
Mechanism Design Based on Beliefs about Responsive
Play (Position Paper)

Yevgeniy Vorobeychik and Michael P. Wellman
University of Michigan

Computer Science & Engineering
2260 Hayward

Ann Arbor, MI 48109-2121 USA
{ yvorobey, wellman }@umich.edu

ABSTRACT
In general, identifying a solution concept only incompletely spec-
ifies a mechanism design problem. The designer must consider
which among a multiplicity of solutions is likely to be played, as
well as the possibility that actual play will not correspondto any so-
lution. Given that actual play is the ultimate determiner ofa mech-
anism’s success, we advocate that designers embrace the corre-
sponding forecasting problem and evaluate candidate mechanisms
with respect to belief distributions over players’ response. Solution
concepts can play a useful role in delimiting and structuring belief
distributions. We propose that membership of prospective strategy
profiles in various solution classes be treated as evidence bearing
on their likelihood of play. Flexible solution classes, forexample
based on approximate equilibrium, degree of dominance, or safety
level, provide natural measures (e.g., distance from equilibrium)
that can be employed in defining belief distributions.

1. MOTIVATION
Mechanism design theory has enjoyed considerable academic

acceptance, particularly in the domain of auction design. At the
core of the mechanism design framework is application of game-
theoretic solution concepts (e.g., Bayes-Nash or dominantstrat-
egy equilibrium) to characterize the expected strategy profiles to be
played by agents in response to the designer’s mechanism choice.
The mechanism is then evaluated under the assumption that agents
play is consistent with the adopted solution concept.

Conclusions about mechanism quality, then, are only as goodas
the prediction represented by this solution concept. One problem
is that standard equilibrium concepts generally admit multiple so-
lutions. Even if we follow the typical approach within game theory
and seek refinements [4], we still generally fail to achieve point
predictions. Typical treatment within the mechanism design litera-
ture has either made the optimistic assumption that agents will play
the most favorable equilibrium (weak implementation), or has ap-
proached the problem pessimistically, designing for the worst pos-
sible equilibrium outcome (strict implementation) [5, 6].The for-
mer relies on the designer’s ability to persuade the agents to play

the desirable strategies. The latter allows agents to choose a solu-
tion arbitrarily, but as a result may sacrifice good design choices.

A second problem is that actual play may fail to coincide with
any prescribed solution. Traditional game-theoretic equilibrium
concepts have not always fared well in experimental studiesas-
sessing their descriptive validity [11, 2]. The situation might rea-
sonably be expected to be worse in practice (i.e., outside the labo-
ratory), where actual mechanisms and environments may be more
complex than can be reflected in design models. Indeed, givenre-
alistic bounded agents and complex environments, we shouldper-
haps be suspicious of any sharp prediction about the strategies to
be played by agents in response to mechanism designs.

To sum up, few will argue that a mechanism designer is primarily
concerned with predicting agent play given a particular mechanism
choice, but perfectly accurate point predictions seem elusive both in
theory and in practice, while multiplicity of predictions introduces
ambiguity into the design process that is not easily resolved.

In this position paper, we suggest that unique prediction ofplay
is generally undesirable. Instead, we advocate that the designer
formulate abelief distribution of agent playthat leverages a flexi-
ble solution concept. By using distributions of agent play,we move
away from the rigidity of relying on a particular solution concept
astheprediction, allowing rather that agents may play an arbitrary
profile with some probability, albeit perhaps very small. Ofcourse,
as a special case we can concentrate all probability mass on aso-
lution concept, while providing flexibility in the distribution over
alterative solutions in the class. We can also accommodate relax-
ations of the traditional weak or strong implementation by adjusting
our beliefs in optimistic or pessimistic directions.

The key issue in adopting our approach is how to construct rea-
sonable probability distributions. Our proposal is to define parame-
terized versions of solution concepts, where the parameters provide
“hooks” upon which probabilities of play could hinge. We suggest
several such concepts, many of which are relaxations of the tradi-
tional ones such as Nash and dominant strategy equilibria.

