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1 Introduction

The mechanism design problem has been a major subject of applied game-theoretic research for
many years now. Commonly, it is approached theoretically from the perspective of designing rules
that ensure that truth revelation is a Bayes-Nash equilibrium strategy or a dominant strategy for
agents, and the outcomes maximize the designer’s objective [Mas-Colell et al., 1995, Fudenberg and
Tirole, 1991, Osborne and Rubinstein, 1994]. This approach is, in principle, very general, as attested
to by the revelation principle [Mas-Colell et al., 1995]. However, it is difficult to imagine real
policy-making decisions that involve querying every affected party for their complete preferences.
Intuitively, we can recognize that typically the domain over which individual preferences must be
specified is intractably large or infinite, and the problem of preference elicitation may be further
complicated by psychological and socialogical factors that prevent people from recognizing their
true preferences. These difficulties confound direct revelation mechanisms in all but relatively
simple domains. In practice, we must attempt to tackle the full complexity of indirect mechanism
design, as even reasonable heuristics may go a long way to address real policy-making problems.

On another dimension of mechanism design lies system modeling. Game theorists have been
building analytically tractable models of relevant phenomena for many years, attempting to glean
understanding of general system dynamics based on relatively simple and clean analytical solu-
tions. Such methods have indeed enjoyed tremendous success, as they simplify the problems down
to relevant dynamics, allowing clear and compelling explanations of sometimes extremely complex
phenomena. However, a natural shortcoming of analytically tractable modeling is, well, the an-
alytical tractability constraint. While the simple models may contain tremendous latent power,
we may frequently require a more complex class of models which, while not analytically tractable,
models the system of interst more accurately. The acuteness of this need has been demonstrated
by several problems of recent interest: matching markets for American physicians and FCC fre-
quency spectrum auctions [Roth, 2002]. In both of these domains, the shortcomings of analytic
simplifications have become especially apparent to the designers.

The complication of expanding the class of “allowable models” beyond analytical tractability
is the shortage of tools that allow us to analyze such models. Particularly, while there are many
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numerical techniques for analyzing games defined with finite payoff matrices, no general tools exist
for infinite game analysis, and even large finite games are in practice intractable. There are also a
number of techniques for approximate analysis of intractable games, but these are typically tied to
applications [Reeves et al., 2005, Wellman et al., 2005a,b] and none share an interface. Furthermore,
if payoffs are only available via noisy realizations, probabilistic analysis is needed to evaluate how
much a game defined by noisy samples from the actual payoff functions reflects the actual strategic
scenario.

The contributions I propose are in the form of methods and asymptotic convergence results, as
well as applications to particular strategic scenarios and mechanism design problems of interest. In
“Empirical Mechanism Design: Methods, with an Application to a Supply Chain Scenario” Vorob-
eychik et al. [2005a], I, along with several co-authors, present methods for mechanism design in
the case where the payoff function is specified by a simulator or, more generally, a “black box”.
We apply these methods to a particular mechanism design problem that has interested a group
of researchers in the Trading Agent Competition community for the last several years. We also
present some asymptotic convergence guarantees for approximately optimal mechanisms.

In my work, I hope to address two problems fundamental to the empirical mechanism design
setting (and, perhaps, to mechanism design in general). Both of these problems stem from the issue
of evaluating the designer’s utility for a given mechanism choice.

The first problem is that of determining a set of solutions to a game induced by a particular
mechanism choice, our presumption being that the designer evaluates his utility with respect to
these solutions. Since the empirical mechanism design framework incorporates empirical games,
rather than fully specified games, as a part of analysis, there is a need for a tool that can provide
solutions or estimates of solutions based on empirical games. To establish a unified framework
for analysis of empirical games—that is, games that have a black-box specification of the players’
payoff functions—I suggest an Empirical Game Analysis Toolkit. Such a toolkit would provide
an analyst with a uniform interface to all analysis tools by incorporating the available numerical
techniques and using an appropriate generalization of input and output.

In “Learning Payoff Functions in Infinite Games” Vorobeychik et al. [2005b], I present a par-
ticular set of tools for analyzing infinite games for which payoff data is only available in the form
of a noisy data set. In what follows, I propose a number of additional methods that estimate a
sample solution or a set of solutions to a game specified using a “black box” payoff function (such
as a data set of payoffs, for example). Furthermore, I derive in this work probabilistic bounds in
order to assess how close the solution estimates based on empirical games are to actual solutions.
To my knowledge, this is the first analytic derivation of such bounds for the setting of games with
noisy payoffs.

The second significant problem in mechanism design is that of formulating sensible beliefs
over the set of solutions for a particular strategic scenario induced by a mechanism, I intend to
explore various ways such beliefs could be formed. To this end, I introduce solution concepts or
generalizations of well-known solution concepts which, I believe, will aid analysis in realistic design
settings.

My applications are not merely limited to a mechanism design setting per se. It is important to
recognize that empirical game analysis methods are significant in themselves, as a policy-maker may
be interested in assessing the effect of currently implemented mechanism before he would endeavor
to revise it.

Thus, I have collaborated in past work in applying the empirical game analysis methods de-
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scribed here in several domains that are not all directly related to mechanism design. Several
applications have been in the context of strategic analysis of the Trading Agent Competition. An-
other nearly completed project anlayzes strategic interactions in combat in which outcomes are
obtained using simulations. In the completed part of the project I model the strategic interactions
between combatants as a zero-sum game. In the next part of the project, I expect to extend this
model to general-sum games. Finally, I hope to apply my methods both in strategic analysis and
indirect mechanism design in order to design optimal auctions in analytically intractable domains.

2 Preliminaries

2.1 Notation

A normal form game1 is formally expressed as [I, {Ri}, {ui(r)}], where I refers to the set of players
and m = |I| is the number of players. Ri is the set of strategies available to player i ∈ I, with
R = R1 × . . .×Rm representing the set of joint strategies of all players. I designate the set of pure
strategies available to player i by Ai, and denote the joint set of pure strategies of all players by
A = A1 × . . .×Am. It is often convenient to refer to a strategy of player i separately from that of
the remaining players. To accommodate this, I use a−i to denote the joint strategy of all players
other than player i.

Let Si be the set of all probability distributions (mixtures) over Ai and, similarly, S be the set
of all distributions over A. An s ∈ S is called a mixed strategy profile. When the game is finite (i.e.,
A and I are both finite), the probability that a ∈ A is played under s is written s(a) = s(ai, a−i).
When the distribution s is not correlated, we can simply say si(ai) when referring to the probability
player i plays ai under s.

Next, I define the payoff (utility) function of each player i by ui : A1 × · · · × Am → R, where
ui(ai, a−i) indicates the payoff to player i to playing pure strategy ai when the remaining players
play a−i. We can extend this definition to mixed strategies by assuming that ui are von Neumann-
Morgenstern (vNM) utilities as follows: ui(s) = Es[ui(a)], where Es is the expectation taken with
respect to the probability distribution of play induced by the players’ mixed strategy s. When the
game has finitely many pure strategies, this definition is equivalent to ui(s) =

∑
a∈A ui(a)s(a).

Occasionally, I write ui(x, y) to mean that x ∈ Ai or Si and y ∈ A−i or S−i depending on
context. I also express the set of utility functions of all players as u(·) = {u1(·), . . . , um(·)}.

I define a function, ε : R → R, interpreted as the maximum benefit any player can obtain by
deviating from its strategy in the specified profile.

ε(r) = max
i∈I

max
ai∈Ai

[ui(ai, r−i)− ui(r)], (1)

where r belongs to some strategy set, R, of either pure or mixed strategies.

2.2 Nash Equilibrium and Symmetry

Faced with a game, an agent would ideally play its best strategy given those played by the other
agents. A configuration where all agents play strategies that are best responses to the others

1By employing the normal form, we model agents as playing a single action, with decisions taken simultaneously.
This is appropriate for the current study, which treats strategies (agent programs) as atomic actions. We could
capture finer-grained decisions about action over time in the extensive form. Although any extensive game can be
recast in normal form, doing so may sacrifice compactness and blur relevant distinctions (e.g., subgame perfection).
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constitutes a Nash equilibrium.

Definition 1. A strategy profile r = (r1, . . . , rm) constitutes a Nash equilibrium of game [I, {Ri}, {ui(r)}]
if for every i ∈ I, r′i ∈ Ri, ui(ri, r−i) ≥ ui(r′i, r−i).

When r ∈ A, the above defines a pure strategy Nash equilibrium; otherwise the definition
describes a mixed strategy Nash equilibrium. I often appeal to the concept of an approximate, or
ε-Nash equilibrium, where ε is the maximum benefit to any agent for deviating from the prescribed
strategy. Thus, ε(r) as defined above (1) is such that profile r is an ε-Nash equilibrium iff ε(r) ≤ ε.

In this study I devote particular attention to games that exhibit symmetry with respect to
payoffs, rendering agents strategically identical.

Definition 2. A game [I, {Ri}, {ui(r)}] is symmetric if ∀i, j ∈ I,

• Ri = Rj, and

• ui(ri, r−i) = uj(rj , r−j) whenever ri = rj and r−i = r−j.

Symmetric games have relatively compact descriptions and may present associated computa-
tional advantages [Cheng et al., 2004]. Given a symmetric game, we may focus on the subclass
of symmetric equilibria, which are arguably most natural [Kreps, 1990], and avoid the need to
coordinate on roles.2 In fairly general settings, symmetric games do possess symmetric equilibria
[Nash, 1951, Cheng et al., 2004].

2.3 Empirical Games

In this work, I direct much of my attention to the analysis of empirical games, that is games, for
which the set of players and their strategy sets are specified, but we do not have a direct specification
of the utility (payoff) functions. What we have instead is a partial or inexact specification of the
payoff functions of all players using a set of data points.

In formal notation, the empirical game is [I,R,D], where, I is the set of players and R is the
set of joint strategies. D is a set of data points {d1, . . . , dL}, where each data point dj = (a, V )
is composed of a particular pure strategy profile, a ∈ A, together with associated characteristics,
denoted by V , that are relevant to the specific empirical game. A simple example of a data point
is dj = (a, U), where U is the vector of realized payoffs. A more complicated example could be
dj = (a, U1, . . . , UK), where each Uk is a vector of realized payoffs sampled from a payoff function
with noise. Finally, we could have dj = (a,M1, . . . ,MK), where Mk is a statistic of the data set.

