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Abstract. We analyze symmetric pure strategy equilibria in dynamic
sponsored search auction games using simulations, restricting the strate-
gies to several in a class of greedy bidding strategies introduced by Cary
et al. We show that a particular convergent strategy, “balanced bid-
ding”, also exhibits high stability to deviations in the dynamic setting.
On the other hand, a cooperative strategy which yields high payoffs to all
players is not sustainable in equilibrium play. Additionally, we analyze
a repeated game in which each stage is a static complete-information
sponsored search game. In this setting, we demonstrate a collusion strat-
egy which yields high payoffs to all players and empirically show it to
be sustainable over a range of settings. Finally, we show how a collusive
strategy profile can arise even in the case of incomplete information.

1 Motivation

Sponsored search—the placement of advertisements along with search engine
results—is currently a multi-billion dollar industry, with Google and Yahoo! the
key players [Lahaie, 2006]. In the academic literature, much progress has been
made in modeling sponsored search auctions as one-shot games of complete in-
formation, in which the players’ values per click and click-through-rates are com-
mon knowledge. A typical justification for such an approach is the abundance
of information in the system, since the advertisers have ample opportunity to
explore, submitting and resubmitting bids at will. As the complexity of model-
ing the full dynamic game between advertisers that is actually taking place is
quite intractable, static models provide a good first approximation. However, it
ultimately pays to understand how relevant the dynamics really are to strategic
choices of players.
? This is a revised and extended version of a paper appearing in the Third Interna-

tional Workshop on Internet and Network Economics (WINE’07). The research was
conducted while the first author was at Yahoo! Research.



One question which has been addressed in the dynamic setting is whether it
is reasonable to expect simple dynamic strategies to converge to Nash equilibria.
Cary et al. [2007] explored several greedy bidding strategies, that is, strategies
under which players submit bids with the goal of obtaining the most profitable
slot given that other players bids are fixed. One of these strategies, balanced
bidding, provably converges to a minimum revenue symmetric Nash equilibrium
of the static game of complete information. This happens to be analytically
tractable and has therefore received special attention in the literature [Varian,
to appear, Lahaie and Pennock, 2007, Edelman et al., 2007]. Similar questions,
particularly in the context of pools of vindictive agents, have been studied by
Liang and Qi [2007].

Convergence of dynamic bidding strategies is only one of many relevant ques-
tions that arise if we try to account for the dynamic nature of the sponsored
search game. Another is whether we can identify Nash equilibrium strategies
in the dynamic game. This problem in general is quite hard as there are many
possible actions and ways to account for the changing information structure.
One approach, taken by Feng and Zhang [2007], is to model the dynamic pro-
cess using a Markovian framework. Our own approach focuses on the set of
greedy bidding strategies from Cary et al. [2007]. In motivating greedy bidding
strategies, Cary et al. have argued that advertisers are unlikely to engage in
highly fine-grained strategic reasoning and will rather prefer to follow relatively
straightforward strategies. This motivation, however, only restricts attention to
a set of plausible candidates. To identify which are likely to be selected by ad-
vertisers, we need to assess their relative stability to profitable deviations. For
example, while we would perhaps like advertisers to follow a convergent strategy
like balanced bidding, it is unclear whether players will find it more profitable
to follow a non-convergent strategy.

Our goal is to provide some initial information about stability of a small set
of greedy bidding strategies under incomplete information. Specifically, we use
simulations to estimate the gain any advertiser can accrue by deviating from
pure strategy symmetric equilibria in greedy bidding strategies. The results are
promising: the convergent balanced bidding strategy is typically the most stable
of the strategies we study.

To complement the analysis above, we examine the incentives when joint
valuations are common knowledge, but the game is repeated indefinitely. Folk
theorems [Mas-Colell et al., 1995] suggest that players may be able to increase
individual profits (and decrease search engine revenue) by colluding. We demon-
strate one such collusion strategy and show it to be effective over a range of spon-
sored search auction environments. Our analysis complements other approaches
to studying collusion in auctions, both in the dynamic sponsored search con-
text [Feng and Zhang, 2007] and in a general one-shot context [Krishna, 2002].
Finally, we extend the collusion result to the case of incomplete information.



2 Game Theoretic Preliminaries

We first review terminology, definitions, and core concepts from game theory
that we employ throughout this paper. Our key solution concept is the Nash
equilibrium and approximations thereof.

2.1 One-Shot Games of Incomplete Information

In much of this work we analyze the strategic form1 of dynamic games, that is,
one-shot games of incomplete information [Mas-Colell et al., 1995], denoted by
[I, {Ri}, {Ti}, F (·), {ui(r, t)}]. where I refers to the set of players and m = |I|
is the number of players. Ri is the set of actions available to player i ∈ I, and
R1×· · ·×Rm is the joint action space. Ti is the set of types (private information)
of player i, with T = T1 × · · · × Tm representing the joint type space. Since we
presume that a player knows its type prior to taking an action, but does not
know types of others, we allow it to condition its action on own type. Thus, we
define a strategy of a player i to be a function si : Ti → R, and use s(t) to denote
the vector (s1(t1), . . . , sm(tm)). F (·) is the distribution over the joint type space.