One important source of distribution models for play may be to
capture the uncertainty in our underlying model of strategic inter-
actions between agents, as well as the effect that mechanismchoice
has upon it. For example, any modeling effort will generallyleave
open some uncertainty in regards to the agent preferences orprefer-
ence distributions, insofar as the designer may have made mistaken
assumptions or failed to account for important secondary elements
that influence agent play. Such uncertainty may be expressedas a
distribution of agent payoffs around an estimate expressedby the
model. A distribution over agent play may then follow from stan-
dard solution concepts applied to the distribution over game mod-
els. The difficulty with this approach is that it may require the



designer to find a solution correspondence, which is a formidable
task in general. Furthermore, in real settings, the designer may
have considerable trouble formalizing an explicit distribution over
models. To address these problems, albeit imperfectly fromthe
theoretical perspective, we introduceheuristic beliefs, that is, be-
liefs that are derived heuristically from probabilistic indicators of
particular game theoretic solutions.

2. PRELIMINARIES
In describing our approach, we restrict our attention tonormal

form games,1 denoted by[I, {Ri}, {ui(r)}], whereI refers to the
set of players andm = |I | is the number of players.Ri is the set
of strategies available to playeri ∈ I , with R = R1 × · · · × Rm

representing the set of joint strategies of all players. It is often
convenient to refer to a strategy of playeri separately from that of
the remaining players. To accommodate this, we user−i to denote
the joint strategy of all players other than playeri. We define the
payoff (utility) function of each playeri by ui : R1 × · · ·×Rm →
R, whereui(ri, r−i) indicates the payoff to playeri to playing
strategyri when the remaining players playr−i.

We model the strategic interactions between the mechanism de-
signer and participating agents as a two-stage game [13]. The
designer moves first by selecting a value,θ, from a set of allow-
able mechanism settings,Θ. All the participant agents observe the
mechanism parameterθ and move simultaneously thereafter. For
example, the designer could be deciding between a first-price and
second-price sealed-bid auction mechanisms, with the presumption
that after the choice has been made, the bidders will participate with
full awareness of the auction rules.

Since the participants play with full knowledge of the mecha-
nism parameter, we define a game between them in the second stage
asΓθ = [I, {Ri}, {ui(r, θ)}]. We refer toΓθ as a gameinduced
by θ. LetN (θ) be the set of strategy profiles consideredsolutions
of the gameΓθ. Traditionally, Nash or dominant strategy equilib-
ria have been adopted as the solution concepts, makingN (θ) the
set of equilibria of the appropriate type. Below, we define several
alternative solution concepts which may be more appropriate than
the traditional concepts for many design scenarios.

Suppose that the goal of the designer is to optimize the valueof
some welfare function,W (r, θ), dependent on the mechanism pa-
rameter and resulting play,r. Since we will allow for many possi-
ble outcomes of agent play, we can evaluate the objective function
for a given game abstractly as follows. We defineWT (R̂, θ) =
TR̂W (r, θ), whereT is some functional acting onW (r, θ). Sev-
eral examples ofT commonly found in the literature areinfR̂ (rep-
resenting strict implementation) andsupR̂ (representing weak im-
plementation). We have already argued that both of these aresome-
what extreme. Instead, we will concentrate on an alternative: we
let TF,R̂ to be the expectation with respect to some probability dis-

tributionF overR̂. Then,WT
F,R̂

(R̂, θ) = EF,R̂W (r, θ). Given a
description of the solution correspondenceN (θ) andWT (N (θ), θ),
the designer faces a standard optimization problem.