If every pure strategy profile in R3 contains a corresponding data point in D, I say that the
data set is complete. In this case, we can use the empirical game to estimate the underlying game
by [I,R, {ū(r)}], where ū(a) is the sample average of all U that correspond to a in the data set,
and ū(r) is then derived appropriately as described above (taking it to be a vNM utility function).
More generally, we can drop the requirement that the data set is complete, and abstractly use some
approximate payoff functions, û(a) based on the data to obtain an approximate game, [I,R, {û(r)}].

2Contention may arise when there are disparities among payoffs in asymmetric equilibrium. Even for symmetric
equilibria, coordination issues may still be present with respect to equilibrium selection.

3For example, if R is the set of joint mixed strategies, the subset of pure strategies would be those r ∈ R that
have support of size 1, or, alternatively, that place positive probability on exactly 1 strategy.
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3 Empirical Mechanism Design Framework

I distill the problem of mechanism design as follows. Let us imagine that a designer has a param-
eter, θ ∈ Θ, the settings of which determine the designer’s control over the mechanism. Θ will
thereby define the space of feasible mechanisms. It may be that the designer selects from several
possible auctions he can run to sell a particular item, in which case each of the auctions can be
associated with some θ. Or the designer may have decided on a particular auction type, modulo
some parameter setting. For example, the designer may have decided to run an open-bid auction,
but instead of revealing bids exactly, wants to add mean-zero normal noise to each bid. In that
case, the mechanism design setting is restricted to choosing the variance of the noise to be added
to bids.

The mechanism design problem has received considerable attention in the literature. Indeed,
the problem of designing optimal auctions alone has been address in numerous contexts, includ-
ing [Myerson, 1981, Riley and Samuelson, 1981, Krishna, 2002]. What distinguishes my approach
from much of the traditional literature is that I consider a space of empirical games rather than
well-specified and analytically tractable games as the source of mechanism outcomes. As I have
already suggested, this extends the set of possible strategic models, but also introduces important
imediments to analysis: numerical tools are now required to solve or approximate solutions to
empirical games.

The designer’s ignorance of the players’ payoff functions also introduces some philosophical dif-
ficulties into my framework. The presumption is that, while the mechanism designer acts without
knowledge of the game and is, therefore, ignorant of its solutions, all the players, in their infinite
wisdom, play an actual solution (say, Nash equilibrium). A justification of such a view is that the
actual strategic setting is extremely complex, and the model, even based on simulations, is still
a gross simplification. After a design is chosen, the actual induced agent play will, on aggregate,
be similar to a solution. Perhaps a slightly more compelling view, and one that has also had a
long tradition of game-theoretic research, is that agents ultimately learn to play nearly rationally.
Indeed, a broad theoretical and empirical literature demonstrates convergence of learning to Nash
equilibria in a number of special contexts [Milgrom and Roberts, 1991, Kalai and Lehrer, 1993,
Fudenberg and Levine, 1998]. However, this assumption is somewhat dubious in its own right,
since no general convergent learning algorithm is yet known. In order to alleviate these philosoph-
ical problems, I use the term “solutions” rather then refering to Nash equilibria, which are specific
solution concepts. Later, I suggest several other solution concepts that attempt to incorporate in-
directly the concepts of bounded rational agents without specifically modeling bounded rationality,
as was done by Rubinstein [1997].

A formal framework for empirical mechanism design is presented in [Vorobeychik et al., 2005a].
Here, I summarize several important points. We modeled the strategic interactions between the
designer of the mechanism and its participants as a two-stage game. The designer moves first
by selecting a value, θ, from a set of allowable mechanism settings, Θ. All the participant agents
observe the mechanism parameter θ and move simultaneously thereafter. For example, the designer
could be deciding between a first-price and second-price sealed-bid auction mechanisms, with the
presumption that after the choice has been made, the bidders will participate with full awareness
of the auction rules.

Since the participants play with full knowledge of the mechanism parameter, we defined a game
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between them in the second stage as

Γθ = [I, {Ri}, {ui(r, θ)}].

Let N (θ) be the set of strategy profiles considered solutions of the game Γθ.4

Suppose that the goal of the designer is to optimize the value of some welfare function, W (r, θ),
dependent on the mechanism parameter and resulting play, r. We defined a pessimistic measure,
W (R̂, θ) = inf{W (r, θ) : r ∈ R̂}, representing the worst-case welfare of the game induced by θ,
assuming that agents play some joint strategy in R̂. Typically we care about W (N (θ), θ), the
worst-case outcome of playing some solution.5

We have attempted to tackle this problem in the TAC/SCM domain by searching for a setting of
storage cost that would curb total initial procurement of supplier components by the manufacturing
agents ([Kiekintveld et al., 2005],[Vorobeychik et al., 2005a]).6 During the 2004 tournament, the
designers of the supply-chain game chose to dramatically increase storage costs as a measure aimed
at reducing day-0 procurement, to little avail. In [Vorobeychik et al., 2005a], we systematically
explored the relationship between storage costs and the aggregate quantity of components procured
on day 0 in equilibrium. We modeled the designer’s welfare function as a threshold on the sum of
day-0 purchases. Let φ(a) =

∑6
i=1 ai be the aggregation function representing the sum of day-0

procurement of the six agents participating in a particular supply-chain game (for mixed strategy
profiles s, I take expectation of φ with respect to the mixture). The designer’s welfare function is
then given by W (N (θ), θ) = I{sup{φ(N (θ))} ≤ α}, where α is the maximum acceptable level of
day-0 procurement and I is the indicator function. The designer selects a value θ of storage costs,
expressed as an annual percentage of the baseline value of components in the inventory (charged
daily), from the set Θ = R+. The data was collected by simulating TAC/SCM games on a local
version of the 2004 TAC/SCM server, which has a configuration setting for the storage cost.

4 Convergence of Optimal Design Based on Empirical Data

In [Vorobeychik et al., 2005a] several co-authors and I prove that under certain restrictions which
include finite player and strategy sets, as well as finite set of design parameter choices, optimal
design parameter based on games with noisy payoff data will almost surely converge to a true
optimal design choice. Additionally, we provide some theoretical justification for using ε- Nash
equilibria as estimates of actual Nash equilibria (that is, equilibria of the underlying game): for
any positive ε, when enough samples are taken, the set of ε-Nash equilibria of an empirical game
contains all actual Nash equilibria. A form of the converse is true as well: eventually, every Nash
equilibrium of an empirical game will be arbitrarily close (in any metric space) to some Nash
equilibrium of the underlying game.

4We generally adopt Nash equilibrium as the solution concept, and thus take N (θ) to be the set of equilibria.
However, much of the methodology developed here could be employed with alternative criteria for deriving agent
behavior from a game definition.

5Again, alternatives are available. For example, if one has a probability distribution over the solution set N (θ), it
would be natural to take the expectation of W (r, θ) instead. I will discuss this explicitly below.

6The motivation for this problem arose as a result of TAC/SCM experience in the 2003/2004 tournaments.
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5 Strategic Modeling with Empirical Games

At the core of empirical mechanism design problems lies the problem of strategic modeling using
empirical games. First of all, the designer will need an estimate of the set of solutions to a game
induced by a mechanism choice. Additionally, I can envision many other settings, which would not
formally fall under the rubric of mechanism design, but which nevertheless provide motivation to
undertake strategic analysis in an empirical game setting. Many real mechanism design problems
may be difficult to formulate, and the formulation itself may depend in complex ways on evaluating
a design choice already in place. This is commonly true of political processes. Before proposing
healthcare or tax reforms, politicians must first provide evidence that current systems are sufficiently
ineffective to warrant such reforms, and the more complex the proposed changes, the more “broken”
the current system must be to justify them.

Naturally, game theoretic literature has been effectively designing and solving strategic interac-
tion scenarios for many years now. However, design effort typically concentrates on finding analytic
means to dissect the relevant situation, either through explicit modeling of player utility functions,
or endowing them with general properties and doing some comparative statics [Mas-Colell et al.,
1995]. In order to remain analytically tractable, any such methods must make numerous simpli-
fying assumptions, often ignoring relevant characteristics of the problem. While these methods
have allowed us to gain much theoretical ground in understanding and predicting real strategic
scenarios, their shortcoming manifests themselves particularly strongly when economists take up
the role of system engineers [Roth, 2002]. For an engineer, the details that would be abstracted
away in standard theory may well be of utmost importance. But accounting for such details often
confounds the analysis, and, consequently, engineers of economic systems must employ additional
methods, usually ad hoc, and often simulation-based, in order to inform ultimate decisions. For
example, Roth and Peranson [1999], in their efforts to design the matching market for American
physicians, found that past theoretical results were impractical precisely because the more com-
plex reality failed to satisfy many of the underlying assumptions in the theory. Instead, they used
the theory as a good starting point for algorithmic design, but complemented it with a series of
computational experiments.

Another famous economic engineering design example is the design of FCC Spectrum auc-
tions [McMillan, 1994, Milgrom, 2000, Roth, 2002]. Even in the light of considerable literature in
optimal auction design [Myerson, 1981, Riley and Samuelson, 1981, Krishna, 2002], several attempts
at auction design for spectrum licenses had proven to be flawed [McMillan, 1994, Roth, 2002]. The
numerous complementarities, information asymmetries, as well as the complexity of auction design
goals made this an extremely difficult problem in practice, and many alternative auction designs
and subsequent revisions were required to find a workable design [Roth, 2002].

My goal in this work is to address such problems of economic engineering head on and in a
principled way. Traditional game theory relies on solutions (e.g., Nash equilibria) of analytical
models. In more complex scenarios, such models may be too simplistic. In principle, we can build a
considerably more complex model as a computer program that outputs a value of players’ utilities
given their joint strategy profile (and given joint type realizations when relevant). Such a program
is a simulator of payoffs, and we can envision running multiple simulations, i.e., iterations of this
program, to obtain payoff realizations for a set of joint strategy profiles of the players. As a result
of simulations, we would obtain an empirical game as defined in Section 2.3.

