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ABSTRACT

In general, identifying a solution concept only incomplgtgpec-
ifies a mechanism design problem. The designer must consider
which among a multiplicity of solutions is likely to be playeas
well as the possibility that actual play will not correspdadny so-
lution. Given that actual play is the ultimate determineaafiech-
anism’s success, we advocate that designers embrace tige cor
sponding forecasting problem and evaluate candidate mescha
with respect to belief distributions over players’ resparSolution
concepts can play a useful role in delimiting and structubslief
distributions. We propose that membership of prospectietegy
profiles in various solution classes be treated as evideeagny

on their likelihood of play. Flexible solution classes, fample
based on approximate equilibrium, degree of dominanceafetys
level, provide natural measures (e.g., distance from ieajuiin)
that can be employed in defining belief distributions.
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the desirable strategies. The latter allows agents to ehac®lu-
tion arbitrarily, but as a result may sacrifice good desigriads.

A second problem is that actual play may fail to coincide with
any prescribed solution. Traditional game-theoretic ldgpiuim
concepts have not always fared well in experimental studges
sessing their descriptive validity [11, 2]. The situatioight rea-
sonably be expected to be worse in practice (i.e., outsigléatio-
ratory), where actual mechanisms and environments may be mo
complex than can be reflected in design models. Indeed, gasen
alistic bounded agents and complex environments, we stparid
haps be suspicious of any sharp prediction about the sieatégy
be played by agents in response to mechanism designs.

To sum up, few will argue that a mechanism designer is prignari
concerned with predicting agent play given a particularimecsm
choice, but perfectly accurate point predictions seemadmth in
theory and in practice, while multiplicity of predictionstioduces
ambiguity into the design process that is not easily resblve

In this position paper, we suggest that unique predictioplayf
is generally undesirable. Instead, we advocate that thigries

Mechanism design theory has enjoyed considerable academicformulate abelief distribution of agent plathat leverages a flexi-

acceptance, particularly in the domain of auction design.th&
core of the mechanism design framework is application ofeam
theoretic solution concepts (e.g., Bayes-Nash or domistaat-
egy equilibrium) to characterize the expected strategfilpstto be
played by agents in response to the designer’s mechanisivecho
The mechanism is then evaluated under the assumption thiatsag
play is consistent with the adopted solution concept.
Conclusions about mechanism quality, then, are only as geod
the prediction represented by this solution concept. Oonblpm
is that standard equilibrium concepts generally admit ipleltso-
lutions. Even if we follow the typical approach within ganheory
and seek refinements [4], we still generally fail to achieeip
predictions. Typical treatment within the mechanism deditgra-
ture has either made the optimistic assumption that agehisiay
the most favorable equilibrium (weak implementation), as lap-
proached the problem pessimistically, designing for thestvoos-
sible equilibrium outcome (strict implementation) [5, @]he for-
mer relies on the designer’s ability to persuade the agenpaly

ble solution concept. By using distributions of agent pleg,move
away from the rigidity of relying on a particular solutionrexept
astheprediction, allowing rather that agents may play an arbjtra
profile with some probability, albeit perhaps very small.d0iirse,
as a special case we can concentrate all probability massson a
lution concept, while providing flexibility in the distriton over
alterative solutions in the class. We can also accommoedda-r
ations of the traditional weak or strong implementation @jyating
our beliefs in optimistic or pessimistic directions.

The key issue in adopting our approach is how to construet rea
sonable probability distributions. Our proposal is to defdarame-
terized versions of solution concepts, where the paraspteride
“hooks” upon which probabilities of play could hinge. We gegt
several such concepts, many of which are relaxations ofrttu-t
tional ones such as Nash and dominant strategy equilibria.

One important source of distribution models for play mayde t
capture the uncertainty in our underlying model of stratégier-
actions between agents, as well as the effect that mechahisice
has upon it. For example, any modeling effort will generédigve
open some uncertainty in regards to the agent preferengesfer-
ence distributions, insofar as the designer may have mastaken
assumptions or failed to account for important secondasnehts
that influence agent play. Such uncertainty may be exprezssed
distribution of agent payoffs around an estimate expresgetthe
model. A distribution over agent play may then follow frorarst
dard solution concepts applied to the distribution over ganod-
els. The difficulty with this approach is that it may requitest



designer to find a solution correspondence, which is a faabial
task in general. Furthermore, in real settings, the desigray
have considerable trouble formalizing an explicit disitibn over
models. To address these problems, albeit imperfectly fitwen
theoretical perspective, we introdubeuristic beliefsthat is, be-
liefs that are derived heuristically from probabilisticlioators of
particular game theoretic solutions.