3. SOLUTION CONCEPTS
In evaluating the welfare function with respect to the distribution

of agent play, we relied on a specification of a solution concept
which in effect provides the support of this distribution. In this
1By employing the normal form, we model agents as playing a
single action, with decisions taken simultaneously. The general
approach and arguments presented here could also apply to games
in extensive form, or indeed to any game form and its associated
solution concepts.

section, we explore a number of ideas about how solution concepts
can be defined. We begin with a standard Nash equilibrium concept
and its immediate relaxation to approximate Nash equilibria, and
go on to relax several other solution concepts in a similar fashion
with the hope that we can thereby incorporate all strategy profiles
that we may find to be plausible agent play. We then describe a
complementary solution concept that may serve as an additional
hook to deriving distributions of play by allowing the designer to
indirectly model risk aversion of agents. Indeed, all of thesolution
concepts we propose have relaxation parameters which can serve
the designer in defining probabilities of play for various profiles.

3.1 Nash and Approximate Nash Equilibria
Perhaps the most common solution concept for games isNash

equilibrium, defined as follows:

DEFINITION 1. A strategy profiler = (r1, . . . , rm) constitutes
a Nash equilibriumof game[I, {Ri}, {ui(r)}] if for everyi ∈ I ,
r′i ∈ Ri,

ui(ri, r−i) ≥ ui(r
′
i, r−i).

WhenR is the set of all pure strategies, the above defines apure
strategy Nash equilibrium; alternatively, ifR is the set of all mixed
strategies, the definition describes amixed strategy Nash equilib-
rium.

We often appeal to the concept of anapproximate, or ǫ-Nash
equilibrium, whereǫ is the maximum benefit to any agent for devi-
ating from the prescribed strategy.

DEFINITION 2. A strategy profiler = (r1, . . . , rm) constitutes
an ǫ-Nash equilibriumof game[I, {Ri}, {ui(r)}] if for everyi ∈
I , r′i ∈ Ri,

ui(ri, r−i) + ǫ ≥ ui(r
′
i, r−i),

whereǫ ≥ 0.

Naturally, for anyǫ, the set ofǫ-Nash equilibria contains the set of
Nash equilibria. In this sense, it is a weaker concept. The philo-
sophical difficulty, of course, is that while Nash equilibrium is a
mutual best response, at least one agent has an incentive to deviate
from anǫ-Nash equilibrium. A typical justification of the concept
is that agents may be indifferent to small improvements in payoff,
but have a great desire for coordination (so, for example, ifthe de-
signer “offers” them anǫ-Nash equilibrium to play, such thatǫ is
very small, they’ll happily agree and no one would deviate).Alter-
natively, we may ascribe to agents a cost to finding an actual best
response which is greater thanǫ. If this is the case, no agent will
be willing to deviate once anǫ-Nash strategy profile is common
knowledge and no better alternative is available.

Yet another interpretation might be that agents exert some (bounded)
effort to find a better response, and their likelihood of succeeding
is inversely related toǫ. In this and other interpretations, the key
property is thatǫ provides a parametric hook for describing proba-
bility of play. The greater the incentive agents have to deviate from
a particular profile (all else equal), the less likely we deemsuch a
profile to be played.

3.2 Alternatives to (ǫ)-Nash Equilibria
While the Nash equilibrium has long been the primary solution

concept for games, many have expressed dissatisfaction with it in
the context of real mechanism design problems and agent strategic
considerations. For example, Erev and Roth [2] provide experi-
mental evidence that a reinforcement learning algorithm tends to
be a better predictor of actual play in games with a unique equilib-
rium. In a similar vein, Selten [11] presents a series of arguments



against Bayesian rationality as a reasonable predictor and, even,
as an effective normative system. Rosenthal has proposed restrict-
ing strategies considered torules of thumb[10, 9], that is, simple
patterns of play, conditioned on context, that have proven effec-
tive over time. Many studies in multiagent systems researcheffec-
tively take this approach, experimentally estimating whatWalsh et
al. [14] call aheuristic strategy payoff matrix. Our own group has
further developed this methodology under the headingempirical
game-theoretic analysis[8, 13, 15].