In a sense, this simulator serves the purpose of the players’ payoff functions. However, it is far
from clear how solutions can be obtained given such a description of the players’ utilities. This

7



question is addressed later, when I delve into numerical methods for approximating solutions to
games. For now, I have yet to finish the discussion of modeling games using such simulators.

The simplest setting is that of simultaneous play, when each query from the simulator can be
interpreted as an entry in the normal-form game matrix. Empirical analysis based on such models
was done, for example, by Reeves et al. [2005] and Wellman et al. [2005a]. However, observe
that, just like in typical game modeling done by game theorists, we have room for endowing
our games with dynamic structure. Now, it is well-known that the normal-form game structure
is general in a sense that you can mold any given game structure into a normal form by defining
strategies appropriately (for example, temporal dependence would be reflected by making strategies
functions of histories). However, extensive form captures temporal structure more efficiently and,
additionally, allows for solutions besides Nash equilibria (e.g., subgame perfection). Often, extensive
form models will also be far more intuitive than the alternative normal-form games when temporal
elements are especially important for analysis.

In ongoing work with RAND Corporation [Vorobeychik and Porche, 2005] we have explored
a problem in which each agent’s strategy is a vector of strategic parameters. These can be set
simultaneously for all agents, to effect a simultaneous game, or agents may alternate setting some
of their strategic parameters, observing some or all others that have been set in past stages, which
would result in an extensive-form game. We have explored both alternatives, developing a simple
sequential game model, in which a designated agent moves first by setting a specific strategic
parameter, followed in the second stage by the simultaneous play of all the agents.

Since I am suggesting modeling of generic game forms, I must find an encoding which would
allow me to use simulations to produce payoffs for an arbitrary game model. Alas, this is an open
question still, and I hope to address it in my work in the not far-away future.

6 Empirical Game Analysis Toolkit (EGAT)

Strategic modeling can hardly be effective if the tools necessary to analyze the models are scarce.
Since I am proposing a new modeling framework based on empirical games, I need to present an
analyst with a set of numerical tools that can elicit the desired solutions based on his models.

In this section, I present the idea of a toolkit that provides a mechanism designer with a set of
numerical tools for empirical game analysis. In Figure 1 I depict on a high level how such a toolkit
would be used in modeling and analysis of strategic interactions. As his first order of business,
the analyst must develop a model of strategic interactions that are of interest to him. If the game
defined by the model is very large (many agents and/or very large strategy sets), it will need to be
restricted appropriately, ensuring that the model is still well represented by the restricted game. If
the simulator is developed by the anlayst, it will naturally be an integral part of the model, since
it essentially defines the players’ payoff functions. The output of the simulator will be a data set of
strategy profiles of and corresponding payoffs to all players, and this will provide the input (along
with necessary parameters) to the proposed toolkit. The output of the toolkit would then be a
set of desired solutions or approximate solutions, upon which further analysis of the model could
anchor. As a way of allowing more general sources of input that could be available to an analyst,
we can make the entire simulation and modeling element of the analysis exogenous, as represented
by the dotted box. We may even consider a case which has an exogenous data source, but an
endogenously constructed model which affects the solutions.

The simplest modeling scenario that I can envision is a game with few players and few strategies
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Figure 1: Empirical Game Analysis Toolkit functionality.

for which we can obtain an exact payoff matrix using simulations. Let us say that in such a context,
we have access (typically, through simulations) to the entire finite payoff matrix of the game. Then,
finite game analysis merely involves solving the finite game numerically. If we find ourselves in such
a setting, we can exploit one of numerous finite game solving tools. The most well-known and
most general is GAMBIT [McKelvey et al., 2005], which provides tools to find Nash equilibria for
normal-form and extensive-form games. Reeves et al. [2005] used Replicator Dynamics [Friedman,
1991] as an alternative method for finding sample Nash equilibria that, in their experience, was
more effective than GAMBIT, as it was able to take advantage of symmetry in the game. A recent
path following algorithm by Govindan and Wilson [2003] empirically shows improvement over the
classical simplicial subdivision [McKelvey and McLennan, 1996] and was implemented as a part of
the GameTracer software for finding Nash equilibria in normal-form games [Blume et al., 2003].
Govindan and Wilson also developed an analogous algorithm for extensive-form games [Govindan
and Wilson, 2002].

Even more recently, Porter et al. [2006, to appear] present a series of effective search methods
for finding a sample Nash equilibrium in an arbitrary normal-form game, while Herings and Peeters
[2005] present a convergent algorithm for finding all Nash equilibria in arbitrary finite games. Addi-
tionally, a recent work by Sandholm et al. [2005] presents a Mixed-Integer Programming formulation
to find a sample or the entire set of Nash equilibria in finite two-person games.

A somewhat more complex scenario has again the same game produced using simulations, but
now payoffs produced by the simulator contain noise. We can still use this game as input into
EGAT, which would then solve it as if it were the actual game. However, now the output may
include probability that the Nash equilibria of the noisy game are actual Nash equilibria. This
would require variances as well as numbers of samples taken for each profile to be specified as a
part of the empirical game.

If the game is large and especially if it is infinite, it is no longer feasible to use simulations to
produce estimates of payoffs for every strategy profile, nor is it generally feasible to solve a game even
if the payoff function were available.7 Instead, our data set will inherently be a partial specification

7The lone generic numerical infinite game solver that I am aware of is by Reeves and Wellman [2004], and it works
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of the payoff function (matrix). We can define a restricted strategy set and sample the simulator for
the payoff matrix of this restricted game. The restricted game can then be fed into EGAT to produce
equilibrium estimates for the actual game. In order to obtain the probability distribution over Nash
equilibria in this case, we need, in addition to variance information, additional assumptions about,
for example, a bound on slope of the payoff function. This could be another input into EGAT.

Another way to curb the complexity of simulating and solving a particular game, the hierarchical
player reduction technique, introduced by Wellman et al. [2005b], restricts subsets of players to play
the same strategy in any profile that is sampled. By defining equivalence classes with respect to
players that are restricted to play the same strategies, a new exponentially smaller game can be
defined, in which players are the equivalence classes of the original game. Such a technique could
be incorporated into EGAT in several ways. The simplest would be to feed the game after the
reduction with respect to players had already taken place. As far as EGAT is concerned, it is
just another empirical game and the fact that it had been reduced from another should have no
implications for solutions. Alternatively, original data set could be used as input, but we could
specify also that a data set has a restricted form with respect to subsets of players, and the
appropriate reduction should be applied. Finally, we could scan the data set automatically, seeking
out equivalence classes of players and applying reductions when appropriate, and merely provide a
user with a binary parameter that turns this preprocessor on or off.

In Figure 2 I depict my vision for the structure of the proposed Empirical Game Analysis
Toolkit. As mentioned above, input could be fed through a preprocessor that performs hierarchical

EGAT

GAME
DATA

SOLUTIONS

ANALYZER

ANALYZER

ANALYZER

ANALYZER

GAMBIT
INTERFACE

MYSOLVER
INTERFACE

STATISTICAL 
ANALYSIS

INTERFACE

MUX
UNION

SELECT

HIERARCHICAL REDUCTIO
N

Y/N

Figure 2: Empirical Game Analysis Toolkit functionality.

reduction, if the option is turned on. It is then fed to a subset of analysis tools (analyzers) that can

by iterative best-response dynimic, which is not guaranteed to converge.
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approximate a set of desired solutions (which solutions are desired would have to specified as well).
These would be combined in an appropriate way and formatted for output. Each analyzer could
in turn rely on interfaces to standard game solvers or custom-made solvers and analysis libraries,
that are provided as a part of EGAT distribution.

An important aspect of game analysis may entail interleaving simulations and analysis in order
to avoid unnecessary simulation effort. This would require the output of EGAT to be the next
set of points to be queried, rather than a set of solutions. For example, the output could be the
neighbors of candidate equilibria (defined by one-player devations not present in data set), or some
other profiles that need to be sampled (or require additional samples) to improve the quality of
equilibrium approximation. Since I keep the “type” of solutions general, and allow the user to
specify this type, it should not be difficult to extend EGAT to accomodate a simulation loop,
although the interface would need to be extended to provide for solutions such as Nash equilibria
to be returned eventually.

In the remainder of this section, I describe the input and output interface of EGAT that several
collaborators and myself envision for the short term. Then, in sections that follow, I present my
work towards developing tools that I have developed and plan to develop to analyze empirical games.
Eventually, these will be incorporated into the toolkit as the analyzer modules and libraries.

6.1 Input Options

The input interface to EGAT is composed of two parts: data and directions. The data set will pro-
vide a set of samples from a payoff function, whereas the directions file will include the information
about the players and their strategy sets. Additionally, the directions interface will allow the user
to specify which analysis tools are to be used and to provide the instructions for these. Finally,
output format would be specified through this interface. For example, in Figure 2, the user will
specify whether or not to employ the hierarchical reduction and then select which analyzer will be
called on the resulting data set (designated by the schematic representation of a multiplexer).

While EGAT will in the end support multiple input formats, and its architecture will allow
adding custom input specifications, a relatively general logical form of the data that can serve as
input to EGAT is (a, t, u(a, t), n(a, t), var(a, t)), where a is a pure strategy profile, t is the profile of
player types (as a special case, a game of complete information will have a fixed t for every player;
furthermore, if anlyzers are called that only process games of complete information, the type entry
would be ignored), and u(a, t) is the payoff vector to all players when players with types in t play
a. The payoff value may be sum of payoffs from n(a, t) noisy samples, or a single exact payoff (in
which case n(a, t) will be 1). var(a, t) is the variance of noisy samples, and it will, naturally, be 0
if samples contain no noise.8

While the implementation issues may need to be transparent for individual solvers, they may
well be important when answers to queries are needed in terms of specific strategic attributes.
Consequently, in addition to the actual data, the input interface will specify the data types of each
of the above data entries. Each pure strategy and player’s data type is allowed to be a vector
of three possible types: integer, real number, or a string. The payoff entry is restricted to be an
integer or a string, as is variance. Finally, the number of samples is naturally restricted to be an
integer.