We use s−i to denote the joint strategy of all players other than player i. Simi-
larly, t−i designates the joint type of all players other than i. We define the payoff
(utility) function of each player i by ui : R × T → R, where ui(ri, r−i, ti, t−i)
indicates the payoff to player i with type ti for playing action ri ∈ Ri when the
remaining players with joint types t−i play r−i. Given a strategy profile s ∈ S,
the expected payoff of player i is ũi(s) = Et[ui(s(t), t)].

Given a known strategy profile of players other than i, we define the best
response of player i to s−i to be the strategy s∗i that maximizes expected
utility ũi(si, s−i). If we know the best response of every player to a strategy
profile s, we can evaluate the maximum amount that any player can gain by
deviating from s. Such an amount, which we also call regret, we denote by
ε(s) = maxi∈I [ũi(s∗i , s−i) − ũi(si, s−i)]. When we use the term “stability” it
is in the sense of low regret. Faced with a one-shot game of incomplete informa-
tion, an agent would ideally play a strategy that is a best response to strategies
of others. A joint strategy s where all agents play best responses to each other
constitutes a Nash equilibrium (ε(s) = 0); when applied to games of incomplete
information, it is called a Bayes-Nash equilibrium.

2.2 Complete Information Infinitely Repeated Games

The second model we use is an infinitely repeated game [Mas-Colell et al., 1995].
The model divides time into an infinite number of discrete stages and presumes
that at each stage players interact strategically in a one-shot fashion (that is,

1 Although strategies are dynamic in that players choose their actions as a function of
history, our model of the meta-level strategic interaction is one-shot in that players
choose the dynamic strategies (which dictate actions in specific states) once and
follow these throughout.



no one agent can observe actions of others until the next stage). Naturally, all
players care not just about the payoffs they receive in one stage, but all the
payoffs in past and subsequent stages of the dynamic interaction. We assume
that their total utility from playing the repeated game is a discounted sum
of stage utilities. Formally, it can be described by the tuple [I, {Ri}, ui(r), γi],
where I, Ri and ui(r) are as before, and γi is the amount by which each player
discounts utility at each stage. That is, if we let r̄ = {r1, r2, . . . , ri, . . .}, rj ∈ R
be a sequence of choices by players indexed by the chronological sequence of
stages, Ui(r̄) =

∑∞
t=1 γt−1

i ui(rt).
Define a stage-k subgame of a repeated game as a restricted repeated game

which begins at stage k rather than at stage 1. The solution concept that we will
use for infinitely repeated games is the subgame perfect Nash equilibrium [Mas-
Colell et al., 1995], which obtains when the players have no incentive to deviate
from their sequence of strategic choices in any stage of the interaction.

3 Modeling Sponsored Search Auctions

A traditional model of sponsored search auctions specifies a ranking rule, which
ranks advertisers based on their bid and some information about their relevance
to the user query, click-through-rates for each player and slot, and players’ valu-
ations or distributions of valuations per click. Let a player i’s click-through-rate
in slot s be denoted by ci

s and its value per click by vi. Like many models in
the literature (e.g., [Lahaie, 2006, Lahaie and Pennock, 2007]) we assume that
click-through-rate can be factored into eics for every player i and every slot s. If
player i pays ps

i in slot s, then its utility is ui = eics(vi−ps
i ). The parameter ei is

often referred to as relevance of the advertiser i, and cs is the slot-specific click-
through-rate. We assume that the search engine has K slots with slot-specific
click-through-rates c1 > c2 > . . . > cK .

Lahaie and Pennock [2007] discuss a family of ranking strategies which rank
bidders in order of the product of their bids bi and some weight function wi.
They study in some depth a particular weight function w(ei) = eq

i , where q is
a real number. In the analysis below, we consider two settings of q: 0 and 1.
The former corresponds to rank-by-bid, bi, whereas the latter is typically called
rank-by-revenue, eibi.

When players are ranked by their bids, two alternative pricing schemes have
been studied: first-price (set price equal to player’s bid) and generalized second-
price (set price equal to next highest bid). For more than one slot, neither is
incentive compatible. However, stability issues have induced the major search
engines to use generalized second-price auctions. These have been generalized
further to ranking by weighted bid schemes by using the price rule ps

i = ws+1bs+1
wi

.
The interpretation is that the bidder i pays the amount of the lowest bid sufficient
to win slot s.