In the heuristic spirit of these restricted-strategy approaches, we
can also develop rules for further narrowing a space of profile can-
didates based on strategic analysis. In this section, we describe
several concepts that may prove useful for this purpose.

3.2.1 Nearly Dominant Profiles
Dominant strategies are often regarded as especially compelling

solutions, and dominant strategy equilibrium is a commonlyused
solution concept in mechanism design. Unfortunately, aside from
the common textbook examples, such as the famed Prisoner’s Dilemma,
dominant strategies rarely exist in real strategic scenarios. In com-
parison, a Nash equilibrium is guaranteed to exist in all finite games.

An intuitive property of a rule of thumb is that itusuallyworks
reasonablywell. The way we can translate this idea into a solution
concept is by introducingǫ-dominant strategies.

DEFINITION 3. A profile,r is ǫ-dominant if∀i ∈ I,∀t ∈ R−i,

ui(ri, t) + ǫ ≥ ui(r
′
, t), ∀r

′ ∈ Ri.

While dominant strategies are rare, strategies that are nearly dom-
inant may be more common, and may indeed provide a solid basis
for certain rules of thumb. Of course, there will always be anǫ-
dominant strategy if we setǫ to be high enough (as long as the pay-
off functions are bounded). However, onceǫ is large, such strate-
gies are no longer nearly dominant in any meaningful way. Still,
this solution concept may be a useful and reasonably compelling
way to model agent play without appealing to the hyperrational
Nash equilibrium. From the players’ viewpoint, nearly dominant
pure strategies are easy to find with respect to a given game, al-
though the algorithmic question of finding the entire set of (pure
and mixed) nearly dominant profiles may be a bit more involved
and will be subject of future work. From a designer’s viewpoint,
they are reasonable things to expect agents to play.

As in the case ofǫ-Nash equilibria, an important advantage of
this relaxation of the dominant strategy profiles is that we can de-
rive distributions of play based on “how dominant” a particular pro-
file is. That is, we can assess a relatively low likelihood of play
to profiles in which at least one agent may be significantly better
off by playing another strategy for some deviation of other agents.
Alternatively, we may fixǫ and assess zero probability of play to
profiles which are notǫ-dominant (assuming, of course, that there
is at least one strategy profile that is).

3.2.2 Nearly Undominated Profiles
In his seminal work, Pearce [7] describes the notion of rational-

izable strategies. While the set of all rationalizable strategies is not
always identical to the set of strictly undominated strategies, the
two concepts are closely related, and are indeed appealing on simi-
lar grounds. The argument of Pearce was that the Nash equilibrium
concept was too strong to describe actual behavior. By weakening
it to a set ofplausiblestrategy profiles that may be observed, actual
behavior may be explained, although no longer modeled precisely.

While the idea that players are unlikely to play a profile that
is strictly dominated (or not rationalizable) is very intuitive, there
is experimental evidence to suggest that dominated strategies (for

example, cooperative play in Prisoner’s Dilemma) may indeed be
played in practice [1]. As a consequence, we introduce here an even
weaker concept of nearly undominated orǫ-undominated strate-
gies, which include strategies that, while dominated, are very close
to being optimal for some strategy profile that other agents may
play.

DEFINITION 4. A profile, r, is ǫ-undominated if∀i ∈ I,∃t ∈
R−i, such that

ui(ri, t) + ǫ ≥ ui(r
′
, t), ∀r

′ ∈ Ri.

Since this solution concept is very weak, it allows the designer to
retain most strategy profiles in a game as plausible rules of thumb,
eliminating only those that are clearly extremely harmful to at least
one agent. The assumption that a very poorly performing strategy
would never be played is quite plausible in real situations.For ex-
ample, a strategy that consistently loses the agent one million dol-
lars, as compared to any other strategy that incurs no loss, carries
considerable appeal of being assessed probability zero of play.

Given a set of nearly undominated strategies, we can also imag-
ine that a likelihood of nearly dominant or nearly Nash profiles
would be greater based on their nearness to the corresponding solu-
tion concept. Thus, we can actually combine all three of the relaxed
solution concepts we have so far discussed to obtain a distribution
of agent play.

3.2.3 Safety of Pure and Mixed Profiles
Risk aversion is a common feature of preferences, and given a

precise understanding of agent preferences can be accounted for
in payoff functions. However, such precise models of risk attitude
may not be easy to come by. As an alternative, some game-theoretic
studies appeal to worst-case criteria such as safety level.To capture
this approach in a flexible solution concept, we define the notion of
δ-safety.

DEFINITION 5. LetR−i be the joint space of deviations of agents
other thani. A profiler is δi-safe for agenti if

δi(r) ≥ max
t∈R−i

(ui(r) − ui(ri, t)).

A profiler is thenδ-safe if it isδi-safe for all agents, that is, if

δ(r) ≥ max
i∈I

max
t∈R−i

(ui(r) − ui(ri, t)).

Alternatively,r is δ-safe if, for every playeri ∈ I ,

ui(r) ≤ ui(ri, t) + δ, ∀t ∈ R−i

We do not see the notion ofδ-safety as having much independent
value. Instead, we view it as a useful way to distinguish particular
types of rule-of-thumb strategies that players may consider. For
example, we can imagine that in a set of approximate Nash equi-
libria, there may be profiles that would be extremely sensitive to
deviations by players, and, therefore, have a higher bound on δ-
safety. The notion ofδ-safety thus provides a mechanism designer
with an additional assessment of likelihood of play by indirectly
accounting for risk aversion of agents without having to quantify
it.

4. CONSTRUCTING DISTRIBUTIONS OF
AGENT PLAY

Our goal in this section is to offer several ideas about construct-
ing belief distributions of agent play that rely on game-theoretic so-
lution concepts (thus taking the players’ incentives seriously), but
admit varying degrees of commitment to their defining criteria.



The first approach is for the designer to decide exactly which
solution concept is the best model for the strategic behavior of the
agent pool. The designer may choose a very weak concept and
make as few assumptions as possible about agent rationalityand
common knowledge, and we provided some guidance about such
choices in the preceeding section. Once the solution concept is
chosen, the designer will need to assess the relative likelihood of
solutions, for example, modeling each solution as equally likely
to be played. Alternatively, the designer may wish combine asolu-
tion concept with some notion ofδ-safety as we previously defined,
and thereafter devise a distribution that puts higher probability on
solutions with lowδ. Note that inherent in this approach is the as-
sumption that any profile that is not a solution will be playedwith
probability zero.

Yet another approach is to develop a distribution of play based on
the relaxation parameter within a solution concept. Previously, we
defined severalǫ- andδ-concepts (ǫ-Nash,ǫ-dominant,ǫ-undominated,
δ-safe). Each pure strategy profile in the game will most certainly
be any suchǫ-concept for some value ofǫ (the same is true ofδ-
safety). We could then assess the probability of play for a particular
profile to be inversely proportional to its value ofǫ or δ for the se-
lected solution concept. Typically, our assessment of probability
of play will be positive for every pure strategy profile in thegame.
We could also develop similar probabilistic models of agentplay
based on combinations of these solution concepts, thus allowing
the designer to hedge its bets among competing criteria.

The approaches above presume the designer is certain about the
game model itself. This, of course, is suspect, and indeed some ef-
fort has been made within the game theory community to assessthe
quality of particular solution concepts based on how well they sur-
vive such modeling noise [3]. Here, we take another approach, and
assume that payoffs specified by the designer are unbiased sam-
ples from a Normal distribution with some variance. Variance here
would need to be specified by the designer, based on confidencein
the model. This judgment too entails modeling assumptions,but
we expect that adding the extra degree of freedom will generally be
helpful.

The distributions of play that we described above are allcondi-
tional on a particular game. Thus, in order to find the distribution of
play in the face of uncertainty about the actual game, the designer
would need to take the expectation of this conditional distribution
with respect to the distribution of games. Let us try to say this in a
somewhat more formal language. Suppose we fix the game,Γ, that
the agents will play, and choose a solution concept,C. We desig-
nate the distribution of agent play conditional onΓ and the solution
concept by

PΓ,C(r) = Pr{r is played|Γ, C},

wherer is a pure strategy profile. This may be specified by the
designer as suggested above. Now, in order to derive the posterior
probability of agents playing a pure strategy profiler given a par-
ticular solution concept, we would simply take the expectation with
respect to the distribution of games:

PC(r) = Pr{r is played|C} = EΓ[PΓ,C].

This can be done for every pure strategy profile to obtain a distri-
bution of agent play.

There are several important shortcomings in the approach just
suggested. The first is simply that it requires numerical integra-
tion, as we do not have a closed-form expression of this expecta-
tion for any solution concept that we have discussed. This happens
to be a relatively significant problem, since numerical techniques
here would require computing the entire set of solutions foreach

of some finite set of games, which may quickly become imprac-
tical when the game is relatively large. Another limitationis that
the designer is still required to specify a model of beliefs given
a game, even though he may be uncertain about his model of the
players’ payoffs. Often, the designer may find himself incapable of
doing even that very sensibly, but would instead like to havea more
heuristic, though systematic, approach to modeling agent play. To
this end, we propose aheuristicdistribution of play, which does
not require any modeling on designer’s part, except his choice of a
solution concept.

Observe that the distribution over agent payoff functions induces
a probability that each pure strategy profiler is a solutionC. Else-
where, we derived closed-form expressions for these probabilities [12],
which we can now use to obtain a very simple heuristic distribution
over play by normalizing as follows:

Pr{r is played|C} =
Pr{r is C}

P

r′∈R Pr{r′ is C}
.

Since we have a closed-form expression forPr{r′ is C}, computa-
tion is greatly simplified.

5. CONCLUSION
In this work, we focused on an important practical shortcoming

of mechanism design theory: lack of effective methods for point-
predictions of actual play. Indeed, we believe that making very
precise predictions of agent play is undesirable, as complexity of
real strategic settings will generally make models imperfect enough
that even the most appropriate solution concept will not necessarily
make a good predictor of play. Instead, we argued for the needto
evaluate mechanism choices with respect to belief distributions of
play which are based on flexible solution concepts. Thus, game
theoretic notions may eagerly enter the distributions of play, but
need not define them entirely.

It seems most useful in devising distributions of agent playto
have solution concepts with relaxation parameters which allow rel-
ative assessment of probabilities on different strategy profiles. We
proposed the degree of approximation of a solution concept as an
example of such a parameter. Additionally, we suggested a com-
plementary solution concept which may be used to incorporate the
designer’s beliefs about the risk aversion of agents in the distribu-
tion of play.

Finally, we proposed a number of examples of how solution con-
cepts that we suggested may be used in deriving distributions of
agent play. These approaches can be easily extended to incorporate
uncertainty about the designer’s model of the strategic scenario, al-
though incurring considerable computational effort. To alleviate
this difficulty, as well as to consider yet another alternative sensi-
ble way to develop distributions of play, we introduced heuristic
distributions, which are based on closed-form expressionsof prob-
abilities that each profile is a solution.

We believe that there is still a considerable gap between theoret-
ical mechanism design and its practical applications. In this work,
we suggested that this gap may be narrowed if the designer hasef-
fective ways to determine the distribution of agent play based on
game-theoretic notions. While we proposed a number of methods
to this end, much work needs to be done to verify whether theseare
truly effective in practical settings, or whether others need to be de-
veloped in their place. We hope is that our criticisms and approach
will stimulate further research in this direction.
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