8For computational reasons, the actual implementation will use the sum of squares instead of sample variance.
Note that sum of payoffs and sum of squares are statistically equivalent to sample means and variance.
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We can encounter some difficulties in specifying the strategy sets and/or sets of types if these
are infinite. To deal with these, we make an assumption that an interval can be specified for each
attribute (thus, also constraining strategies to be real numbers). If we are dealing with a game of
incomplete information, we may also need to use the directions interface to specify the distribution
of types for each player. In the case when the set of types is finite, this is straighforward, since we
would simply specify the probability of each type being played. When there are infinitely many
types, we will make the assumption that the distribution of types is piecewise uniform, and that
each attribute of the type vector is independently distributed. Then we can specify a value of the
type density for each interval.9

6.2 Output Options

As indicated in Figure 2, all output will be in the form of a set of solutions. Internally, it will be
represented by an XML tree. The XML tree will be passed to a formatter specified through the
directions interface which will then present the data in some usable form to the world (e.g., to an
analyst). For example, the user of EGAT may want the solutions in a textfile, and will therefore
designate a “text formatter” to be used.

Since we cannot predict every possible use that the toolkit can have, we allow for considerable
generality in output. In order to achieve such generality, we build the XML tree of solutions based
on an XML schema specified in directions, against which the XML tree can be validated. Thus,
this toolkit can in principle support any type of solution, as long as the appropriate XML schema
and at least one corresponding output formatter is provided.10

The generality that will thus be built into the toolkit has its drawback: it makes user friendliness
and especially developer friendliness an elusive goal. This is indeed a common conflict between
manageability and extensibility, and we fully recognize that there will be most common uses of
EGAT which will have to be provided with greater usability. Thus, an important part of a toolkit
would be to create several “common use” XML Schema formatters, particularly those that support
all the analysis tools that will actually be provided. Then, it will be up to the particular developers
of analysis modules to resolve the issue of output format, which will be somewhat transparent
to the end user. Overall, I feel that this design will result in considerable modularity and will
consequently be beneficial in the long-term development of the toolkit.

I envision that a typical user will use the toolkit to determine or approximate the set of (ap-
proximate) Nash equilibrium outcomes and payoffs of a particular strategic interaction. Of course,
as I have mentioned, if a user is a designer analyzing a particular strategic scenario, he may also
need to know the probability that a particular strategic assessment (in terms of actual Nash or
ε-Nash equilibria) is accurate. I plan to provide basic input and output interfaces to support such
operations as a fundamental part of the toolkit.

Even if a designer is only concerned about Nash equilibrium outcomes, in some cases analysis
may be restricted to a sample equilibrium, while in others the designer needs to know or approximate
all Nash equilibria. Furthermore, the designer may be concerned about agents that are bounded-
rational, and may have a model of play that incorporates certain aspects of rationality. For example,
the designer may have a probabilistic belief that suggests that strategies that are undominated are

9When the distribution over types is not specified, it could be inferred from data using, for example, density
estimation methods [Hastie et al., 2001].

10Naturally, we presume that there is also an analyzer that actually produces the particular solutions, or else the
point is entirely moot.
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considerably more likely to be played than dominated strategies. Consequently, the output will have
to include sets of strategy profiles of players, and, perhaps, a probability distribution that profiles in
some specified set are Nash equilibria, undominated, dominant, or have other strategically relevant
properties. An entirely different output format would need to be provided to present an anlyst
with payoff functions (usually approximate) of players, or an approximation of ε(r), although both
of these would certainly be reasonable things to expect the toolkit to provide. All of these can be
provided as solutions by specifying an appropriate solution format, as the internal XML tree is in
practice agnostic to the format of data it will contain.

7 Finite Empirical Game Analysis Methods

For any reasonably small finite game we can usually find a set of solutions—Nash equilibria, for
example—numerically. Similarly, given an empirical game as defined in Section 2.3, we can estimate
or approximate a set of solutions of the actual (underlying) game.

I am aware of a number of research efforts that concentrate on formulating a game based on
payoff function simulations in terms of a normal-form game that is subsequently solved using a
standard finite-game solver. Reeves et al. [2005] analyzed the Market-Based Scheduling game using
replicator dynamics as a large-game solution tool. In order to improve efficiency of estimates,
the authors interleaved sampling and solving, drawing preferences according to Nash equilibrium
population proportions based on the previous set of samples. Walsh et al. [2002] demonstrated
analysis methods for finite games with small numbers of strategies, also using replicator dynamics.
They incorporated rudimentary sensitivity anlaysis and used the size of the basin of attraction of
replicator dynamics solutions to assess the likelihood of each of the game equilibria. The idea of
thus deriving distributions of play has implications on mechanism design, as the designer can use
the resulting distribution in his definition of W (N (θ), θ), an idea that has already been explored
at a rudimentary level by Phelps et al. [2004].

In past work, I collaborated with several co-authors to present several methods for analyzing
small finite games [Wellman et al., 2005a], applying them to analyze TAC/SCM 2003 strategic
initial procurement of supplier components by the manufacturing agents. The crux of this work
was comprised of data collection to obtain a description of three empirical games: one with six
symmetric agents and two strategies, another with five symmetric agents and two strategies, and
the last with six symmetric agents and three strategies. Nash equilibrium analysis of the first two
games, as well as basic statistical analysis of equilibria, supported the conclusion that there was
significant difference in terms of producer welfare between the first two games above. I also used a
form of control variates to reduce variance of the mean estimates [L’Ecuyer, 1994, Ross, 2001].

In all of the research efforts described above, the set of Nash equilibria of the game which is
obtained using sample average payoffs for each strategy profile is used as an estimator of the actual
set of Nash equilibria of the game. This seems to be a sensible approach, and in Vorobeychik
et al. [2005a] I provide some convergence results of such estimators. Treating these solutions as
estimators suggests also that we can assess our confidence in them based on particular assumptions
about distribution of our payoff samples. In what follows, I describe my approach to assessing the
quality of Nash equilibrium estimation, as well as estimation of several other solution concepts,
obtained under different assumptions about sampling noise.
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7.1 Distribution-Free Bounds

The first lemma provides a (deterministic) bound on ε(r), where r is some strategy profile in the set
of joint strategies, given that we have a bound on the quality of the payoff function approximation
for every point in the domain.

Lemma 1. Let ui(r) be the underlying set of payoff functions for all players and ûi(r) be an
approximation of ui(r) for each i ∈ I. Suppose that |ui(r) − ûi(r)| ≤ δ for strategy profiles r and
∀(ai, r−i) : ai ∈ Ai. Then |ε(r)− ε̂(r)| ≤ 2δ.

The proof of this Lemma as well as all other non-trivial proofs are presented in the Appendix.
Now I will derive a distribution-free bound, first for pure strategy and thereafter for mixed

strategy approximate equilibria. For pure strategy bounds, I assume that the following condition
holds pointwise on R:

Pr{|u(r)− û(r)| ≥ ε} ≤ δ. (2)

The desired probabilistic bound is then described by the following lemma.

Proposition 2. Suppose (2) holds pointwise on R. Then

Pr{|ε(r)− ε̂(r)| ≥ 2γ} ≤ (K + 1)mδ = 1− α,

where K = maxi∈I |Ai|.

Application of Chebyshev’s inequality and Chernoff bound yields the following corollaries for
a ∈ A:

Corollary 3. For any random variable with finite variance,

Pr{|ε(a)− ε̂(a)| ≥ γ} ≤ 4(K + 1)mσ2

nγ2
.

Corollary 4. For a random variable that is bounded between L and U,

Pr{|ε(a)− ε̂(a)| ≥ γ} ≤ m(K + 1) exp
{
− γ2n

2(U − L)2

}
.

To find a distribution-free bound for a mixed strategy profile, we need a somewhat stronger
assumption:

Lemma 5. Suppose (2) holds uniformly on A. Then

Pr{|u(s)− û(s)| ≥ ε} ≤ δ ∀s ∈ S.

Theorem 6. Suppose (2) holds uniformly on A and let s ∈ S. Then

Pr{|ε(s)− ε̂(s)| ≥ 2ε} ≤ m(K + 1)δ.

Proof. By Lemmas 2 and 5.

Corollary 7. For any random variable with finite variance, s ∈ S,

Pr{|ε(s)− ε̂(s)| ≥ γ} ≤ 4|A|(K + 1)mσ2

nγ2
.
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Corollary 8. For a random variable that is bounded between L and U, s ∈ S,

Pr{|ε(s)− ε̂(s)| ≥ γ} ≤ m|A|(K + 1) exp
{
− γ2n

2(U − L)2

}
.

For general applicability of the above result, I observe in the following simple proposition that
we can use them to bound a probability that a particular profile is a δ-Nash equilibrium for a given
δ.

Proposition 9. Let δ be given. Then, Pr{ε(r) ≤ δ} ≥ Pr{|ε(r)− ε̂(r)| ≤ δ − ε̂(r)}.

Proof.
Pr{ε(r) ≤ δ} = Pr{ε(r)− ε̂(r) ≤ δ − ε̂(r)} ≥ Pr{|ε(r)− ε̂(r)| ≤ δ − ε̂(r)}.

7.2 Confidence Bounds for Finite Games with Normal Noise

First, I explore games in which all agents have finite (and small) pure strategy sets, A. Thus, it is
feasible to sample the entire payoff matrix of the game. To derive a generic probabilistic bound for
a profile r ∈ R, recall that in the Bayesian framework, ui(·)|ūi(·) are random variables. Then, if
ui(·)|ūi(·) are independent for all i, we have the following result (in the sequel I omit conditioning
on ūi(·) for brevity):

Proposition 10.

Pr
(

max
i∈I

max
b∈Ri

ui(b, r−i)− ui(r) ≤ ε

)
=
∏
i∈I

∫
R

∏
b∈Ri\ri

Pr(ui(b, r−i) ≤ u + ε)fui(r)(u)du,

where fui(a)(u) is the pdf of N(ūi(a), σi(a)).