4 Dynamic Bidding Strategies

In much of this work we restrict the strategy space of players to four dynamic
strategies. While this is a dramatic restriction, it allows us to gain some insight
into the stability properties of the dynamic game and to identify particularly
interesting candidates for further analysis in the future. Additionally, it has been
argued as unlikely that players will engage in full-fledged strategic reasoning and
will rather follow relatively straightforward dynamic strategies [Cary et al., 2007]
such as the ones we consider. We now define a simple class of dynamic bidding
strategies.

Definition 1 (Greedy Bidding Strategies). A greedy bidding strategy [Cary
et al., 2007] for a player i is to choose a bid for the next round of a repeated
keyword auction that obtains a slot which maximizes its utility ui assuming the
bids of all other players remain fixed.

If the player bids so as to win slot s which it is selecting according to a greedy
bidding strategy, any bid in the interval (ps

i , p
s−1
i ) will win that slot at the same

price. The particular rule which chooses a bid in this interval defines a member
of the class of greedy bidding strategies. We analyze strategic behavior of agents
who can select from four greedy bidding strategies specified below. For all of
these, let s∗ designate the slot which myopically maximizes player i’s utility as
long as other players’ bids are fixed.

Definition 2 (Balanced Bidding). The Balanced Bidding [Cary et al., 2007]
strategy BB chooses the bid b which solves cs∗(vi − ps∗

i ) = cs∗−1(vi − b). If s∗ is
the top slot, choose b = (vi + p1

i )/2.

The Balanced Bidding strategy bids what the next higher slot would have to be
priced to make the player indifferent about switching to it.

Definition 3 (Competitor Busting). The Competitor Busting [Cary et al.,
2007] strategy CB selects the bid b = min{vi, p

s∗−1
i − ε}.

Thus the CB strategy tries to cause the player that receives the slot immediately
above s∗ to pay as much as possible.

Definition 4 (Altruistic Bidding). The Altruistic Bidding [Cary et al., 2007]
strategy AB chooses the bid b = min{vi, p

s∗

i + ε}.

This strategy ensures the highest payoff (lowest price) of the player receiving the
slot immediately above s∗.

Definition 5 (Random Bidding). The Random strategy RAND selects the
bid b uniformly randomly in the interval (ps

i , p
s−1
i ).



5 Empirical Bayesian Meta-Game Analysis

In this section we construct and analyze a Bayesian meta-game played between
advertisers (alternatively, bidders or players) who may choose one of four greedy
bidding strategies described above. Being a one-shot game of incomplete in-
formation, the bidders can condition their strategic choices only on their own
valuations. We do not allow conditioning based on relevances, as these are as-
sumed to be a priori unknown both to the search engine and to the bidders.
The reason we refer to the model as a meta-game is that we abstract away the
dynamic nature of the game by enforcing a one-shot choice of a dynamic strat-
egy, that is, once the strategy is chosen, the player must follow it forever after.
While this is a strong assumption given the restriction of the strategy space, it is
without loss of generality when no such restriction is imposed, since an optimal
dynamic strategy is optimal in any subgame along the played path.

In order to construct the meta-game, we need to define player payoffs for ev-
ery joint realization of values and relevances, as well as the corresponding choice
of dynamic strategies. As is common for dynamic interactions, we define the
payoff in the meta-game as the discounted sum of stage payoffs. In each stage,
exactly one bidder, selected uniformly randomly, is allowed to modify its bid
according to its choice of dynamic bidding strategy.2 The corresponding stage
payoff is an expected payoff given the ranking and payments of players as a
function of joint bids, as defined in Section 3. We model the entire dynamic
process—once relevances, values, and strategies are determined—using a sim-
ulator, which outputs a sample payoff at the end of a run of 100 stages. The
discount factor is set to 0.95.3 With this discount factor, the total contribu-
tion from stage 101 to infinity is 0.006, and we thus presume that the history
thereafter is negligible.

Expected payoff to a particular player for a fixed value per click, relevance,
and strategy is estimated using a sample average of payoffs based on 1000 draws
from the distribution of valuations and relevances of other players. The metric
for quality with which a particular strategy profile s approximates a Bayes-
Nash equilibrium is the estimate of ε(s), which is the sample average gain from
playing a best response to s over 100 draws from the player’s value and relevance
distributions. For each of these 100 draws, the gain from playing a best response
to s is computed as the difference between the highest expected payoff for any
strategy in the restricted set and the expected payoff from si, estimated as
described above.

Since the meta-game is constructed numerically for every choice of values,
relevances, and strategies of all players, an in-depth analysis of all strategies
in the game is hopeless. Instead, we focus much of our attention on four pure

2 This condition ensures the convergence of balanced bidding dynamics.
3 While this is a very conservative discount for each bidding stage, our offline ex-

periments suggest that our results are not particularly sensitive to it (for example,
results which use average payoff per round as long-term utility seem to be qualita-
tively similar).



symmetric strategy profiles, in which each player chooses the same dynamic
strategy for any valuation. While this seems an enormous restriction, it turns
out to be sufficient for our purposes, as these happen to contain near-equilibria.