2. PRELIMINARIES

In describing our approach, we restrict our attentiomaomal
form gameg denoted by{7, {R;}, {u:(r)}], where[ refers to the
set of players andr = |I| is the number of playersR; is the set
of strategies available to playerc I, with R = Ry X -+ X R,
representing the set of joint strategies of all players.s loften
convenient to refer to a strategy of playeseparately from that of
the remaining players. To accommodate this, weruseo denote
the joint strategy of all players other than playetWe define the
payoff (utility) function of each playerby u; : R1 X - -+ X Ry, —

R, whereu;(r;,r—;) indicates the payoff to playerto playing
strategyr; when the remaining players play.;.

We model the strategic interactions between the mechanésm d
signer and participating agents as a two-stage game [13 Th
designer moves first by selecting a valdefrom a set of allow-
able mechanism setting®, All the participant agents observe the
mechanism parametérand move simultaneously thereafter. For
example, the designer could be deciding between a firs¢-paricl
second-price sealed-bid auction mechanisms, with theiprgson
that after the choice has been made, the bidders will ppatieivith
full awareness of the auction rules.

Since the participants play with full knowledge of the mecha
nism parameter, we define a game between them in the secged sta
asly = [I,{Ri}, {ui(r,0)}]. We refer toI'y as a gaménduced
by 6. Let \/(9) be the set of strategy profiles considesatutions
of the gamel’y. Traditionally, Nash or dominant strategy equilib-
ria have been adopted as the solution concepts, makif®) the
set of equilibria of the appropriate type. Below, we definecsal
alternative solution concepts which may be more appraptizn
the traditional concepts for many design scenarios.

Suppose that the goal of the designer is to optimize the \aflue
some welfare functionkV (r, #), dependent on the mechanism pa-
rameter and resulting play, Since we will allow for many possi-
ble outcomes of agent play, we can evaluate the objectivetibm
for a given game abstractly as follows. We defiie-(R,0) =
T,W (r,0), whereT is some functional acting oW (r,6). Sev-
eral examples o’ commonly found in the literature aiaf 5 (rep-
resenting strict implementation) andp ; (representing weak im-
plementation). We have already argued that both of thessoane-
what extreme. Instead, we will concentrate on an altereative
letT}. ; to be the expectation with respect to some probability dis-

tribution F over R. Then,Wr_ . (R,0) = E, ;W (r,0). Given a
description of the solution corresponderi¢¢d) andWr (N (6), 6),
the designer faces a standard optimization problem.

3. SOLUTION CONCEPTS

In evaluating the welfare function with respect to the dlstiion
of agent play, we relied on a specification of a solution cphce
which in effect provides the support of this distributiom this

!By employing the normal form, we model agents as playing a
single action, with decisions taken simultaneously. Theega!
approach and arguments presented here could also applyntsga
in extensive form, or indeed to any game form and its assatiat
solution concepts.

section, we explore a number of ideas about how solutionequsc
can be defined. We begin with a standard Nash equilibriumeganc
and its immediate relaxation to approximate Nash equdibaind
go on to relax several other solution concepts in a similshifan
with the hope that we can thereby incorporate all strategilps
that we may find to be plausible agent play. We then describe a
complementary solution concept that may serve as an additio
hook to deriving distributions of play by allowing the desdy to
indirectly model risk aversion of agents. Indeed, all of sb&ution
concepts we propose have relaxation parameters which cea se
the designer in defining probabilities of play for variousffes.

3.1 Nash and Approximate Nash Equilibria

Perhaps the most common solution concept for gaméagh
equilibrium defined as follows:

DEFINITION 1. A strategy profile: = (71, ..., m) constitutes
a Nash equilibriumof game[I, {R;}, {u:(r)}] if for everyi € I,
7‘; c R;,

ui(Tz‘7 7'71') > ui(r£7 7'71').

When R is the set of all pure strategies, the above definpara
strategy Nash equilibriugralternatively, ifR is the set of all mixed
strategies, the definition describesnixed strategy Nash equilib-
rium.

We often appeal to the concept of approximate or e-Nash
equilibrium wheree is the maximum benefit to any agent for devi-
ating from the prescribed strategy.

DEFINITION 2. A strategy profile: = (r1,...,rm) constitutes
an e-Nash equilibriumof game[I, { R;}, {u:(r)}] if for everyi €
I, TZ,- € R;,

wi(ri, i) + € > ui(ri, i),
wheree > 0.