7.2.1 Bounds on Pure Strategy Profiles

In this section I will derive a probabilistic bound on ε(a), where a ∈ A, given the assumption of
normal, additive noise and an improper prior on the actual payoffs.11 The posterior distribution of
the optimum mean of n samples was derived in [Chang and Huang, 2000]:

Pr (ui(a) ≤ c) = 1− Φ

[√
ni(a)(ūi(a)− c)

σi(a)

]
, (3)

where a ∈ A and Φ(·) is N(0, 1) distribution function. Applying Lemma 10, we get

Pr
(

max
i∈I

max
b∈Ai\ai

ui(b, a−i)− ui(a) ≤ ε

)
=
∏
i∈I

∫
R

∏
b∈Ai\ai

Pr (ui(b, a−i) ≤ u + ε) fui(a)(u)du = 1− α.

(4)
11These bounds are also presented in [Vorobeychik et al., 2005a].
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7.2.2 Bounds on Mixed Strategy Profiles

Proposition 11. Let s ∈ S be a mixed strategy profile. Then,

Pr
(

max
i∈I

max
b∈Ai

ui(b, s−i)− ui(s) ≤ ε

)
=
∏
i∈I

∫
R

∏
b∈Ai

[Pr(Wi(b) ≤ u + ε)] fW ∗
i
(u)du,

where

Pr(Wi(b) ≤ u + ε) = 1− Φ


∑

c∈A−i
ūi(b, c)s−i(c)− u− ε√∑
c∈A−i

σ2
i (b,c)s2

−i(c)

ni(b,c)


and

W ∗
i ∼ N

(∑
a∈A

ūi(a)s(a),
∑
a∈A

σ2(a)s2(a)
ni(a)

)
.

7.3 Alternatives to Nash Equilibria

While the Nash equilibrium has long been the primary, and, arguably, most compelling solution
concept for games, many have expressed dissatisfaction with it in the context of real mechanism
design problems and agent strategic considerations. For example, Erev and Roth [1998] provide
experimental evidence that a reinforcement learning algorithm tends to be a better predictor of
actual play in games with a unique equilibrium. In a similar vein, Selten [1991] presents a series
of arguments against the Bayesian rationality as a reasonable predictor and, even, as an effective
normative system. One appealing alternative that has been proposed is Rules of Thumb [Rosenthal,
1993a,b], that is, strategies that are essentially simple rules or series of rules conditioned on context
that have proven effective over time. A similar notion of heuristic strategies has been studied
by Walsh et al. [2002], and there has been work to find a Nash equilibrium in a relatively small set
of heuristic strategies [Walsh et al., 2002, Reeves et al., 2005].

In this section, I describe several concepts that allow us to consider strategic choices of agents
that are, while not necessarily Nash equilibria, still have appealing properties that may qualify them
as reasonable rules of thumb. Thus, I expand the set of solutions that a designer may consider as
plausible agent play, and thereby allow the mechanism designer to make the most appropriate
choice for a particular problem.

7.3.1 Nearly Dominant Profiles

Dominant strategies are, perhaps, the most compelling solution concept in games. Unfortunately,
aside from the common textbook examples, such as the famed Prisoner’s Dilemma, they rarely
exist in real strategic scenarios. In comparison, a Nash equilibrium is guaranteed to exist in all
finite games. An intuitive property of a rule of thumb is that it usually works reasonably well. The
way we can translate this idea into a solution concept is by introducing an ε-dominant strategy.
While dominant strategies are rare, strategies that are nearly dominant may be more common, and
may indeed provide a solid basis for certain rules of thumb. Of course, there will always be an
ε-dominant strategy if we set ε to be high enough (as long as the payoff functions are bounded).
However, once ε is large, such strategies are no longer nearly dominant in any meaningful way. Still,
this solution concept may be a useful and reasonably compelling way to model agent play without
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appealing to the hyperrational Nash equilibrium. From a players’ viewpoint, nearly dominant pure
strategies are easy to find with respect to a given game, although the algorithmic question of finding
the entire set of (pure and mixed) nearly dominant profiles may be a bit more involved and will be
subject of future work. From a designer’s viewpoint, they are reasonable things to expect agents
to play. Below, I provide a formal definition and probabilistic bound for nearly-dominant profiles
(that is, profiles in which each player’s strategy is nearly dominant).

Definition 3. A profile, r is ε-dominant if ∀i ∈ I,∀t ∈ R−i,

ui(ri, t) + ε ≥ ui(r′, t), ∀r′ ∈ Ri.

Proposition 12.

Pr (r is ε−dominant) =
∏
i∈I

∏
t∈R−i

∫
R

∏
r′∈Ri\ri

Pr{ui(r′, t) ≤ u + ε}fui(ri,t)(u)du.

7.3.2 Nearly Undominated Profiles

In his seminal work, Pearce [1984] describes the notion of rationalizable strategies. While the set
of all rationalizable strategies is not always identical to the set of strictly undominated strategies,
the two concepts are closely related, and are indeed appealing on similar grounds. The argument
of Pearce was that the Nash equilibrium concept was too strong to describe actual behavior. By
weakening it to a set of plausible strategy profiles that may be observed, actual behavior may be
explained, although no longer modeled precisely.

While the idea that players are unlikely to play a profile that is strictly dominated (or not
rationalizable) is very intuitive, there is experimental evidence to suggest that dominated strategies
(for example, cooperative play in Prisoner’s Dilemma) may indeed be played in practice [Cooper
and Ross, 1996]. As a consequence, I introduce here an even weaker concept of nearly undominated
or ε-undominated strategies, which include strategies that, while dominated, are very close to
being optimal for some strategy profile that other agents may play. This property may keep such
strategies as plausible rules of thumb. Below, I give a definition and probabilistic bounds for
nearly-undominated strategy profiles.

Definition 4. A profile, r, is ε-undominated if ∀i ∈ I,∃t ∈ R−i, such that

ui(ri, t) + ε ≥ ui(r′, t), ∀r′ ∈ Ri.

Proposition 13.

Pr (r is ε−undominated) =
∏
i∈I

1−
∏

t∈R−i

∫
R

1−
∏

r′∈Ri\ri

Pr{ui(r′, t) ≤ u + ε}

 fui(ri,t)(u)du

 .

7.3.3 Safety of Pure and Mixed Profiles

As a part of sensitivity analysis of an empirical equilibrium, it may be useful to consider sensitivity
not just to noise in the empirical game, but also to the deviations by other agents. To that end, I
define the notion of δ-safety.
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Definition 5. Let R−i be the joint space of deviations of agents other than i. A profile r is δi-safe
for agent i if

δi(r) ≥ max
t∈R−i

(ui(r)− ui(ri, t)).

A profile s is then δ-safe if it is δi-safe for all agents, that is, if

δ(r) ≥ max
i∈I

max
t∈R−i

(ui(r)− ui(ri, t)).

Alternatively, r is δ-safe if, for every player i ∈ I,

ui(r) ≤ ui(ri, t) + δ, ∀t ∈ R−i

A Proposition analogous to Proposition 10 gives a general probabilistic bound on δ(r):

Proposition 14.

Pr
(

max
i∈I

max
t∈R−i

(ui(r)− ui(ri, t)) ≤ δ

)
=
∏
i∈I

∫
R

∏
t∈R−i

[1− Pr(ui(ri, t) ≤ u− δ)] fui(r)(u)du.

The proof is analogous to cases already discussed, with r a pure or a mixed profile.
I do not see the notion of δ-safety as having much independent value. Instead, I view it as a

useful way to distinguish particular types of rule-of-thumb strategies that players may consider.
For example, we can imagine that in a set of approximate Nash equilibria, there may be profiles
that would be extremely sensitive to deviations by players, and, therefore, have a higher bound on
δ-safety. The notion of δ-safety thus provides a mechanism designer with an additional assessment
of likelihood of play by indirectly accounting for risk aversion of agents without having to quantify
it.

Given this motivation, we need a way to answer questions about probability of a particular
profile being a δ-safe ε-equilibrium for a given δ and ε, as well as similar questions about other
solution notions I have developed. I present these below.

First, I present a bound on probability that a profile r is a δ-safe ε-Nash equilibrium.

Proposition 15.

Pr(r is δ−safe, ε−Nash) =
Pr([max

i∈I
max
t∈R−i

(ui(r)− ui(ri, t)) ≤ δ]&[max
i∈I

max
r′∈Ri

(ui(r′, r−i)− ui(r)) ≤ ε]) =

∏
i∈I

∫
R

(∏
t∈Rı

Pr{ui(ri, t) ≥ u− δ}

) ∏
r′∈Ri\ri

Pr{ui(r′, r−i) ≤ u + ε}

 fui(r)(u)du.

We can combine δ-safety and ε-dominance or ε-dominatedness analogously, although in these
cases the derivations are somewhat more laborious.

Proposition 16.

Pr{r is δ−safe, ε−dominant} =
Pr{max

i∈I
max
t∈R−i

[ui(r)− ui(ri, t)] ≤ δ &max
i∈I

max
t∈R−i

max
r′∈Ri

[ui(r′, t)− ui(ri, t)] ≤ ε} ≥

∏
i∈I

∫
R

 ∏
t∈R−i

Pr{ui(ri, t) ≥ u− δ}

 ∏
r′∈Ri\ri

Pr{ui(r′, t) ≤ u + ε− δ}

 fui(r)du.
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Proposition 17.

Pr{r is δ−safe, ε−undominated} =
Pr{max

i∈I
max

t∈R−i\r−i

[ui(r)− ui(ri, t)] ≤ δ &max
i∈I

min
t∈R−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε} =

∏
i∈I

∫
R

 ∏
t∈R−i\r−i

Pr{ui(ri, t) ≥ u− δ}

1−

1−
∏

r′∈Ri\ri

Pr{ui(r′, r−i) ≤ ε + u}

×

×

 ∏
t∈R−i\r−i

1∫∞
u−δ fui(ri,t)(v)dv

∫ ∞

u−δ
{1−

∏
r′∈Ri\ri

Pr(ui(r′, t) ≤ ε + v)}fui(ri,t)(v)dv

 fui(r)(u)du.