5.1 Equal Relevances

In this section we focus on the setting in which all players’ relevances are equal
and assume that values per click are distributed normally with mean 500 and
standard deviation 200.4 Three sponsored search auction games are considered:
in one, 5 advertisers compete for 2 slots; in the others, 20 and 50 advertisers
respectively compete for 8 slots.

Figure 1 presents average ε(s) and payoffs for all four pure symmetric profiles
in strategies which are constant functions of player values per click. The first
observation we can make is that BB has a very low ε(s) in every case, suggesting
that it has considerable strategic stability in the restricted strategy space. This
result can also be claimed with high statistical confidence, as 99% confidence
intervals are so small that they are not visible in the figure. In contrast, AB
manifests very high ε(s) in the plot and we can be reasonably certain that it is
not sustainable as an equilibrium. The picture that emerges is most appealing
to the search engine: AB, which yields the greatest payoffs to players (and least
to the auctioneer), is unlikely to be played, whereas BB yields the lowest player
payoffs in the restricted strategy space.

5.2 Independently Distributed Values and Relevances

We now consider the setting in which relevances of players are not identical, but
are rather identically distributed—and independently from values per click—
according to a uniform distribution on the interval [0,1]. Since now the particulars
of the bid ranking scheme come into play, we present results for the two schemes
that have received the most attention: rank-by-bid (q = 0) and rank-by-revenue
(q = 1).

Figures 2a and b present the results on stability of each symmetric pure
strategy profile to deviations for q = 0 and q = 1 respectively. We can see
that there are really no qualitative differences between the two settings, and
indeed between the setting of independently distributed values and relevances
and the previous one in which relevances were set to a constant for all players. A
possible slight difference is that RAND and CB strategies appear to have better
stability properties when q = 0. However, this could be misleading since the
payoffs to players are also generally lower when q = 0. The most notable quality
we previously observed, however, remains unchanged: BB is an equilibrium (or
nearly so) in all games for both advertiser ranking schemes, and AB is highly
unstable, whereas BB yields a considerably lower payoff to advertisers than AB
in all settings.
4 For this and subsequent settings we repeated the experiments with an arguably more

realistic lognormal distribution and found the results to be qualitatively unchanged.
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Fig. 1. (a) Experimental ε(s) and (b) symmetric payoff for every pure symmetric profile
in constant strategies with associated 99% confidence bounds.
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Fig. 2. Experimental ε(s) (a) when q = 0 (b) when q = 1 for every pure symmetric
profile; experimental payoff (c) when q = 0 (d) when q = 1 for every pure symmetric
profile.



5.3 Correlated Values and Relevances

In the final set of experiments we draw values and relevances from a joint dis-
tribution with a correlation coefficient of 0.5. As may by now be expected, BB
remains a near-equilibrium both when we set q = 0 and q = 1 (Figures 3a and
b). However, when q = 0, RAND and CB are now also near-equilibria when
the number of players and slots is relatively large—and, indeed, more so as the
number of players grows from 20 to 50. As a designer, this fact may be somewhat
disconcerting, as BB remains the strategy with the lowest payoffs to players (and,
consequently, will likely yield the highest search engine payoffs) when q = 0; by
comparison, payoffs to players when RAND is played are considerably higher
than BB (Figure 3c). In all the cases, however, altruistic bidding remains highly
unstable, to the bidders’ great chagrin, as it is uniformly more advantageous in
terms of payoffs (Figures 3c and d).

5.4 Truthfulness in Balanced Bidding

One question that arises is whether there is any incentive for a bidders to mis-
represent their valuations. In the context of balanced bidding, this would mean
that a bidder submits bids as if it had a valuation other than its own. Myopi-
cally this should not be the case since each bidder submits bids that greedily
maximize their utility. In the long term, however, perhaps such deception would
pay off. First, during the dynamics of balanced bidding a bidder could obtain a
higher slot at a considerable premium. That untruthfulness in this sense is un-
profitable at a fixed point seems a foregone conclusion, since balanced bidding
is guaranteed to converge in our settings to a symmetric equilibrium. However,
there may well be an asymmetric equilibrium with the resulting allocation and
bids. Below, we show that this is impossible if the fixed point is a minimum
symmetric equilibrium. Particularly, we now show that at a fixed point of bal-
anced bidding the utility of an untruthful bidder is no higher than if it were
truthful (and converged to the truthful fixed point). For convenience, we restrict
the remainder of our analysis in this section to a setting in which all relevances
are constant although the analysis would remain qualitatively unchanged if we
had not.

Lemma 1. Consider a situation in which all but one player is bidding according
to balanced bidding dynamics, and one, the deviant, is considering whether to bid
truthfully. The utility of the deviant in a truthful fixed point is no lower than in a
fixed point reached when it is playing balanced bidding as if it had another value
per click. Furthermore, bidding in order to get a higher slot yields a strictly lower
utility in a fixed point for generic values per click.