Naturally, for anye, the set ok-Nash equilibria contains the set of
Nash equilibria. In this sense, it is a weaker concept. Thi®ph
sophical difficulty, of course, is that while Nash equilibri is a
mutual best response, at least one agent has an incentiegitted
from ane-Nash equilibrium. A typical justification of the concept
is that agents may be indifferent to small improvements iyoffa
but have a great desire for coordination (so, for examphkhgfde-
signer “offers” them are-Nash equilibrium to play, such thatis
very small, they’'ll happily agree and no one would deviagd)er-
natively, we may ascribe to agents a cost to finding an acestl b
response which is greater thanlf this is the case, no agent will
be willing to deviate once an-Nash strategy profile is common
knowledge and no better alternative is available.

Yet another interpretation might be that agents exert sboanded)
effort to find a better response, and their likelihood of seclting
is inversely related te. In this and other interpretations, the key
property is that provides a parametric hook for describing proba-
bility of play. The greater the incentive agents have to aevirom
a particular profile (all else equal), the less likely we demroh a
profile to be played.

3.2 Alternatives to ()-Nash Equilibria

While the Nash equilibrium has long been the primary sotutio
concept for games, many have expressed dissatisfactibnitviit
the context of real mechanism design problems and agetegita
considerations. For example, Erev and Roth [2] provide éxpe
mental evidence that a reinforcement learning algorithnaseto
be a better predictor of actual play in games with a uniqudieeu
rium. In a similar vein, Selten [11] presents a series of argts



against Bayesian rationality as a reasonable predictor ewreh,

as an effective normative system. Rosenthal has proposaitte
ing strategies considered toles of thumi[10, 9], that is, simple
patterns of play, conditioned on context, that have proviéece

tive over time. Many studies in multiagent systems reseaffett-

tively take this approach, experimentally estimating wivaish et

al. [14] call aheuristic strategy payoff matrixOur own group has
further developed this methodology under the headingpirical

game-theoretic analys[8, 13, 15].

In the heuristic spirit of these restricted-strategy apphes, we
can also develop rules for further narrowing a space of grofih-
didates based on strategic analysis. In this section, weribes
several concepts that may prove useful for this purpose.

3.2.1 Nearly Dominant Profiles

Dominant strategies are often regarded as especially dbngpe
solutions, and dominant strategy equilibrium is a commardgd
solution concept in mechanism design. Unfortunately,eaidm
the common textbook examples, such as the famed Prisoritataiba,
dominant strategies rarely exist in real strategic scematin com-
parison, a Nash equilibrium is guaranteed to exist in alidigames.

An intuitive property of a rule of thumb is that itsuallyworks
reasonablywell. The way we can translate this idea into a solution
concept is by introducing-dominant strategies.

DEFINITION 3. A profile,r is e-dominant ifvi € I,Vt € R,
wi(ri,t) + e > ui(r',t), Vr' € R;.

While dominant strategies are rare, strategies that amyraam-

example, cooperative play in Prisoner’s Dilemma) may icdee
played in practice [1]. As a consequence, we introduce heesen
weaker concept of nearly undominated eeandominated strate-
gies, which include strategies that, while dominated, arg ¢lose
to being optimal for some strategy profile that other ageray m
play.

DEFINITION 4. A profile, r, is e-undominated ifi € 1,3t €
R_;, such that

’U«i(’/'i,t) +e> ui("'l7t)7 vr! € R;.

Since this solution concept is very weak, it allows the desidgo
retain most strategy profiles in a game as plausible rulelsumhb,
eliminating only those that are clearly extremely harméuat least
one agent. The assumption that a very poorly performingegtya
would never be played is quite plausible in real situatidfar. ex-
ample, a strategy that consistently loses the agent onsmdbl-
lars, as compared to any other strategy that incurs no lasses
considerable appeal of being assessed probability zerapf p

Given a set of nearly undominated strategies, we can alsg-ima
ine that a likelihood of nearly dominant or nearly Nash pesfil
would be greater based on their nearness to the corresgpsalun
tion concept. Thus, we can actually combine all three of ¢teeed
solution concepts we have so far discussed to obtain alilittsn
of agent play.