8 Infinite Game Analysis

As we have seen in the immediately preceding sections, finite games already possess considerable
difficulties for empirical game analysis when payoffs are only available via noisy samples. Imagine
now that the game has many players and many (perhaps infinite) number of strategies for each
player. The difficulties that arise from noisy simulations are almost overshadowed by the sheer
impossibility of obtaining even a single sample for every strategy profile that could be played.
Furthermore, even if it was indeed possible to specify a payoff function of the game, no finite game
solver would be able to find even a single Nash equilibrium in all but very simple cases.

In the following sections, I will primarily consider the case of infinite games, recognizing that
when a finite game is too large, the same methods will need to be applied to it as well. Frequently
in my discussion I will make use of a convenient assumption that the game is also symmetric, as in
definition 2. In most cases, this assumption is not restrictive and is made primarily for clarity of
exposition.

Any analysis of infinite games that relies only on a finite sample from the payoff functions
must naturally make assumptions that the game possesses some structure making it amenable to
generalization based on limited information. While we can never fully ascertain that any assumption
about structure actually holds in a game without prior knowledge, generally I expect that games
of interest will indeed exhibit enough smoothness to justify my approaches.

8.1 Finite Game Approximations

Perhaps the most natural way to tackle an infinite game is via a finite approximation. This can
be done as follows. First, let us say that we already possess a data set of strategy profiles and
corresponding samples from the payoff function. For simplicity, let us even say that we have
obtained the sample average payoff for each strategy profile that exists in our data.

Let Âi be the set of strategies of player i such that for every ai ∈ Âi, there is a profile b in
the data set which includes ai. In words, Âi is the set of strategies of player i that appears in the
dataset. If, furthermore, for each player i and for each b that includes ai ∈ Âi, the data set includes
all the profiles (a′i, b−i), with a′i ∈ Âi, let us say that our data set constitutes a clique. In such a
case, we can use a generic finite-game solver to obtain a Nash equilibrium (or some other solution)
for this restricted game.

Imagine that we are now given a data set which does constitute a clique. As an extension of
the above approach, we can find a maximal clique and use a Nash equilibrium computed on the
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resulting restricted game as an estimate of a Nash equilibrium of the actual game. Unfortunately,
the problem of computing the maximal clique is known to be NP-Complete [Garey and Johnson,
1979].12

Another downside of restricting Nash equilibrium estimation to a subset of the data that con-
stitutes a maximal clique is that we are in effect throwing information away, and when we have
worked so hard to obtain it, this appears to be a tremendous waste. An alternative that does use
all the profiles in Nash equilibrium estimation is one that uses a set of profiles with ε-bounds below
some fixed threshold as an estimate of a set of Nash equilibria. I have more to say about this
method below.

As I had mentioned earlier, there are various questions we may like to ask about games based on
a data set of payoffs. A restriction of infinite games to finite games provides a way to estimate an
answer to any such question. For example, a set of Nash equilibria of a finite restricted game would
be our estimate of a set of Nash equilibria of the underlying infinite game.13 Similarly, we can use
the finite approximations to derive probabilistic bounds on the proximity (in ε(r) pseudometric) of
a profile r to equilibrium, as I describe in the following section.

8.2 Confidence Bounds Using Finite Game Approximations

Suppose that we are trying to estimate a Nash equilibrium for a game Γ = [I, R, u(·)] with R
infinite. Let Rk ⊂ R be finite and define Γk = [I,Rk, u(·)] to be a finite approximation of Γ. To
draw any conclusions about Γ based on its finite approximation we must make some assumptions
about the structure of the actual payoff functions on the infinite domain. I assume that the payoff
functions, ui(·) of all players satisfy the Lipschitz condition with Lipschitz coefficient B.

Define d to be the maximum distance from a point in Rk,i to its closest neighbor in Ri:

d = max
i∈I

sup
r∈Ri

inf
r′∈Rk,i

{|r − r′|} < ∞.

Then if r is an ε-Nash of Γk with probability 1−α, then it is an (ε+Bd)-Nash of Γ with probability
at least 1− α. Consequently, we have the following bound:

Proposition 18.

Pr
(

max
i∈I

sup
t∈Ri

ui(t, r−i)− ui(r) ≤ ε

)
≥
∏
i∈I

∫
R

∏
t∈Rk,i

Pr(ui(t, r−i) ≤ u + ε−Bd)fui(r)(u)du.

8.3 Learning Payoff Functions

An important consequence of restricting the sets of strategies to finite subsets is that we are also
thereby restricting our solutions (e.g., Nash equilibrium estimates) to lie in the mixed strategy space
of the resulting finite games. In [Vorobeychik et al., 2005b] several coauthors and I proposed an
alternative. The data set of strategy profiles and corresponding payoffs, which we envision to be in
the form (a, u(a)) (I will assume for simplicity that the game is symmetric and u(a) = u1(a) is the
symmetric payoff function), can serve as the data set for a supervised learning problem. Given such

12My definition of a clique can be mapped to a graph by making each profile a node in a graph and defining an
edge to be between nodes corresponding to profiles that are different in exactly one strategic choice.

13When the payoffs in the data set are available through noiseless samples, a more appropriate term would be
approximation, rather than estimate.
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a framework, we can select a learning model—for example, polynomial regression, neural network,
or SVM [Hastie et al., 2001]—and fit that model to our data set, with a providing the input and
u(a) the output.

While an approximate game [I,R, û(r)], where û(r) is the output of learning, can in principle
be used to get an estimate (or approximation) to any solution of the underlying game [I, R, u(r)]
desired, in practice, of course, no numerical tool exists to do this. In special cases, such as poly-
nomial regression, we can indeed use numerical tools to find Nash equilibria of the learned game.
For most models that we will use, however, we must use some finite approximation of the learned
game in order to obtain an approximate solution.

A natural question that arises is how the different supervised learning techniques compare to
each other as well as to finite approximation for various solution types that would be desired by
an empirical analyst. In [Vorobeychik et al., 2005b] we present numerous empirical results that
compare learning and finite game approximation methods based on the quality of Nash equilibrium
estimation (approximation) in the ε(r) pseudometric.

8.4 Using ε(s) as target

While the data in the form (a, u(a)) is the most natural target of learning if we have an empirical
game, there is another alternative, which was explored by Vorobeychik et al. [2005b]: transforming
the data set (a, u(a)) into (a, ε(a)). Subsequently, we can use ε(a) as the target of learning. Nash
equilibrium would then be computed as the global minimum of the output function of learning,
ε̂(a), with the function value of 0. Experimental results suggest that in some cases it does produce
better Nash equilibrium estimates than the learning methods that use u(a) as target [Vorobeychik
et al., 2005b].

8.5 Learning Bayes-Nash Equilibria

Let us suppose that we have an extended data set of experience, (a, v, t), where t is the vector of
player types that play the pure strategy profile a and accrue the resulting payoffs, v. Given such
a data set, we can extend the input to our function approximation models to include the players’
type vector, t as the additional set of inputs. A particularly appealing model class is one studied
by Reeves and Wellman [2004]. For any model in this class Reeves and Wellman derived a method
for computing a best response to a piecewise-linear strategy function (of players’ types) exactly.
This best-response finder can also be used in an iterative best-response dynamic to find Bayes-Nash
equilibria.

If we know the actual distribution of players’ types, we can use it directly in an equilibrium
computation tool, whereas an unknown type distribution can be estimated from the data using
density estimation methods [Hastie et al., 2001].

9 Simulation Control and Active Learning

Simulation control in the context of games has yet to be extensively studied. Walsh et al. [2004]
use an information-theoretic method for simulation control, while Reeves et al. [2005] interleave
replicator dynamics and simulation control, but these two reports appear to be the extent to which
this problem has been explored in the literature.
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The fundamental question here is to select the best strategy profile to sample next given a set of
profiles already samples. The question thus phrased is woefully incomplete, as it offers no meaning
of “best”. In both of the related papers cited here, the target of analysis is Nash equilibrium
estimation. In this setting, the “best” profile would result in the best estimate or approximation of
a Nash equilibrium in expectation. Walsh et al. [2004] experimentally evaluated their information-
theoretic methods to show that the resulting Nash equilibrium approximations were closer to Nash
equilibrium in the ε metric.14 Reeves et al. [2005] interleave replicator dynamics with sample
selection based on steady-state population proportions of each strategy, but do not evaluate its
efficacy.

Neither of the methods I have cited attempts to tackle the problem of simulation control directly
by trying to minimize the expected error of the estimate of Nash equilibrium. The way I would
suggest formulating this problem is to take the measure of error to be mean squared deviation in
the relevant metric (which I will usually take to be the ε-metric). Another alternative tactic for
simulation control is to use probabilistic bounds I have developed above. The resulting method
would select the next profile to be sampled with probability that is proportional to the probability
that this profile is a Nash equilibrium. I expect to try both of these ideas in the future. In the
meantime, I present several additional methods which I either have already tried or which I can
describe more concretely.

9.1 Equilibrium Search in Strategy Space

When we have access to a simulator and we are interested in estimating the set of Nash equilibria,
we can use directed search through profile space to estimate the set of Nash equilibria, which I
describe here after presenting some additional notation.

Definition 6. A strategic neighbor of a pure strategy profile a is a profile that is identical to a
in all but one strategy. Define Snb(a,D) as the set of all strategic neighbors of a available in the
data set D. Similarly, define Snb(a, D̃) to be all strategic neighbors of a not in D. Finally, for any
a′ ∈ Snb(a,D) define the deviating agent as i(a, a′).

Definition 7. The ε-bound, ε̂, of a pure strategy profile a is defined as maxa′∈Snb(a,D) max{ui(a,a′)(a′)−
ui(a,a′)(a), 0}. We say that a is a candidate δ-equilibrium for δ ≥ ε̂.

When Snb(a, D̃) = ∅ (i.e., all strategic neighbors are represented in the data), a is confirmed as
an ε̂-Nash equilibrium.

My search method operates by exploring deviations from promising candidate equilibria. I refer
to it as “BestFirstSearch”, as it selects with probability one a strategy profile a′ ∈ Snb(a, D̃) that
has the smallest ε̂ in D.

Finally I define an estimator for a set of Nash equilibria.