[The proof is in the appendix.] Considering Lemma 1 and the fact that bal-
anced bidding is greedy and, consequently, a player cannot obtain immediate
gain by deviating suggests that the only gain from an untruthful variant of bal-
anced bidding is through transient payoffs—that is, as a side-effect of responses
by agents who follow balanced bidding honestly. Such effects are difficult to



0

500

1000

1500

2000

2500

3000

5x2 20x8 50x8

E
p
s
il
o
n

BB

Rand

CB

AB

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5x2 20x8 50x8

E
p
s
il
o
n

BB

Rand

CB

AB

(a) (b)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5x2 20x8 50x8

P
a
y
o
ff

BB

Rand

CB

AB

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5x2 20x8 50x8

P
a
y
o
ff

BB

Rand

CB

AB

(c) (d)

Fig. 3. Experimental ε(s) (a) when q = 0 (b) when q = 1 for every pure symmetric
profile; experimental payoff (c) when q = 0 (d) when q = 1 for every pure symmetric
profile.



study analytically; thus, we use simulations to gauge regret from truthful bal-
anced bidding. In Figure 4 we present results for constant relevances, as well as
settings when relevances and values are independent and correlated. The spon-
sored search settings considered are also as above. In the experiments, we allowed
deviations to be factors of k = {0, 0.5, 1.5, 2} of the player’s valuation. Thus, for
example, a player with k = 0.5 and value per click of 200 would play balanced
bidding as if its value were 100. As the figure suggests, when there are few play-
ers, gains from bidding as if you are someone else appear relatively high: when
values and relevances are correlated our results suggest that regret can be as
high as 90 (roughly 22% of total payoff). However, regret drops off considerably
as the number of players increases, down to about 10% of payoff with 50 players.
Regret is lower when relevances are drawn independently of values or when they
are constant.

Overall, we can observe that balanced bidding seems to be somewhat less
stable when we consider the possibility that bidders may play untruthfully, that
is, play as if they their value per click was different from what it actually is.
Of course, we have already shown that if any agent did play untruthfully, the
corresponding fixed point would not then be a fixed point, as the untruthful
player would then want to deviate. Note, however, that our discount factor of
0.95 is actually extremely conservative: while reasonable as an annual rate, it is
unlikely to be so low per bidding round. As such, the importance of the result in
Lemma 1 is likely to be considerably greater than our empirical results suggest.
In any case, whether the observed incentives to deviate are strong enough or not
would remain on other factors, such as the cost of determining a deviation that
carries substantial gain.

As a final piece of evidence for the efficacy of truthful balanced bidding, we
compare its regret to that from playing several variants of untruthful bidding.
Figure 5 displays the regret for several symmetric profiles with varying degrees of
untruthfulness exhibited by the players in a game with 5 players and 2 slots. As
we can see, the regret from truthful balanced bidding (k = 1) is far overshadowed
by that from untruthful profiles.

6 Repeated Game

6.1 Common Knowledge of Values

It is common in the sponsored search auction literature to assume that the player
valuations and click-through-rates are common knowledge, suggesting that the
resulting equilibria are rest points of natural bidder adjustment dynamics. The
justification offered alludes to the repeated nature of the agent interactions. Yet,
the equilibrium concept used is a static one. If a game is infinitely repeated,
the space of Nash equilibrium strategies expands considerably [Mas-Colell et al.,
1995]. Thus, if we take the dynamic story seriously, it pays to seek subgame per-
fect equilibria in the repeated game, particularly if they may offer considerably
better payoffs to players than the corresponding static Nash equilibria.
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As typical analysis of repeated interactions goes, our subgame perfect equi-
librium consists of two parts: the main path, and the deviation-punishment path.
The main path has players jointly follow an agreed-upon profitable strategy pro-
file, whereas the deviation path punishes any deviant. The trick, of course, is
that for the equilibrium to be subgame perfect, the punishment subgame must
itself be in equilibrium, yet must be sufficiently bad to discourage deviation.

A natural candidate for punishment is the worst (in terms of player payoffs)
Nash equilibrium in the static game. Clearly, such a path would be in equilib-
rium, and is likely to offer considerable discouragement to deviants. A desirable
main path would have players pay as little as possible, but needs to nevertheless
discourage bidders who do not receive slots from outbidding those who do. Fur-
thermore, all “slotless” bidders should remain slotless in the deviation subgame,
since it is then clear that no incentives to deviate exist among such bidders, and
we need only consider bidders who occupy some slot.

For the remainder of this section, we assume that the valuations are generic
and bidders are indexed by the number of the slot they obtain in a symmetric
Nash equilibrium.5 Define the dynamic strategy profile COLLUSION as follows:

– Main path: ∀s > K, bs = vs. For all others, bs = wK+1
ws

vK+1 + (K − s + 1)ε,
where ε is some very small (negligible) number. Note that this yields the same
ordering of bidders who receive slots as any symmetric Nash equilibrium of
the game.

