformed a main-
stream controller, few questioned the miraculous im-
provement and fewer yet wondered precisely which
of the techniques used by the two authors effected
the improvement. To step back for a moment, it
seems a matter of common sense that any centralized
approach, given sufficient information and computa-
tion time, should produce a result at least as good
as any decentralized approach. Thus, the fact that
the Huberman and Clearwater’s market-based con-
troller produced a better solution than a centralized
controller should have been suspicious. Furthermore,
there was little attempt on the part of the authors
to explain their results beyond attributing it to the
powers of market-based problem solving techniques.
Interestingly, despite their use of the techniques from
the field of Economics to solve a resource allocation
problem, many of the critical details, such as utility
and bid formation, were arbitrary enough to preclude
any useful analyses using well-known tools from the
latter field.

As Ygge and Akkermans [29] dissected the tech-
niques and results from Huberman and Clearwater,
they discovered that indeed it was not the market-
based techniques that produced a remarkable im-
provement in the controller performance, but the in-
formation that was utilized. They then went on to
create a centralized and a market-based controller
that performed even better. The mystery was solved:
a centralized controller with global information will

do as well as any decentralized controller, and, con-
versely, a market-based controller can be designed to
find an equivalent solution.
So now that the problem of building environments

had been sufficiently analyzed, two questions remain:
what kinds of generalizations can be made based on
this and other experience and what lessons can we
learn from this? Before attempting to answer these,
we must first understand the context in which they
are raised. Thus, we will begin with Economics, the
field that for many years now has been devoted to
understanding the principles of markets. This will
be the subject of Section 2. Afterwards, we shall
proceed to understand the tradeoffs between central-
ized and decentralized systems in Section 3. Section
4 will define the general resouce allocation problem
and present a few common examples from Computer
Science and Economics, and in Section 5 we will sur-
vey the approaches to resource allocation, providing
a brief overview of classical Computer Science and
Operations Research techniques, and moving on to
discuss in some detail the many market-based ap-
proaches to date.

2 Overview of Economic Prin-

ciples

Since market-based approaches to resource allocation
are clearly rooted in Economics, this seems like a
good place to start our discussion. Fundamentally,
Economics is concerned with allocating the limited
resources in the world, such as food and raw materi-
als, among the many self-interested economic agents.
On the micro (per agent) level, each agent derives
some amount of happiness from being allocated some
bundle of resources (goods), and the assumption is
typically that the agents are autonomous. Given
some initial edowment of goods, agents are presumed
to trade until the market reaches equilibrium. Intu-

1



itively, when the market is at equilibrium, it is in
some way stable. This stability is usually in terms
of prices, since anyone who tries to charge more for
some good than its equilibrium price would some-
how be made unhappy by the resulting transaction.
The abstract model of Economics markets just de-
scribed obviously leaves out many important details,
but it is the idea that interests us right now, and
we’ll fill in the details relevant to our discussion later.
What is important to note is that if markets can reach
this wonderful equilibrium, and if it so happens that
this equilibrium is also optimal, the world can be a
fairy tale where everyone is happy and pizza grows
on trees. But even if such worlds may not in reality
exist, as some may speculate, Engineers who prefer
creating microcosms of reality may just find it use-
ful to apply Economic models and analysis tools to
solving artificial problems. It is the latter use that
concerns us here, and, after describing the relevant
ideas and concepts from Economics, we will discuss
some of the research that makes use of these.

2.1 Utility and Value

In our discussion in the previous paragraph, we omit-
ted a critical detail: how is it that an agent is made
happy? Or, more specifically, what does it mean for
an agent to attain different levels of happiness? We
will now fill in this little detail. Intuitively, happiness
of an agent should increase as it gets more of some
resource, or good. Furthermore, some combinations
of goods will make it more happy than others. Since
we often want to reason rigorously about economic
scenarios (especially if we are trying to design mar-
kets to solve our problems, as Engineers would like
to do), we need to formalize happiness and relative
happiness. Utility is just such a formalization, as it
converts an abstract notion of happiness to a real
number, with a higher utility value meaning a higher
relative happiness.
It turns out that in our analyses we are usually

concerned with marginal utility, which is simply the
first derivate of the utility function1. Thus, marginal
utility indicates how much better off, or happier, we
will be if we get an additional unit of the good. By

1As just described, this function maps amounts of a good
to real numbers indicating relative preference for this amount,
or bundle, to others. It is usually assumed that only relative
magnitudes matter.

the way, we will use utility and value interchangeably,
as is common in relevant literature. Also, note that
utility provides us with a convenient way to under-
stand the meaning of rational as applied to agents.
A rational agent can be defined as any agent that
maximizes its utility.