Definition 8. For a set K, define Co(K) to be the convex hull of K. Let Bδ be the set of candidates
at level δ. Define φ̂∗(θ) = Co({φ(a) : a ∈ Bδ}) for a fixed δ to be an estimator of φ∗(θ).

In words, the estimate of a set of equilibrium outcomes is the convex hull of all aggregated
strategy profiles with ε-bound below some fixed δ. This definition allows us to exploit structure
arising from the aggregation function. If two profiles are close in terms of aggregation values, they

14The ε metric uses ε(r) to evaluate the quality of Nash equilibrium approximation by a profile r.
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may be likely to have similar ε-bounds. In particular, if one is an equilibrium, the other may be
as well. I present some theoretical support for this method of estimating the set of Nash equilibria
below. I used this method in [Vorobeychik et al., 2005a] in order to estimate the Nash equilibrium
correspondence.

9.2 Active Learning

My treatment of empirical game estimation using supervised learning has thus far only considered
a static data set of examples that is available at the time of function approximation and assumed
that no further data points can be generated thereafter. Alternatively, we can envision a simulator
that produces data points on-demand. In such a setting, function approximation is often enhanced
when we can select data points to sample in order to minimize the variance of the approximate
function (thereby also reducing the mean squared error, since the bias of the model space remains
constant). A number of techniques had been developed that leverage the specific properties of the
model class under consideration in order to selectively sample the function domain [Cohn et al.,
1994]. These fall under the rubric of active learning.

The primary goal of active learning is to improve the expected quality of function fit in terms of
mean squared error. Our goal, however, is somewhat different. We do not necessary care whether
the quality of function fit is improved, as long as we can extract a better approximation of a Nash
equilibrium from the approximate payoff function. While the two goals are intimately related (a
poor function fit will generally not represent the strategic interactions very well), the techniques
for achieving each may well be different.

9.3 Active Learning with ε(a) as Target

In addition to using active learning to aid payoff function approximation, I would like to consider
ε(a) as an alternative active learning target. Using ε(a) as a target may well provide considerable
advantages in approximating Nash equilibria of a game, since ε(a) relates more directly to Nash
equilibria, particularly if we use this function to measure the quality of our approximation!

9.4 Estimation of a Sample Nash Equilibrium Using Simulation Optimization

When the basic goal is to estimate just a sample Nash equilibrium solution to a game using noisy
simulations, I would like to tap a related stream of research activity with a very active litera-
ture which addresses the problem of estimating an optimum of a function based on noisy simu-
lations [Spall, 2003, Kiefer and Wolfowitz, 1952, Gurkan et al., 1994, Neddermeijer et al., 2000,
Olafsson, 1999, Shi and Olafsson, 1997, Olafsson and Kim, 2001, Fleischer, 1995, Eglese, 1990,
Alrefaei and Andradottir, 1995, Yakowitz et al., 2000, Moore et al., 1998, Anderson et al., 2000].
The motivation for this problem is similar to ours in that no closed-form description of the function
to be optimized is available. Instead, a simulator is provided that gives an unbiased noisy sample
of the objective function at a given query point. Numerous techniques have been developed, many
with proven convergence properties, to estimate an optimum of the objective function.

Our setting is different from standard simulation optimization because we have an additional
level of indirection between the information available through simulations and what we are trying
to estimate. Specifically, the simulator provides us with unbiased samples of players’ payoffs. Given
such a simulator, we can use any simulation optimization method directly to estimate ε(a) for any
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strategy profile a, since that involves computing the optimum of each player’s payoff function.
However, we are interested in estimating Nash equilibria, which are minima of ε(a) over all a ∈ A
or, in the case of mixed strategy equilibria, the minima of ε(s) over the mixed strategy space S.

I would like to suggest a two-tiered simulation optimization framework to estimate pure strat-
egy Nash equilibria of an empirical game. In the first (high-level) tier, I would use a simulation
optimization method to minimize ε(a) over the pure strategy set. This, in turn, will rely on the
second tier in which I estimate the best response of each player to strategy a, where a was selected
for sampling in the first tier.

Clearly, even if our simulation optimization method of choice is consistent, we lose the assump-
tion of unbiased samples in the first-tier level, since each estimate of ε(a) will typically not be
unbiased. I hope that I can obtain convergence to actual Nash equilibria nevertheless. More sig-
nificantly, I expect to observe experimentally whether such a two-tiered framework for estimating
Nash equilibria is effective, particularly compared to other methods I propose.

10 Constructing Belief Distributions of Agent Play

The most straightforward way for a designer to use probabilistic bounds that assess how close a
particular strategy profile is to a solution of choice is to incorporate them into the analysis of
a particular game, and use them this way to make high-level decisions about designs that are
extremely complex and not amendable to decision-theoretic approaches.

A more formally satisfying approach, however, would proceed to specify a probability distri-
bution describing the likelihood of play of each pure strategy profile in the games induced by the
design parameter settings, and select one that maximizes expected designer utility with respect to
this distribution. It is noteworthy, however, that such decision-theoretic analysis leaves the actual
process of forming believe distributions regarding agent play to the whim of the analyst. A theorist
would say that in principle, the analyst would use prior information to determine his beliefs. Fine,
I say, suppose that the analyst believes that Nash equilibrium strategy profiles are more likely to
be played than other profiles. This still leaves ample ground for expressing the vague statement
“more likely” as actual probabilities. And the formulation of such beliefs is further jeopardized
when we are uncertain about which profiles are actually (approximate) Nash equilibria! Thus, I
believe that in most applications an analyst needs principled methods for formulating beliefs, and
in this section I propose several approaches for doing this.

The first approach I propose is to use the probabilistic bounds I have derived above in fully
decision-theoretic mechanism design by defining the belief distribution of profiles that are played as
follows. Suppose that a designer is relatively confident that agents will play profiles that belong to
a particular solution class (e.g., Nash equilibrium profiles). Let’s denote such a class by C. Then,
the designer could form the belief that “a profile a will be played” by

Pr{a is played} =
Pr{a ∈ C}∑

a∈A Pr{a ∈ C}
.

In words, the belief that a profile is played is proportional to the probability that this profile
constitutes a solution in class C.

For example, in the case when C is the set of Nash equilibria, the designer’s belief distribution
would be defined by

Pr{a is played} =
Pr{ε(a) ≤ 0}∑

a∈A Pr{ε(a) ≤ 0}
.
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My purpose of using the abstract notion of “class” of solutions is that I could allow classes
of solutions to include the notions of bounded rationality that I had discussed earlier. Thus, the
designer may believe that agents will play an ε-Nash equilibrium only if it is δ-safe. A probability
distribution over play may then be formed with respect to my results regarding Pr{a ∈ C1&a ∈ C2},
where C1 is the set of ε-Nash equilibria and C2 is the set of δ-safe profiles.

While the heuristic distributions above are simple and convenient, a more compelling idea,
perhaps, is for the designer to have a belief distribution over profiles in C given that C is known. For
example, the designer may assume that agents will play a Nash equilibrium with uniform probability
(i.e., play of each Nash equilibrium profile is equally likely from the designer’s perspective). The
designer, additionally, may have a belief over games that could be played by the agents given its
parameter setting. The posterior distribution of agent play is then computed in a standard way:

Pr{a played} = Egames[Pr{a|C}].

Thus far, I have been unable to map this posterior distribution to any closed-form expression
in terms of my probabilistic bounds. Nevertheless, it can be approximated numerically.

An interesting question now arises: how much does it matter whether the designer holds the
first or the second type of belief? If the difference in results is not significant, then it makes much
sense to employ the first, as it is quite simple and intuitive. If the difference is large, however,
application of either will then be context-dependent. My research direction will thus evaluate
expected values of the designer’s utility function with respect to each type of belief, and compare
the results. Particularly, I will compare the expected utilities at optima based on the different
belief types. I hope to provide such comparisons for various types of designer’s utility functions
(for example, social utility or profit maximization from an auction).
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Appendix

A Proofs

A.1 Proof of Lemma 1

First, we will need the following fact:

Claim. |maxx∈X f1(x) −maxx∈X f2(x)| ≤ maxx∈X |f1(x) − f2(x)|, where X is an arbitrary opti-
mization domain and fi(x) an arbitrary function

To show this, observe that

|max
x∈X

f1(x)−max
x∈X

f2(x)| =
{

maxx f1(x)−maxx f2(x) if maxx f1(x) ≥ maxx f2(x)
maxx f2(x)−maxx f1(x) if maxx f2(x) ≥ maxx f1(x)

.

In the first case,

max
x∈X

f1(x)−max
x∈X

f2(x) ≤ max
x∈X

(f1(x)− f2(x)) ≤ max
x∈X

|f1(x)− f2(x)|.

Similarly, in the second case,

max
x∈X

f2(x)−max
x∈X

f1(x) ≤ max
x∈X

(f2(x)− f1(x)) ≤ max
x∈X

|f2(x)− f1(x)| = max
x∈X

|f1(x)− f2(x)|.

Consequently,
|max

x∈X
f1(x)−max

x∈X
f2(x)| ≤ max

x∈X
|f1(x)− f2(x)|.
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Now, I use this to provide a bound on |ε(r)− ε̂(r)|:

|ε(r)− ε̂(r)| = |max
i∈I

max
ai∈Ai

[û(ai, r−i)− û(r)]−max
i∈I

max
ai∈Ai

[ui(ai, r−i)− ui(r)]| ≤

max
i∈I

max
ai∈Ai

|[û(ai, r−i)− û(r)]− [ui(ai, r−i)− ui(r)]| =

max
i∈I

max
ai∈Ai

|[û(ai, r−i)− ui(ai, r−i)] + [ui(r)− û(r)]| ≤

max
i∈I

max
ai∈Ai

|û(ai, r−i)− ui(ai, r−i)|+ |û(r)− ui(r)|.

The result now follows from the assumption that |ui(r) − ûi(r)| ≤ δ for strategy profiles r and
∀(ai, r−i) : ai ∈ Ai.

A.2 Proof of Proposition 2

Pr{|εn(r)− ε(r)| ≥ 2γ} = Pr{|max
i∈I

εn,i(r)−max
i∈I

εi(r)| ≥ 2γ} ≤

≤ Pr{max
i∈I

|εn,i(r)− εi(r)| ≥ 2γ} ≤

≤ Pr{
⋃
i∈I

|εn,i(r)− εi(r)| ≥ 2γ} ≤

≤
∑
i∈I

Pr{|εn,i(r)− εi(r)| ≥ 2γ} ≤

≤
∑
i∈I

Pr{
⋃

q∈r∪(Ai,r−i)

[|un,i(q)− ui(q)| ≥ γ]} ≤

≤
∑
i∈I

(K + 1)δ ≤ m(K + 1)δ.

A.3 Proof of Lemma 5

Pr{|u(s)− û(s)| ≥ ε} =
= Pr{|u(s)− û(s)| ≥ ε||u(a)− û(a)| ≤ ε ∀a ∈ A} × Pr{|u(a)− û(a)| ≤ ε ∀a ∈ A}+
+ Pr{|u(s)− û(s)| ≥ ε|∃a ∈ A : |u(a)− û(a)| > ε} × Pr{∃a ∈ A : |u(a)− û(a)| > ε} ≤ δ.

A.4 Proof of Proposition 10

Pr
(

max
i∈I

max
b∈Ri\ri

ui(b, r−i)− ui(r) ≤ ε

)
=

=
∏
i∈I

Pr( max
b∈Ri\ri

ui(b, r−i)− ui(r) ≤ ε) =

=
∏
i∈I

Eui(r) Pr( max
b∈Ri\ri

ui(b, r−i)− ui(r) ≤ ε|ui(r)) =

=
∏
i∈I

Eui(r)

 ∏
b∈Ri\ri

Pr(ui(b, r−i)− ui(r) ≤ ε|ui(r))

 =

=
∏
i∈I

∫
R

∏
b∈Ri

Pr(ui(b, r−i) ≤ u + ε)fui(r)(u)du.
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A.5 Proof of Proposition 11

Define Wi(b) = ui(b, s−i), b ∈ Ai, and let W ∗
i = ui(s). Since I assumed that ui(·) is a vNM utility

function, we have

Wi(b) =
∑

c∈A−i

ui(b, c)s−i(c) =
∑

c∈A−i

ūi(b, c)s−i(c)−
∑

c∈A−i

σi(b, c)s−i(c)Zi(b, c)√
ni(b, c)

.

Since Zi(·) are i.i.d. with distribution N(0, 1), ∑
c∈A−i

σi(b, c)s−i(c)Zi(b, c)√
ni(b, c)

 ∼ N

0,
∑

c∈A−i

σ2
i (b, c)s

2
−i(c)

ni(b, c)

 .

Then, 
∑

c∈A−i

(
σi(b, c)/

√
ni(b, c)

)
s−i(c)Z(b, c)√∑

c∈A−i

σ2
i (b,c)s2

−i(c)

ni(b,c)

 ∼ N(0, 1).

As a result, we can derive

Pr(Wi(b) ≤ u + ε) = 1− Φ


∑

r∈Q−i
ūi(q, r)s−i(r)− u− ε√∑
c∈A−i

σ2
i (b,c)s2

−i(c)

ni(b,c)


Similarly we can show that

W ∗
i ∼ N(

∑
a∈A

ūi(a)s(a),
∑
a∈A

σ2(a)s2(a)
ni(a)

).

We now get the desired result by applying Proposition 10.

A.6 Proof of Proposition 12

Pr (r is ε−dominant) = Pr
(

max
i∈I

max
t∈R−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε

)
=∏

i∈I

∏
t∈R−i

∫
R

∏
r′∈Ri\ri

Pr{ui(r′, t) ≤ u + ε}fui(ri,t)(u)du.

A.7 Proof of Proposition 13

Pr (r is ε−undominated) = Pr
(

max
i∈I

min
t∈R−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t) ≤ ε]
)

=∏
i∈I

[
1− Pr

(
max
t∈R−i

min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t) > ε]
)]

.
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Isolating the probability term, we get

Pr
(

max
t∈R−i

min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t) > ε]
)

=∏
t∈R−i

∫
R

Pr
(

min
r′

[ui(r′, t)− ui(ri, t) > ε]
)

fui(u)du =

∏
t∈R−i

∫
R

(
1− Pr{max

r′
[ui(r′, t)− ui(ri, t) > ε]}

}
fui(u)du.

By substituting this expression into the one above, we obtain the desired result.

A.8 Proof of Proposition 15

Pr([max
i∈I

max
t∈R−i

(ui(r)− ui(ri, t)) ≤ δ]&[max
i∈I

max
r′∈Ri

(ui(r′, r−i)− ui(r)) ≤ ε]) =∏
i∈I

∫
R

Pr{[ max
t∈R−i

ui(ri, t) ≥ u− δ]&[max
r′∈Ri

ui(r′, r−i) ≤ u + ε]}fui(r)(u)du.

The result then follows from independence.

A.9 Proof of Proposition 16

Pr{max
i∈I

max
t∈R−i

[ui(r)− ui(ri, t)] ≤ δ &max
i∈I

max
t∈R−i

max
r′∈Ri

[ui(r′, t)− ui(ri, t)] ≤ ε} =∏
i∈I

∫
R

∏
t∈R−i

Pr{[ui(ri, t) ≥ u− δ] &[max
r′∈Ri

[ui(r′, t)− ui(ri, t)] ≤ ε]}fui(r)du =

∏
i∈I

∫
R

∏
t∈R−i

Pr{ui(ri, t) ≥ u− δ} × Pr{max
r′∈Ri

[ui(r′, t)− ui(ri, t)] ≤ ε|ui(ri, t) ≥ u− δ}fui(r)du.

Since

Pr{max
r′∈Ri

[ui(r′, t)− ui(ri, t)] ≤ ε|ui(ri, t) ≥ u− δ} ≥
∏

r′∈Ri

Pr{ui(r′, t) ≤ u + ε− δ},

the result follows.
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A.10 Proof of Proposition 17

Pr{max
i∈I

max
t∈R−i\r−i

[ui(r)− ui(ri, t)] ≤ δ &max
i∈I

min
t∈R−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε} =

∏
i∈I

∫
R

[
Pr{ max

t∈R−i\r−i

ui(ri, t) ≥ u− δ
⋂

(
min

t∈R−i\r−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε
⋃

max
r′∈Ri\ri

ui(r′, r−i) ≤ ε + u

)
}
]

fui(r)(u)du =

∏
i∈I

∫
R

[
Pr{ max

t∈R−i\r−i

[ui(ri, t)] ≥ u− δ} ×

× Pr{ min
t∈R−i\r−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε
⋃

max
r′∈Ri\ri

ui(r′, r−i) ≤ ε + u | max
t∈R−i\r−i

ui(ri, t) ≥ u− δ}
]

fui(r)(u)du.

Now, let’s isolate each of the multiplicand Pr{·} parts above. The first is equivalent to∏
t∈R−i\r−i

Pr{ui(ri, t) ≥ u− δ}.

The case of the second is more complicated:

Pr{ min
t∈R−i\r−i

max
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] ≤ ε
⋃

max
r′∈Ri\ri

ui(r′, r−i) ≤ ε + u | max
t∈R−i\r−i

ui(ri, t) ≥ u− δ} =

1− Pr{ max
t∈R−i\r−i

min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] > ε | max
t∈R−i\r−i

ui(ri, t) ≥ u− δ}×

× Pr{ min
r′∈Ri\ri

ui(r′, r−i) > ε + u}.

Again, isolating the two multiplicands for convenience, we have

1−
∏

r′∈Ri\ri

Pr{ui(r′, r−i) > ε + u}

for the second. As for the first,

Pr{ max
t∈R−i\r−i

min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] > ε | max
t∈R−i\r−i

ui(ri, t) ≥ u− δ} =∏
t∈R−i\r−i

Pr{ min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] > ε |ui(ri, t) ≥ u− δ}.

At this point, I will proceed by first proving the following claim:

Claim. Let X, Y be random variables, A,B Borel sets, and suppose we have probability measures for
X, Y , as well as the corresponding product measure (I designate each simply using Pr{·}, endowing
it with the appropriate probability measure). Then

Pr{f(X, Y ) ∈ A|Y ∈ B} =

∫
B Pr{f(X, y) ∈ A}fY (y)dy∫

B fY (y)dy
,

where FY (y) is the distribution function for Y .
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To prove this, first observe that by Bayes rule,

Pr{f(X, Y ) ∈ A|Y ∈ B} =
Pr{f(X, Y ) ∈ A

⋂
Y ∈ B}

Pr{Y ∈ B}
.

For the numerator, I apply smoothing with respect to Y to get

Pr{f(X, Y ) ∈ A
⋂

Y ∈ B} =

EY [Pr{f(X, Y ) ∈ A
⋂

Y ∈ B}|Y = y] =

Pr{f(X, y) ∈ A
⋂

y ∈ B} =∫
R

Pr{f(X, y) ∈ A
⋂

y ∈ B}fY (y)dy.

Since

Pr{f(X, y) ∈ A
⋂

y ∈ B} =
{

Pr{f(X, y) ∈ A} if y ∈ B,
0 if y /∈ B

the claim follows.
Now I apply the claim to get

Pr{ min
r′∈Ri\ri

[ui(r′, t)− ui(ri, t)] > ε |ui(ri, t) ≥ u− δ} =∫∞
u−δ Pr{minr′∈Ri\ri

ui(r′, t) > ε + v}fui(ri,t)(v)dv∫∞
u−δ fui(ri,t)(v)dv

.

Finally,
Pr{ min

r′∈Ri\ri

ui(r′, t) > ε + v} =
∏

r′∈Ri\ri

[1− Pr{ui(r′, t) ≤ ε + v}].

Combining all the pieces gives us the desired result.

A.11 Proof of Proposition 18

Pr
(

max
i∈I

sup
t∈Ri

ui(t, r−i)− ui(r) ≤ ε

)
≥ Pr

(
max
i∈I

max
t∈Rk,i

ui(t, r−i)− ui(r) ≤ ε−Bd

)
=

=
∏
i∈I

∫
R

∏
t∈Rk,i

Pr(ui(t, r−i) ≤ u + ε−Bd)fui(r)(u)du.
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