– Deviation path: play the maximum revenue symmetric Nash equilibrium
strategies in every stage game. This yields the maximum revenue to the
auctioneer and the lowest utilities to the players of any Nash equilibrium in
the stage game [Varian, to appear].

Whether the delineated strategy constitutes a subgame perfect Nash equilib-
rium depends on the magnitude of the discount factor, γi, of every player i. The
relevant question is then how large does γ need to be to enable enforcement of
COLLUSION. For example, γi = 0 will deter nothing, since there are no conse-
quences (the game is effectively a one-stage game). Below, we give the general
result to this effect.

Theorem 1. The COLLUSION strategy profile is a subgame perfect Nash equi-
librium if, for all players i,

γi ≥ max
s≤K,t≤s

(ct − cs)(vs − wK+1vK+1
ws

)− (ct
wt

ws
(K − t + 1)− cs(K − s))ε

ct(vs − wK+1vK+1
ws

)− csvs − ct
wt

ws
(K − t + 1)ε + Vsum

, (1)

where Vsum =
∑K

t=s+1 wt−1vt−1(ct−1 − ct) + wKvKcK .

[The proof is in the appendix.] The lower bound on the discount factor in
Equation 1 depends on the particular valuation vector, the relative merits of
slots, and the total number of slots, and it is not immediately clear whether there
5 Via a simple extension of the results by Varian [to appear] we can show that in a

symmetric Nash equilibrium, bidders are ranked by wsbs.



actually are reasonable discount factors for which deviations can be discouraged.
To get a sense of how sustainable such an equilibrium could be, we study the
effect of these parameters on the lower bound of the discount factor. To do this,
we let the relevances of all players be constant, fix the number of players at 20
and take 100 draws of their valuations from the normal distribution with mean
500 and standard deviation 200. We vary the number of slots between 2 and
15, recording the average, minimum, and maximum values of the lower bound.
Furthermore, we normalize c1 to 1 and let cs

cs+1
= δ for all s ≤ K−1. The results

are displayed in Figure 6 for different values of δ.
First, focus on Figure 6c which shows the results for δ = 1.428, an empiri-

cally observed click-through-rate ratio [Lahaie and Pennock, 2007]. As the figure
suggests, when the number of slots is between 0 and 5, it seems likely that COL-
LUSION can obtain as a subgame perfect equilibrium, as the requirements on
the discount factor are not too strong. When the number of slots grows, how-
ever, the incentives to deviate increase, and when the number of slots is above
10, such a collusive equilibrium no longer seems likely.

Figures 6a, b, and d display similar plots for other settings of δ. These suggest
that as δ rises, incentives to deviate rise, since when there is a greater dropoff
in slot quality for lower slots, players have more to gain by moving to a higher
slot even for a one-shot payoff.

Above, our punishment path involved bidders playing a maximum symmetric
equilibrium. Such a punishment path is quite strong, since, as we mentioned, it
yields the lowest utilities to the players of any Nash equilibrium in the stage
game. An alternative and considerably weaker punishment would be to play a
minimum symmetric equilibrium. Define the dynamic strategy profile COLLU-
SION2 as follows:

– Main path: ∀s > K, bs = vs. For all others, bs = vK+1+(K−s+1)ε, where ε
is some very small (negligible) number. Again, this yields the same ordering
of bidders who receive slots as any symmetric Nash equilibrium of the game.

– Deviation path: play the minimum revenue symmetric Nash equilibrium
strategies in every stage game.

One may wonder why we would ever stipulate a weaker punishment. The answer
is that a maximum revenue symmetric equilibrium deviation path actually re-
quires the common knowledge of values, which in the generalized price auction
will be different from bids for all players who receive slots. As we will see below,
there is considerable value in being able to relax this assumption. Particularly,
it is convenient that balanced bidding converges to a minimum symmetric Nash
equilibrium as its unique fixed point. Thus, if we assume that all bidders follow
this strategy (and do so truthfully), we can simply punish by stipulating that
bidders revert to their fixed point bids, making COLLUSION2 a much more
plausible strategy.

We can easily extend Theorem 1 to COLLUSION2 :
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Fig. 6. Lower bounds on the discount factor as the number of available slots varies
when (a) δ = 1.1, (b) δ = 1.3, (c) δ = 1.428, and (d) δ = 1.9.



Theorem 2. The COLLUSION2 strategy profile is a subgame perfect Nash equi-
librium if, for all players i,

γi ≥ max
s≤K,t≤s

(ct − cs)(vs − wK+1vK+1
ws

)− (ct
wt

ws
(K − t + 1)− cs(K − s))ε

ct(vs − wK+1vK+1
ws

)− csvs − ct
wt

ws
(K − t + 1)ε + Vsum

, (2)

where Vsum =
∑K

t=s+1 wtvt(ct−1 − ct) + wK+1vK+1cK .