3.2.3 Safety of Pure and Mixed Profiles

Risk aversion is a common feature of preferences, and given a
precise understanding of agent preferences can be acdoiomnte

inant may be more common, and may indeed provide a solid basisin payoff functions. However, such precise models of riskuate

for certain rules of thumb. Of course, there will always becan
dominant strategy if we setto be high enough (as long as the pay-
off functions are bounded). However, oncés large, such strate-
gies are no longer nearly dominant in any meaningful wayll, Sti
this solution concept may be a useful and reasonably comgell
way to model agent play without appealing to the hyperraiion
Nash equilibrium. From the players’ viewpoint, nearly doanmt
pure strategies are easy to find with respect to a given galme, a
though the algorithmic question of finding the entire setmfré
and mixed) nearly dominant profiles may be a bit more involved
and will be subject of future work. From a designer’s viewppi
they are reasonable things to expect agents to play.

As in the case ot-Nash equilibria, an important advantage of
this relaxation of the dominant strategy profiles is that &e de-
rive distributions of play based on “how dominant” a parkégypro-
file is. That is, we can assess a relatively low likelihood lafyp
to profiles in which at least one agent may be significantlyebet
off by playing another strategy for some deviation of othgeras.
Alternatively, we may fixe and assess zero probability of play to
profiles which are not-dominant (assuming, of course, that there
is at least one strategy profile that is).

3.2.2 Nearly Undominated Profiles

In his seminal work, Pearce [7] describes the notion of reio
izable strategies. While the set of all rationalizabletefyees is not
always identical to the set of strictly undominated stregegthe
two concepts are closely related, and are indeed appealisgr-
lar grounds. The argument of Pearce was that the Nash edquntib
concept was too strong to describe actual behavior. By weade
it to a set ofplausiblestrategy profiles that may be observed, actual
behavior may be explained, although no longer modeled sebci

While the idea that players are unlikely to play a profile that
is strictly dominated (or not rationalizable) is very iritve, there
is experimental evidence to suggest that dominated stestéfpr

may not be easy to come by. As an alternative, some gameetitor
studies appeal to worst-case criteria such as safety [Evelapture
this approach in a flexible solution concept, we define thnaif
o-safety.

DEFINITION 5. LetR_; be the joint space of deviations of agents
other thani. A profiler is §;-safe for agent if

0i(r) 2 max (ui(r) —ui(ri,t)).

A profiler is thend-safe if it isd;-safe for all agents, that is, if

5(r) 2 max max (ui(r) — wi(ri,t)).

Alternatively,r is §-safe if, for every playei € I,
ui(r) < wi(rs, t) + 6, vVt € R_;

We do not see the notion éfsafety as having much independent
value. Instead, we view it as a useful way to distinguishipaldr
types of rule-of-thumb strategies that players may comsiéf®r
example, we can imagine that in a set of approximate Nash equi
libria, there may be profiles that would be extremely seresitd
deviations by players, and, therefore, have a higher bound o
safety. The notion of-safety thus provides a mechanism designer
with an additional assessment of likelihood of play by iedtty
accounting for risk aversion of agents without having tordifia
it.

4. CONSTRUCTING DISTRIBUTIONS OF
AGENT PLAY

Our goal in this section is to offer several ideas about canst
ing belief distributions of agent play that rely on gameettetic so-
lution concepts (thus taking the players’ incentives sedil), but
admit varying degrees of commitment to their defining cigter



The first approach is for the designer to decide exactly which of some finite set of games, which may quickly become imprac-

solution concept is the best model for the strategic behafithe

tical when the game is relatively large. Another limitatisrthat

agent pool. The designer may choose a very weak concept andthe designer is still required to specify a model of beliefgen

make as few assumptions as possible about agent rationality

a game, even though he may be uncertain about his model of the

common knowledge, and we provided some guidance about suchplayers’ payoffs. Often, the designer may find himself iratap of

choices in the preceeding section. Once the solution corisep
chosen, the designer will need to assess the relativeHi@di of
solutions, for example, modeling each solution as equékisiyl

to be played. Alternatively, the designer may wish combisela-
tion concept with some notion éfsafety as we previously defined,
and thereafter devise a distribution that puts higher gaitibaon
solutions with lowsd. Note that inherent in this approach is the as-
sumption that any profile that is not a solution will be playeth
probability zero.

Yet another approach is to develop a distribution of playtas
the relaxation parameter within a solution concept. Preslio we
defined several andj-concepts{-Nash.e-dominante-undominated,
d-safe). Each pure strategy profile in the game will most adgta
be any sucke-concept for some value af (the same is true of-
safety). We could then assess the probability of play forrtaquaar
profile to be inversely proportional to its value ©br § for the se-
lected solution concept. Typically, our assessment of gdviity
of play will be positive for every pure strategy profile in thame.
We could also develop similar probabilistic models of agaat
based on combinations of these solution concepts, thuaiatio
the designer to hedge its bets among competing criteria.