2.2 Money and Prices

We have alluded to prices in the discussion of eco-
nomic mechanisms, and will now state specifically
what they generally signify in Economics. A price
of a good is the amount of a particular other good
that can be traded for one unit of this good. Obvi-
ously, if there is only one good in an economy, prices
are a moot point. However, in general they signify
tradeoffs for agents. The idea of money is related to
prices. In the above definition, one may need to have
a price for every possible exchange of two goods. This
is clearly inefficient, since, for n different goods, one
would need to publish O(n2) prices! A way around
this is to use a level of indirection, which is the pur-
pose that money plays. Instead of providing a price
of each good in terms of every other, we could simpy
give a price in terms of some common reference good.

2.3 Supply and Demand

Economists refer to supply as a function that maps
prices to quantities of a good. In other words, for a
set of prices, supply function (or curve) would pro-
duce quantities of this good that will be provided for
purchase at the market for the corresponding prices.
Similarly, demand function produces the quanities
that will be purchased at each price point.

2.4 Efficiency

Allocating resources among agents is not inherently
difficult, since one could arbitrarily assign these to
agents. What makes the problem difficult (and in-
teresting) is the optimality requirement, i.e. how can
we allocate resources such that the global utility is
maximized?
Economic efficiency is synonymous with optimal-

ity, as it provides a lower bound on the meaning of
a desirable outcome. The most common idea of effi-
ciency in Economics is that of Pareto efficiency. By

2



definition, a Pareto efficient outcome provides no op-
portunity to reallocate resources among agents with
the result that makes some agent better off without
making some other worse off. To see why this is opti-
mal, one can envision an outcome that is not Pareto
efficient. In such a scenario, one could improve global
utility by reallocating resources in a way that makes
some agent better off and no one else worse off. Triv-
ially, then, the non-Pareto efficient outcome just de-
scribed cannot be considered optimal.

2.5 Equilibrium

Equilibrium usually connotes some form of stability.
In Economics, this is not necessarily the case, since
equilibrium merely refers to an outcome in which to-
tal quantity of a good supplied equals total quanity
demanded. Since both supply and demand are func-
tions of price, equilibrium price and quanitity fully
describe the market equilibrium point.
In an Economy with many goods, it is convenient

to talk about partial and general equilibrium. Par-
tial Equilibrium is an equilibrium for a single good.
Under General Equilibrium, each good in the market
is in Partial Equilibrium.

2.6 Perfectly and Imperfectly Com-
petitive Markets

Perfect is a very positive, optimistic word. And for
good reasons: if something is perfect, it can’t possi-
bly be bad. Appropriately, Economists reserved the
word “perfect” to describe a world very special in-
deed, in which, as we’ve mentioned, various appeal-
ing artifacts grow on trees. Perfect competition in
Economics refers to markets that are teeming with
rational agents, each having negligible impact on the
price. Given the market price that is taken as ex-
ogenous by the agents, each agent strives to maxi-
mize local utility and, as a result, a market emerges
that, upon reaching equilibrium is Pareto efficient.
While this isn’t the entire story (some assumptions
need to be made about utility functions of agents,
etc.), it is sufficient to make an important point: a
system that is completely decentralized can, under
certain assumptions, achieve an optimal state. Since
the resulting optimal outcomes can be analyzed us-
ing standard tools from Economics, it is a very useful

property to system designers: problem solving can be
decentralized with no loss in solution quality!
The complement to perfect competition is, well,

imperfect competition, which includes all the other
possibilities, like monopoly (one producer of a good)
or oligopoly (few producers of a good). We will not
concern ourselves with these market forms here, but
will instead concentrate for the remainder of this dis-
cussion on perfectly competitive markets. For a more
detailed discussion of Microeconomics principles in
general and market organization in particular, see
[18].

3 Centralized versus Decen-

tralized Systems

Having devoted Section 2 to the discussion of Eco-
nomics, we would like to change gears and devote
some attention to the argument of centralized versus
decentralized systems and control. While we present
these as orthagonal subjects, it may be of some value
to keep in mind that competitive markets that we
had just described are examples of fully decentral-
ized systems.
Systems are said to be centralized or decentralized

with respect to the location of control functions. In
centralized systems, control resides one a single pro-
cessor, while in decentralized systems it is distributed
across mutliple processors [4]. An important obser-
vation here is that, given sufficient information, time,
and computation resources, centralized solutions are
at least as good as decentralized. It is easy to see
that this is the case, since any functionality that is
decentralized can be simulated centrally. Of course,
the assumption of sufficient information, time, and
computation resources does not generally hold, and
so it does often make sense to decentralize. For ex-
ample, detailed global information may be decentral-
ized across many agents and it is either too costly to
communicate all of it to a central authority, or the
agents may be unwilling to reveal their private pref-
erences. Additionally, diffucult but (relatively) eas-
ily parallelizable problems will often lend themselves
to a decentralized approach, as long as the resulting
communication overhead is not too high.
Due to the conceptual attractiveness of decentral-

ized problem solving, many arguments have been

3



made in its favor that result in undue generalizations.
One of such arguments is that centralized systems
suffer from a single point of failure, implying that de-
centralized systems do not. The former argument is
certainly true, but the implication is a red herring.
Ygge [27] points out that it is often the case that de-
centralized systems have a lower success probability
than the equivalent centralized systems. Making de-
centralized systems fault tolerant is often extremely
expensive (again, Ygge analyzes the fault tolerant ex-
ample from Kurose and Simha [8]). Tannenbaum [17]
also shows that a distributed algorithm for mutual
exclusion turns a single point of failure into n points
of failure, and even with several tricks to eliminate
this problem, the equivalent centralized algorithm is
superior to the distributed one. The bottom line here
is, this is the game of tradeoffs, kind of like the gen-
eral resource allocation problem...

4 Resource Allocation Problem

As we have mentioned earlier, resource allocation
problem is finding the optimal allocation of limited
resources. In this problem, we are partitioning the re-
sources among the many agents with different utilities
for these resources. We want to find a partition such
that the sum of all resulting utilities is maximized.
Note that Pareto efficiency is a sufficient property
for a particular allocation to be optimal by this defi-
nition.
Researchers in Computer Science, Operations Re-

search, and Economics are all too familiar with the
typical resource allocation problems and have de-
veloped a myriad of techniques for solving them.
While Computer Science and Operations Research
are mostly concerned with optimal allocation in the
context of system design, Economists tend to look at
things from an observer’s perspective. Economics,
thus, attempts to explain how resources are allo-
cated among rational agents in a decentralized Econ-
omy. Whether Economics is accurate in describing
the world is of supreme importance to Economists,
but a lot less important to Engineers who often have
control over the mechanism as well as the agents that
are used to solve a problem. We will return to this
when we discuss market-based approaches to resource
allocation below.

5 Approaches to Resource Al-
location

As we have just mentioned, the problem of resource
allocation occurs in its most explicit form in three
disciplines: Computer Science, Operations Research,
and Economics. This is not to say that other disci-
plines do not encounter this problem, but it appears
to have annoy the researchers in these three fields
enough to develop a number of solution or approxi-
mation techniques. Since we are here concerned with
approaches that either originated in or made their
way into Computer Science, we will restrict our atten-
tion to techniques involving computational systems.

5.1 Classical Computer Science Ap-
proaches

Anyone who has ever seen or heard their computer
thrash understands the true struggle for limited re-
sources. It is often a vicious struggle, with heroes and
villains on both sides, Microsoft Office and Visual
Studio against Windows Media Player and Kazaa,
with a poor wreck of a humanoid watching in des-
pare the frozen windows and mouse pointer and lis-
tening to the waves of curses from the hard drive.
Limited resources hardly ever stop anyone from abus-
ing the little they may have–after all, what could be
wrong with installing Windows 2000 on a computer
with 32MB of RAM and a 2GB hard drive, and then
running a web and file server on top of it? While
some problems are not subject to any feasible so-
lutions, in general it pays in Computer Science to
sqeeze out as much efficiency from the limited com-
puting resources. However, it is recognized that find-
ing a completely optimal solution is often infeasible,
since searching the large solution space (which is the
worst case scenario) is not realistic, and many heuris-
tics have emerged as reasonable approximations.
Let’s take caching as an example. Assuming that

utility in this context is inversely proportional to la-
tency, the optimal allocation is such that caches a
block (or a page) that will be accessed next. The
problem, of course, is that one would have to predict
access patterns with 100% accuracy to achieve this,
which is clearly impossible. The most common ap-
proximation is LRU, or Least Recently Used cache
replacement policy, which relies on the assumption

4



that there is high access locality, and data accessed
most recently will likely be accessed again in the near
future. Enhancements to this approximation have
been attempted, such as better predictive algorithms
(e.g. [7]) and a more sophisticated cost-benefit analy-
ses to optimize the use of caches through prefetching
as seen in [19, 10].
Another common problem faced by Computer Sci-

entists is process scheduling, which is just a special-
ization of resource allocation problem (time shares
being the limited resources in the system). The sim-
plest and probably most common way is some form
of First Come First Serve. A slight enhancement
to FCFS is to combine it with priority scheduling.
Priority scheduling tends to be a much better ap-
proximation of the optimal outcome, since it actu-
ally takes utilities into account (it’s a greedy algo-
rithm that schedules in decreasing order of utility).
Unfortunately, priority scheduling suffers from star-
vation: some processes may never be scheduled. Ad-
ditionally, greedy strategy is merely an approxima-
tion. Finally, detailed information about process util-
ities may not be available. An interesting approach
presented by Waldspurger and Weihl [20] is to use
lottery scheduling. In this approach, processes are
provided a number of lottery tickets proportional to
their utility (priority). Each scheduling decision se-
lects the winner randomly. Probability of each pro-
cess being selected is proportional to the number of
tickets it holds. While a considerably more flexible
scheme than the classic FCFS with priority, lottery
scheduling still suffers from some of the same short-
comings: processes are still subject to starvation (al-
though in the limit each process should get its pro-
portional share of CPU time), and this, as well as the
other schemes we have thus far described, is central-
ized. Furthermore, none of these schemes is easily
generalizable, and outcomes of these do not easily
lend themselves to analyses.2

5.2 Operations Research Techniques

The optimization techniques from Operations Re-
search are widespread and many other disciplines rely
on these to solve their resource allocation problems.

2For a more detailed treatment of classical Operating Sys-
tem problems such as caching, memory management, and
scheduling, consult [14].

These may be used for local as well as global op-
timization, and, thus, can be used in combination
with the other methods discussed in Section 5. As
the techniques in OR are not important for our dis-
cussion (they are just the tools we could use), we
merely gloss over several of them here and leave it
to the interested reader to pursue other sources (e.g.
[25]) for more information.
One of the best known linear optimization tech-

niques is Linear Programming. A linear program
consists of an objective function which is to be max-
imized (minimized) and a set of inequalities signify-
ing constraints. Linear Programming is known to be
P-Complete, and so is relatively computationally ex-
pensive. In dealing with discrete domains, linear pro-
grams become linear integer programs, and the prob-
lems becomes NP-Complete (non-linear optimization
equivalents to these are Nonlinear Programming and
Nonlinear Integer Programming).
Another common optimization technique is Dy-

namic Programming, which attempts to decompose
problems and then solve subproblems and recursively
collect solutions.
Yet another approach is gradient climbing. This

technique simply follows the direction of steepest as-
cent or descent and hopes to arrive at an optimum
when the value function levels off. Unfortunately,
gradient descent (ascent) may find poor local minima
(maxima), and random restart algorithms are often
used to alleviate this problem.

5.3 Market-Based Approaches

Finally, we have reached what my be the focal point
of this paper: market-based approaches to resource
allocation. The first observation about these is that
they rely on the ideas and methods from Economics
to solve problems that arise in the context of Com-
puter Science (at least as far as we are concerned).
In using these ideas and methods, researchers can
fall back on the immense body of work and expertise
in developing and analyzing decentralized models of
computation. As the concepts of object- and agent-
oriented programming gain ground, the synthesis of
the two fields, and, hopefully, synergy that results
from it, become inevitable.
While Economics does not prescribe a particular

mechanism design, it is often convenient for Com-
puter Scientists to use auctions for this purpose. Auc-

5



tions allow systems designers to control rules of ne-
gotition and outcomes, and, as a result, be able to
reason about the outcomes. The latter property is
paramount to designers, who would usually prefer
knowing exactly what behavior the systems they de-
sign will exhibit.

5.3.1 Auction-Based Systems

Sutherland was one of the early venturers from the
domain of Computer Science into Economics. In his
paper [16] he describes an auction-based approach for
assigning time slots on a computer to people based
on their bids. Money with which bids were made
was artificial, with amounts assigned based on project
priority.
In 1995 Gagliano published a paper that described

the aution-based resource allocation algorithm and
simulation results [4]. This paper was primarily a
study of feasibility of a decentralized resource alloca-
tion algorithm, and the finding was positive: auction-
based scheme worked reasonably well.
Another simulation study was presented by Stei-

glitz et al [15]. The authors of this work simulated
an Economy with two goods: food and gold. Each
agent had exponential utility functions for food and
gold, though the choice of utility functions as well
as bids that were derived from them was somewhat
arbitrary. Agents would also have some production
capacities for both of these goods and each day would
decide based on food reserves whether to offer food
for sale or to purchase food from other selling agents.
The trades between agents took place using an auc-
tion to which bids for food were submitted (utilities
normalized by prices of food in terms of gold). Clear-
ing rules in this auction select the price at which sev-
eral constraints are satisfied (supply approximately
equals demand).
Huberman and Clearwater [2, 6] used the utility

and bid functions chosen by Steiglitz et al. to boot-
strap their market-based building environment con-
troller. Again, auction received supply and demand
bids from agents who either had their valves open
too much or not enough both with respect to their
local setpoints as well as average deviation from set-
point in other offices 3. Having achieved considerable

3Indeed, it was the addition of global information to the
problem that made their controller superior to the standart
controllers.

improvement over the standard PID controller, Hu-
berman and Clearwater did not attempt to pinpoint
the precise sources of this improvements. They also
did not explain why their approach would be inher-
ently better than a centralized one, and, in fact, this
was shown to be a fallacy in the later work by Ygge
and Akkermans [29]. Finally, the market-based ap-
proach used by Huberman and Clearwater did not
lend itself to any meaningful Economic analysis, and
so their outcomes were, well, a kind of magic...

5.3.2 Resource and Price Adjustment Ap-
proaches

In our earlier discussion of Economics we had noted
that ultimate global happiness takes place at equilib-
rium. Pareto efficiency, which is the formal name for
ultimate global happiness, is highly desirable in prob-
lem solving, and as a result several methods emerged
for iterative convergence to equilibrium. These meth-
ods can be classified as resource-directed and price-
directed approaches [8]. In resource-directed ap-
proaches, agents compute their marginal utilities
given current allocations and then trade units of re-
source between low and high marginal utility agents.
The process repeats until no viable trades can take
place. Price-directed approaches let each agent com-
pute its quantity demanded or supplied (which can
be expressed as negative quantity demanded) as a
function of price. The market then goes through a
series of price adjustments until total quantity de-
manded equals total quantity supplied. To achieve
General Equilibrium, the price adjustment needs to
be repeated iteratively for all goods, until all markets
reach equilibrium.
Kurose and Simha [8] used a resource-directed ap-

proach to solve a decentralized file allocation prob-
lem. They explored three algorithms for file alloca-
tion: one using a first derivative of marginal utility
in addition to marginal utility itself, another using
also a second derivative, and the third using pair-
wise interaction between nodes.4 They found that
their algorithms converge to optimal allocation, and
the second derivative algorithm converges consider-

4File allocation problem (FAP) determines how a file (which
is divisible) or a file system can be allocated among nodes in
the network to minimize expected cost of file access, which is a
combination of communication cost and delay. Utility in this
case is negative cost.

6



ably faster than the other two.
Cheng and Wellman [1] describe a WALRAS price-

directed algorithm, the idea for which was suggested
by Leon Walras in 1874. In this algorithm, agents
compute their demand functions for each good and
send them to auctioneers for these goods. Auction-
eers computes a market clearing prices for their re-
spective goods and notify agents of these. Agents
adjust their demand functions to account for this
new information and submit new bids to the auction-
eers. This iterative process continues until changes
in prices are below some threshold. Since this algo-
rithm is asynchronous, it is very unlikely that many
agents will simultaneously bid for a single good, and
as a result there is less price oscillation5. Cheng and
Wellman prove that the WALRAS algorithm con-
verges to equilibrium if there are no complementari-
ties between goods and preferences are strictly con-
vex. While the publication date of this paper is 1998,
the WALRAS algorithm was used by Wellman et al.
in their work on Market-Oriented Programming since
1993 [9, 22, 23, 24, 26]. In the next section, we delve
into this area of research in some more depth.

5.3.3 Market-Oriented Programming

As market-based methods slowly encroached upon
Computer Science in the context of distributed prob-
lem solving, Market-Oriented Programming (MOP)
emerged as a programming paradigm. The goal be-
hind it was to create a constrained agent-based frame-
work that would decentralize problem solving and
could, under some assumptions, be guaranteed to
produce Pareto optimal outcomes. As a program-
ming paradigm, MOP has its roots in Object- and
Agent- Oriented Programming, and as a problem
solving tool, it can be viewed in the context of Davis
and Smith’s Contract Net [3, 12], as well as other
market-based approaches that predated it. In the
subsection entitled “Roots”, we will attempt to trace
out the roots of MOP, and in the following subsec-
tions we will describe the paradigm in more detail
and survey several applications of it.

Roots As we have already mentioned, MOP’s roots
can be traced back to Object- and Agent-Oriented
Programming.

5Prices could oscillate if many agents attempt to bid for the
same good after receiving price updates.

Object-Oriented Programming (OOP) has become
a dominant programming technique in Computer Sci-
ence, as it allows considerable flexibility and modu-
larity in software design. The central idea of OOP
is that systems can be viewed in terms of compo-
nents, or objects, that have some internal (private)
state and expose a well-defined interface which allows
components to act upon each other.
It may often be useful to impose constraints on top

of OOP in order to create a paradigm that is more
meaningful in a particular domain. This was done
by Shoham in Agent-Oriented Programming (AOP)
[13]. AOP uses an agent as a unit of abstraction.
Agents, just like objects, have internal state, but this
state is constrained to the agent’s beliefs, commit-
ments, and choices. The interface of the agent in
AOP is constrained to specific actions like inform,
request, offer, promise, decline, and the agents are
assumed to be honest and consistent.
On the problem-soliving side of the Computer Sci-

ence world, MOP borrows ideas from Contract Net
[3, 12]. The idea behind Contract Net is fairly sim-
ple: different agents may specialize in solving differ-
ent subproblems, and if some agent has a problem to
solve, it may as well distribute it among agents that
can solve parts of it (subproblems) very well. To do
this, the agent that has a problem (manager) broad-
casts subproblems to other agents (contractors), who
may then submit bids to the manager for a subprob-
lem they would like to solve. After a round of bidding,
the manager assigns each subproblem to the contrac-
tor with the lowest bid. Since each subproblem can be
further subdivided into more subproblems, each con-
tractor can subsequently become a manager and each
problem may in the end be recursively distributed
among many agents. One may notice that the Con-
tract Net protocol does not specify how the bids are
formed. This detail was filled in by Sandholm in [12],
where he proposed to use Marginal Cost as the basis
for bidding.

Environment Market-Oriented Programming en-
vironment separates the world into goods, which are
sold at auctions, and agents, which submit bids (sell
or buy) for goods. The actual bids are demand func-
tions, which agents compute using their local util-
ity functions and current prices of goods. All auc-
tions proceed according to the WALRAS algorithm

7



described above and in Cheng and Wellman, [1].
Thus, once prices at all auctions no longer change,
or once the change in prices is below some threshold
value, General Equilibrium is presumed and auctions
clear. The resulting allocation of resources among
the agents is the solution to the original resource al-
location problem produced by MOP.

Agent Design As in Agent-Oriented Program-
ming, agents are constrained to have some state and
specific functionality which allows them to interact
with the environment. Internal state of the agents
includes prices of goods and other information rel-
evant to computing their utilities. Agents interact
with the environment through bidding for goods at
the auctions and receiving current price quotes from
the auctions.

Applications of Market-Oriented Program-
ming The original paper on Market-Oriented Pro-
gramming applied this paradigm to solving a multi-
commodity flow problem that involved moving cargo
over a given transportation network. Goods in this
problem model capacity on each origin-destination
pair in the network, as well as generic transportation
resources. After introducing special carrier agents
that internalize the cost of transporting cargo over
links in the network, MOP produced an minimum
cost allocation.
In later years, Wellman et al. have solved several

other problems using the MOP framework. Wellman
[23] used it to solve distributed configuration design
problems. In this example, goods modeled resources
needed by design components, as well as performance
attributes that measure the capabilities of the de-
signed product. The work by Mullen and Wellman
[9] simulated a computational market to decide when
and where Network Information Services should be
mirrored. The goods in this work are network and
computing resources and mirrors. Yamaki, Wellman,
and Ishida [26] used MOP to solve QoS allocation
problem in the FreeWalk multimedia application. In
this example, Bandwidth and QoS at different points
in time served as goods for the computational econ-
omy.
Ygge et al. used Market-Oriented Programming

to manage electric power load [28, 30, 27]. In this
work, commodities represented power at different

time slots. Agents, or HOMEBOTS as Ygge et al.
referred to them, are expressions of customer prefer-
ences and as such bid at the auctions for the afore-
mentioned commodities. Bidding ends when the mar-
ket equilibrium is reached, and the agents are allo-
cated the resources they had won.

5.4 Discussion of Market-Based Ap-
proaches

Having described the various market-based ap-
proaches to resource allocation, we can now revisit
the question we hinted at earlier: why would we use
or not use such an approach?
Let us address the pros first. One of the more

common justifications for market-based approaches is
that it is a convenient way to implement a decentral-
ized approach. Given no other motivation, this ar-
gument is reasonable when a decentralized approach
is indeed reasonable in that setting. That may be,
as we had already suggested earlier, because infor-
mation itself is distributed, and it is more costly to
communicate it to a central processor than to com-
pute solutions locally (possibly, compressing informa-
tion into a more manageable form as a result). It
may also be that a problem is, indeed, easily paral-
lelizable, and so a decentralized approach offers great
computational advantage. Finally, we could in some
circumstances (but, as we had noted previously, not
in general) distribute failure among multiple entities,
increasing robustness of the system. But even if the
argument for decentralization holds, we must still jus-
tify market-based approaches as advantageous over
other possibilities that are specific to particular prob-
lem domains. An obvious advantage is the generality
of the concept of market-based computation: it can
be relatively naturally applied to a very wide array of
resource allocation problems, as the examples in the
previous section demonstrate. In addition to gen-
erality, under certain assumptions market-based ap-
proaches promise to give us an optimal solution, and
so we do not hope to do better by using a technique
specialized to a problem we are trying to solve.
As expected, there are also many downsides to us-

ing market-based approaches. First of all, decen-
tralizing computation is often undesirable, whether
it is because it reduces reliability of the system, in-
creases communication costs, or simply makes it more

8



difficult to reason about the solution.6 But even
if one may want to decentralize solution to a given
problem, market-based approaches introduce several
significant hurdles that may discourage a researcher
from applying them. For example, it is often not triv-
ial to design a rational agent. Utility functions do
not generally “stand out” from the problem descrip-
tion, and verifying that the derived utilities correctly
represent the problem at hand may be somewhat la-
borious. In addition, as Wellman points out in [24],
transforming a problem into a form of market econ-
omy is often non-trivial due to the difficulties involved
in identifying precisely what parts of the problem the
agents and goods will represent.

6 Conclusion

After such a lengthy discussion of the various ap-
proaches to resource allocation, we seem to be at an
impasse. Yes, market-based approach may be good
sometimes, bad other times, and it unclear what to
do the rest of the time. Unfortunately, such is life,
and as tempting as easy answers may be, they will of-
ten be misleading. But in conglomerating all this in-
formation, we have, hopefully, achieved an increased
level of coherence. Clearly, there are many situa-
tions where market-based approaches are useful. Just
as clearly, there are many where they are not, but
through some preliminary analysis we can usually dis-
cern relatively quickly into which of these two bins a
given problem is likely to fall. It may not be the easy
answer we would have hoped for, but it is progress.

References

[1] John Q. Cheng and Michael P. Wellman. The
walras algorithm: a convergent distributed im-
plementation of general equilibrium outcomes.
Computational Economics, 12:1–24, 1998.

[2] Scott H. Clearwater, Rick Costanza, Mike
Dixon, and Brian Schroeder. Saving energy us-
ing market-based control. In Scott Clearwa-
ter, editor, Market-Based Control: A Paradigm

6However, there have been numerous arguments that de-
centralizing computation may lead to emergent properties of
the system, which, while virtually impossible to reason about,
are nevertheless desirable.

for Distributed Resource Allocation. World Sci-
entific, River Edge, New Jersey, 1996.

[3] Randall Davis and Reid G. Smith. Negotiation
as a metaphor for distributed problem solving.
Artificial Intelligence, 20(1):63–109, 1983.

[4] Ross A. Gagliano, Martin D. Fraser, and
Mark E. Schaefer. Auction allocation of com-
puting resources. Communications of the ACM,
38(6):88–102, June 1995.

[5] John Kenneth Galbraith. The Age of Uncer-
tainty. Houghton Mifflin Company, 1977.

[6] Bernardo Huberman and Scott H. Clearwater. A
multi-agent system for controlling building envi-
ronments. In Victor Lesser, editor, Proceedings
of the First International Conference on Multi-
Agent Systems, pages 171–176, Menlo park, Cal-
ifornia, June 1995. AAAI Press / MIT Press.

[7] Thomas M. Kroeger and Darrell D. E. Long.
Predicting file-system actions from prior events.
In Proceedings of the USENIX 1996 Annual
Technical Conference, pages 319–328, 1996.