Naturally, we would like to know how much weaker COLLUSION2 is than
COLLUSION. The answer can be observed in Figure 7: it does appear substan-
tially weaker. While collusion still seems likely when the number of slots is below
about 8, even with few slots there are instances when collusion is not feasible,
as the higher range of bounds on γ seem very near 1.

A final question we would like to raise here is whether the choice of ranking
function affects feasibility of collusion and, if so, how much. We study this in the
cases when values and relevances are distributed independently and when they
are correlated. Otherwise, the setup is as above. The results are presented in
Figure 8. As the plots suggest, increasing q from 0 to 1 (that is, increasingly em-
phasizing relevances in the ranking) does reduce incentives to collude somewhat.
However, the reduction is not all that significant—the bound on γ increases by
at most 5%. It does appear, however, that with higher settings of q there are
more instances in which collusion is not feasible at all, with higher ranges of γ
near 1 for most slot configurations.

6.2 Incomplete Information

While in the complete information setting we enforced collusion using a maxi-
mum symmetric equilibrium as punishment, we could have enforced it also with
a minimum symmetric equilibrium, accepting that it would not obtain as an
equilibrium in a smaller range of settings. The advantage of the latter approach,
however, is that we no longer need to know valuations of all players at all—rather,
since balanced bidding converges to a set of minimum symmetric equilibrium
bids, we can simply punish by reverting to that same set of bids.

We now consider the question of whether there exists a collusive strategy for
agents who do not initially know each other’s valuations. Since players will not
have incentive to reveal these to each other honestly, they will need to be induced.
The idea is to let players play a symmetric Nash equilibrium for as many stages
as necessary so that, given the discount factor, it will not pay for players to
misrepresent themselves initially in order to exploit their fellow colluders later.
After these initial stages playing a symmetric equilibrium, the players will be
able to infer each other’s valuations and play COLLUSION from then on.

Lemma 2. For generic valuations, a deviation from a minimum symmetric
equilibrium bid to a bid that obtains a higher slot yields a strictly lower than
equilibrium utility.

Proof. For generic values, in a minimum symmetric equilibrium wj+1bj+1 <

wjbj . Thus ci(vi − pi) ≥ cj(vi − wj+1bj+1
wi

) > cj(vi − wjbj

wi
). �



Theorem 3. Let bsym be a vector of symmetric equilibrium bids and suppose
that the COLLUSION subgame is in equilibrium for a particular vector of δi.
Then there exists an S > 0 such that the following is an SPNE:

1. Play bsym for S stages.
2. Play COLLUSION from stage S + 1 to ∞.

Proof. Since payoffs are discounted (and, thus, the discounted sum converges),
for any δ > 1, there is S large enough such that

∑∞
i=S+1 γius < δ, where us

is the stage payoff during the COLLUSION subgame. This is true for any dis-
count factor and any us. As the payments are arbitrarily close to being identical
during COLLUSION, they can be made close enough to identical to eliminate
any incentive to reduce the price during collusion, since it would yield a strictly
lower click-through-rate. Finally, by Lemma 2, all players strictly prefer to stay
in their slot than to switch to a lower-numbered slot (lower-numbered is better,
i.e., higher on the page). Thus, there exists δ > 0 such that they still strictly
prefer their current slot even if they get δ more from switching to the other.
Thus, in particular, if their maximum payoff from the COLLUSION subgame
does not exceed δ, they will have no incentive to switch. �

Now, consider the following dynamic strategy:

1. Play balanced bidding until a fixed point is reached.
2. Play fixed point for S stages.
3. Play COLLUSION from stage S + 1 to ∞.

We just showed that if COLLUSION itself is in equilibrium, we can find S large
enough such that the subgame comprised of steps 2 and 3 above is also. We have
also experimentally indicated that balanced bidding may itself be nearly a Bayes-
Nash equilibrium in an array of settings when deviations to several other greedy
bidding strategies are allowed. However, we assumed that players will play these
strategies truthfully—that is, they would not play them as if their valuations
were different from what they actually are. We studied incentives to play like
someone else in balanced bidding separately. There, our results are somewhat less
clear: in some settings, there does appear to be considerable incentive to pretend
to have a different valuation, while in others such incentives seem relatively
small. However, the ambiguity seems primarily due to our conservative choice
of a discount factor. With a more reasonable discount factor, we argued that
truthfulness seems unlikely to have significant regret. When incentives to lie are
small, we expect the entire dynamic strategy in steps 1-3 to have relatively low
regret, as long as the COLLUSION subgame does.