The approaches above presume the designer is certain &leout t
game model itself. This, of course, is suspect, and indeen: -
fort has been made within the game theory community to agisess
quality of particular solution concepts based on how wadl/thur-
vive such modeling noise [3]. Here, we take another apprcauth
assume that payoffs specified by the designer are unbiased sa
ples from a Normal distribution with some variance. Variahere
would need to be specified by the designer, based on confidence
the model. This judgment too entails modeling assumptibos,
we expect that adding the extra degree of freedom will géiydra
helpful.

The distributions of play that we described above areatidi-
tional on a particular game. Thus, in order to find the distributibn o
play in the face of uncertainty about the actual game, thigdes
would need to take the expectation of this conditional itigtion
with respect to the distribution of games. Let us try to sayitha
somewhat more formal language. Suppose we fix the gRrtbat
the agents will play, and choose a solution concéptWe desig-
nate the distribution of agent play conditionalBand the solution
concept by

Prc(r) = Pr{ris played|I",C},

wherer is a pure strategy profile. This may be specified by the
designer as suggested above. Now, in order to derive thenmmst
probability of agents playing a pure strategy profilgiven a par-
ticular solution concept, we would simply take the expectaivith
respect to the distribution of games:

Pc(r) = Pr{ris played|C} = Er[Pr.c].

This can be done for every pure strategy profile to obtain @idis
bution of agent play.

There are several important shortcomings in the approasgth ju
suggested. The first is simply that it requires numericagrd-
tion, as we do not have a closed-form expression of this ¢apec
tion for any solution concept that we have discussed. Thipéias
to be a relatively significant problem, since numerical teghes
here would require computing the entire set of solutionsefach

doing even that very sensibly, but would instead like to heaxgore
heuristic, though systematic, approach to modeling agest go
this end, we propose laeuristic distribution of play, which does
not require any modeling on designer’s part, except hiscehof a
solution concept.

Observe that the distribution over agent payoff functiomhices
a probability that each pure strategy profiles a solutionC. Else-
where, we derived closed-form expressions for these pilite[12],
which we can now use to obtain a very simple heuristic distidn
over play by normalizing as follows:

Pr{risC}
Yo erPri{risC}’

Since we have a closed-form expressionFofr’ is C}, computa-
tion is greatly simplified.

Pr{r is played|C} =

5. CONCLUSION

In this work, we focused on an important practical shorteani
of mechanism design theory: lack of effective methods fantpo
predictions of actual play. Indeed, we believe that makiegyv
precise predictions of agent play is undesirable, as cofitplef
real strategic settings will generally make models impetréaough
that even the most appropriate solution concept will noessarily
make a good predictor of play. Instead, we argued for the teed
evaluate mechanism choices with respect to belief digtdbs of
play which are based on flexible solution concepts. Thus,egam
theoretic notions may eagerly enter the distributions afypbut
need not define them entirely.

It seems most useful in devising distributions of agent pay
have solution concepts with relaxation parameters whichvaike!-
ative assessment of probabilities on different strategyilps. We
proposed the degree of approximation of a solution concgjpina
example of such a parameter. Additionally, we suggestecha co
plementary solution concept which may be used to incorpdtet
designer’s beliefs about the risk aversion of agents in tbgilou-
tion of play.

Finally, we proposed a humber of examples of how solution con
cepts that we suggested may be used in deriving distrilardn
agent play. These approaches can be easily extended tpanate
uncertainty about the designer’'s model of the strategioaxie, al-
though incurring considerable computational effort. Tie\ahte
this difficulty, as well as to consider yet another alten@gensi-
ble way to develop distributions of play, we introduced hetio
distributions, which are based on closed-form expressiépsob-
abilities that each profile is a solution.

We believe that there is still a considerable gap betweesrdite
ical mechanism design and its practical applications. islork,
we suggested that this gap may be narrowed if the designexfhas
fective ways to determine the distribution of agent playeolasn
game-theoretic notions. While we proposed a number of nadstho
to this end, much work needs to be done to verify whether these
truly effective in practical settings, or whether othersahéo be de-
veloped in their place. We hope is that our criticisms and@ggh
will stimulate further research in this direction.
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