[8] James F. Kurose and Rahul Simha. A microe-
conomic approach to optimal resource allocation
in distributed computer systems. IEEE Transac-
tions on Computers, 38(5):705–717, May 1989.

[9] Tracy Mullen and Michael Wellman. A simple
computational market for network information
services. In Victor Lesser, editor, Proceedings
of the First International Conference on Multia-
gent Systems., pages 283–189, Menlo park, Cal-
ifornia, June 1995. AAAI Press / MIT Press.

[10] R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. In-
formed prefetching and caching. In Hai Jin, Toni
Cortes, and Rajkumar Buyya, editors, High Per-
formance Mass Storage and Parallel I/O: Tech-
nologies and Applications, pages 224–244. IEEE
Computer Society Press and Wiley, New York,
NY, 2001.

[11] Stuart Russell and Peter Norvig. Artificial In-
telligence: A Modern Approach. Prentice Hall,
2nd edition, 2003.

9



[12] Tuomas W. Sandholm. An implementation of
the contract net protocol based on marginal cost
calculations. In Proceedings of the 12th Interna-
tional Workshop on Distributed Artificial Intel-
ligence, pages 295–308, Hidden Valley, Pennsyl-
vania, 1993.

[13] Yoav Shoham. Agent-oriented programming.
Artificial Intelligence, 60:51–92, 1993.

[14] Abraham Silberschatz and Peter Galvin. Oper-
ating System Concepts. Joh Wiley & Sons, 5th
edition, January 1998.

[15] Ken Steiglitz, Michael L. Honig, and Leonard M.
Cohen. A computational market model based
on individual action. In Scott Clearwater, edi-
tor, Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation. World Scientific,
River Edge, New Jersey, 1996.

[16] I. E. Sutherland. A futures market in computer
time. Communications of the ACM, 11(6):449–
451, June 1968.

[17] Andrew S. Tanenbaum and Maarten van Steen.
Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002.

[18] Hal R. Varian. Intermediate Microeconomics: A
Modern Approach. W. W. Norton & Company,
4th edition, 1996.

[19] Vivekanand Vellanki and Ann Chervenak. A
cost-benefit scheme for high performance predic-
tive prefetching. In Proceedings of SC99: High
Performance Networking and Computing, Port-
land, OR, 1999. ACMPress and IEEE Computer
Society Press.

[20] Carl A. Waldspurger and William E. Weihl. Lot-
tery scheduling: Flexible proportional-share re-
source management. In Operating Systems De-
sign and Implementation, pages 1–11, November
1994.

[21] Gerhard Weiss, editor. Multiagent Systems: A
Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, 2000.

[22] Michael P. Wellman. A market-oriented pro-
gramming environment and its application

to distributed multicommodity flow problems.
Journal of Artificial Intelligence Research, 1:1–
23, 1993.

[23] Michael P. Wellman. A computational market
model for distributed configuration design. In
National Conference on Artificial Intelligence,
pages 401–407, 1994.

[24] Michael P. Wellman. Market-oriented program-
ming: Some early lessons. In Scott H. Clearwa-
ter, editor, Market-Based Control: A Paradigm
for Distributed Resource Allocation. World Sci-
entific, River Edge, New Jersey, 1996.

[25] Wayne L. Winston. Operations Research: Ap-
plications and Algorithms. Duxbury Press, 3rd
edition, 1994.

[26] Hirofumi Yamaki, Kyoto University, Michael P.
Wellman, and Toru Ishida. A market-based ap-
proach to allocating QoS for multimedia appli-
cations. In M. Tokoro, editor, Proceedings of
the Second International Conference on Multi–
Agent Systems, pages 385–392. AAAI, 1996.

[27] Fredrik Ygge. Market-Oriented Programming
and its Application to Power Load Management.
PhD thesis, Department of Computer Science,
Lund University, 1998.

[28] Fredrik Ygge and Hans Akkermans. Power load
management as a computational market. In
M. Tokoro, editor, Proceedings of the Second In-
ternational Conference on Multi–Agent Systems,
pages 393–400. AAAI, 1996.

[29] Fredrik Ygge and Hans Akkermans. Decentral-
ized markets versus central control: A compara-
tive study. Journal of Artificial Intelligence Re-
search, 11:301–333, 1999.

[30] Fredrik Ygge, Rune Gustavsson, and Hans
Akkermans. Homebots: Intelligent agents for
decentralized load management. In Proceedings
of DA/DSM Europe 96, Vienna, Austria, Octo-
ber 1996.

10