7 Conclusion

We have started with a set of greedy bidding strategies from Cary et al. [2007]
and analyzed them in a dynamic sponsored search auction setting. Many of
the results are more favorable for search engines than advertisers: a high-payoff



strategy profile is not sustainable in equilibrium, whereas a low-payoff profile
is reasonably stable. On the other hand, when complete information about val-
uations and click-through-rates is available, there are possibilities for collusion
that yield high payoffs to players, sustainable over a range of settings. In the
case of incomplete information, a two-stage equilibrium profile may be employed
in which for some number of rounds depending on the discount factors bidders
play a minimum symmetric equilibrium and then switch to a collusive strategy
once the valuations become known.
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Fig. 7. Lower bounds on the discount factor as the number of available slots varies
when δ = 1.428.
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Fig. 8. Lower bounds on the discount factor as the number of available slots varies
when (a) and (b) values and relevances are independent; and (c) and (d) when values
and relevances are correlated. The figures on the left (a) and (c) correspond to q = 0,
while those on the right (b) and (d) correspond to q = 1.
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Appendix

A Proof of Lemma 1

Let the deviant be bidder i with value vi and suppose w.l.o.g. that in a truthful
fixed point it gets slot i and in an untruthful fixed point it gets slot j. First,
consider j = i, that is, its bidding did not affect the slot it received. Since
its payment is bi+1 which would remain unchanged in a minimum symmetric
equilibrium as it only depends on valuations of players ranked below bidder i,
its utility will remain unchanged.

Suppose it bids as if its value were v′ < vi and gets slot j > i. Since bj+1

is unaffected by its untruthfulness, as it only depends on values (and bidding
behavior) of bidders ranked below bidder j, and since the bidder was ranked in
slot i in a minimum symmetric equilibrium when it bid truthfully, deviation to
slot j was unprofitable then and it remains so now.



Finally, suppose i bids as if its value were v′ > vi and gets slot j < i. In a
truthful minimum symmetric equilibrium,

bj+1 = vi(xi−1 − xi) +
i−1∑
t=j

vt+1(xt+1 − xt) +
K∑

t=i+1

vt+1(xt+1 − xt).

In a minimum symmetric equilibrium which obtains when i is untruthful in the
above sense, its payment in slot j is

b′j+1 = v′i(xi−1 − xi) +
i−1∑
t=j

v′t+1(xt+1 − xt) +
K∑

t=i+1

v′t+1(xt+1 − xt),

where v′t is the value of bidder that would get position t if i played untruthfully.
Note that bidders ranked lower than i will retain the same ranking and, as we
have already observed, will have the same bids as in a truthful fixed point. Thus,

K∑
t=i+1

v′t+1(xt+1 − xt) =
K∑

t=i+1

vt+1(xt+1 − xt).

Furthermore, all the bidders in slots j..i− 1 will now move down one slot. Thus,

i−1∑
t=j

v′t+1(xt+1 − xt) =
i−1∑
t=j

vt(xt+1 − xt) ≥
i−1∑
t=j

vt+1(xt+1 − xt).

Finally, the bidder previously in slot i− 1 will now be in slot i. Thus,

v′i(xi−1 − xi) = vi−1(xi−1 − xi) ≥ vi(xi−1 − xi).

As a result, b′j+1 ≥ bj+1, and if bidder i had no incentive to switch to slot j
in a truthful minimum symmetric equilibrium, it certainly will not now, since
it would face at least as high a price (and probably higher). Note that these
inequalities are strict when values are generic; thus, obtaining a higher slot than
under a truthful fixed point yields strictly lower utility to i. �

B Proof of Theorem 1

Take a player s (recall that players are indexed according to the slots they
occupy) and let the discount factor of that player be γ. First, note that if s ≥
K + 1, the player can only win a slot by paying more than vs, and thus has no
incentive to deviate.

Suppose that s ≤ K. If the player s never deviates, it will accrue the payoff of
us = cs(vs−(K−s)ε−wK+1vK+1

ws
at every stage. With γ as the discount factor, the

resulting total payoff would be
∑∞

i=0 γius = us

1−γ . For ε sufficiently small, there
will be no incentive to deviate to an inferior slot, since it offers a strictly lower
click-through-rate with negligible difference in payment. The one-shot payoff for



deviating to t ≤ s is u′s = ct(vs − wt

ws
(K − t + 1)ε − wK+1vK+1

ws
). For all stages

thereafter, the utility will be up
s = cs(vs −

∑K+1
t=s+1 wt−1vt−1

ct−1−ct

cs
) = csvs −∑K+1

t=s+1 wt−1vt−1(ct−1 − ct) = csvs −
∑K

t=s+1 wt−1vt−1(ct−1 − ct) − wKvKcK .
Since this utility will be played starting at the second stage, the total utility from
deviating is u′s + γup

s

1−γ . For deviations to be unprofitable, it must be that for every

s ≤ K and every t ≤ s, us

1−γ ≥ u′s + γup
s

1−γ , or, alternatively, us ≥ (1− γ)u′s + γup
s .

Plugging in the expressions for utilities and rearranging gives us the result. �


