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ABSTRACT
When exploring a game over a large strategy space, it may not be
feasible or cost-effective to evaluate the payoff of every relevant
strategy profile. For example, determining a profile payoff for a
procedurally defined game may require Monte Carlo simulation or
other costly computation. Analyzing such games poses a search
problem, with the goal of identifying equilibrium profiles by eval-
uating payoffs of candidate solutions and potential deviations from
those candidates. We propose two algorithms, applicable to dis-
tinct models of the search process. In the revealed-payoff model,
each search step determines the exact payoff for a designated pure-
strategy profile. In the noisy-payoff model, a step draws a stochas-
tic sample corresponding to such a payoff. We compare our al-
gorithms to previous proposals from the literature for these two
models, and demonstrate performance advantages.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Heuris-
tic methods; I.2.11 [Distributed Artificial Intelligence]: Multia-
gent systems

General Terms
Economics, Experimentation

Keywords
Empirical game, approximate equilibria, heuristic search

1. INTRODUCTION
In attempting to understand agent interactions in multiagent sys-

tems, researchers often appeal to game-theoretic solution concepts
to characterize the strategic stability of hypothetical outcomes. Un-
fortunately, the strategy space of the game or interaction being
modeled is often so complex to render infeasible exact game-theoretic
modeling and analysis. One common compromise is to consider
stylized versions of the game that are amenable to computational
analysis, at the expense of fidelity. One alternative pursued by
experimental AI researchers in recent years is to estimate games
through simulation and sampling [3, 9, 17], an approach that has
been termed empirical game-theoretic analysis [18].
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In empirical game modeling, the outcome of a joint strategy, or
profile, is estimated by repeatedly sampling the game. These sam-
ples can be generated by a game simulator or other model describ-
ing the game. Such an approach is quite general, but incurs an
estimation cost in proportion to the size of the profile space, which
is exponential in the number of players and the number of strate-
gies available per player. For many games of interest, the strategy
set is extremely large or even infinite. Thus, in practice we cannot
explore the space exhaustively, but instead focus on profiles that are
most promising as solutions or otherwise pivotal in game-theoretic
analysis.

Figure 1 presents an overview of the empirical game-theoretic
analysis framework we adopt in this study. In place of an ana-
lytic description of the mapping from strategy profiles to payoffs, a
simulator generates a set of sample observations. This set of sam-
ples, or the model estimated or inferred from them, constitutes the
empirical game. Strategic reasoning about the empirical game de-
scription can support the design of agents to play the game, or guide
the design of multiagent interaction mechanisms that induce such
games. For both of these design problems, we typically seek to
characterize solutions of the game, for example by identifying ex-
act or approximate Nash equilibria. Finding these solutions thus
constitutes a central search problem for empirical strategy design
and empirical mechanism design.

Previous research has explored directed sampling of profiles, by
using value of information estimates [17] or interleaving sampling
and equilibrium calculations [10]. Both techniques require at least
a small number of samples to be generated for every profile in the
full joint strategy space. Since it may be possible to establish that
a particular profile is an equilibrium or near-equilibrium without
considering all profiles, a search approach can potentially relax this
requirement. This was part of the motivation for Sureka and Wur-
man [14], who proposed an algorithm based on tabu best-response
search to search for pure-strategy Nash equilibria within the profile
space.

This latter algorithm is applicable in a revealed-payoff search
model, where each search step determines the exact payoff for a
designated pure-strategy profile. In contrast, the directed sampling
methods described above assume a noisy-payoff model, where the
basic search step corresponds to drawing a sample from an under-
lying distribution of payoffs.

In this paper, we propose new algorithms for both search mod-
els, and compare them to the previous approaches from the lit-
erature. For the revealed-payoff model, we develop an approach
based on minimum-regret-first search, and find that this algorithm
is comparable on one measure of search efficiency and superior on
another to tabu best-response [14]. Next, we describe a repeated
sampling algorithm termed information-gain search, applicable to
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Figure 1: Overview of empirical game-theoretic analysis where directed search is used to reduce the number of observations sampled
in confirming profiles with low ε. These profiles are extensively used in strategy and mechanism design.

the noisy-payoff model. In experimental comparison, we find that
information-gain search outperformed the literature benchmark [17]
for both low and high degrees of noise.

2. NOTATION
This section describes the formal notation and experimental mea-

sures of success we use to compare algorithms.

DEFINITION 2.1 (NORMAL FORM GAME).
Γ = 〈I, {Si}, {ui(s)}〉 is a normal form game, with I the set
of players, Si the set of strategies available to player i, and ui :

×|I|j=1Sj → R the utility function for player i mapping the joint
strategy s to the real-valued payoff received by player i when s is
played.

In the case where the payoffs are random variables, ui(s) rep-
resents the expected von-Neumann-Morgenstern utility for playing
joint strategy s. We refer to the joint strategy set×|I|j=1Sj for a par-
ticular game Γ as S. The term profile is interchangeable with joint
strategy.

Our search and analysis focuses on pure profiles, where strate-
gies are selected deterministically.1 Each profile is associated with
the set of neighboring profiles that can be reached through a unilat-
eral deviation by one player.

DEFINITION 2.2 (UNILATERAL DEVIATION SET). The uni-
lateral deviation set for player i and profile s ∈ S is

Di(s) = {(ŝi, s−i) : ŝi ∈ Si − {si}},

and the corresponding set for an unspecified player is

D(s) =
[
i∈I

Di(s).

For a given player i, the best-response correspondence for a
given profile s is the set of strategies which yield the maximum
payoff holding the other players’ strategies constant.
1Many but not all of the methods we describe can be straightfor-
wardly extended to admit mixed strategies, where players choose
actions probabilistically. We maintain exclusive consideration of
pure strategies here for simplicity, deferring comprehensive cover-
age of the mixed-strategy case to future work.

DEFINITION 2.3 (BEST RESPONSE). For some joint strategy
s ∈ S, the player i best-response correspondence is

Bi(s) = arg max
ŝ ∈ Di(s) ∪ {s}

ui(ŝ)

The overall best-response correspondence is then given by

B(s) =
Y
i∈I

Bi(s)

The best-response dynamic is the result of iteratively applying
the best-response correspondence. A pure-strategy Nash equilib-
rium (PSNE) is a fixed point in this process, that is, s ∈ B(s).

The goal of game-theoretic search is to identify profiles that are
strategically stable, with Nash equilibrium representing perfect sta-
bility. To evaluate relative stability of a profile, we measure its re-
gret, the maximum gain from deviation available to any player.

DEFINITION 2.4 (REGRET). The regret of strategy profile s ∈
S, ε(s), is the maximum gain from deviation from s by any player.
Formally,

ε(s) = max
i ∈ I, ŝ ∈ Di(s) ∪ {s}

ui(ŝ)− ui(s).

The regret of a Nash equilibrium is zero. More generally, we say
that profile s is an ε(s)-Nash equilibrium, which means it approx-
imates equilibrium at the level ε(s). Approximate equilibria (low-
regret profiles) may be of interest in general, and are especially
salient when searching among pure profiles for games that may not
exhibit pure-strategy Nash equilibria.

Finally, we present our notion of an empirical game, formally
defined in terms of the evidence we have for profile payoffs.

DEFINITION 2.5 (EMPIRICAL GAME). Let Γ = 〈I, {Si}, {ui(s)}〉
be a game, and θ a set of evaluations for the payoff function u. Then
E(Γ, θ) = 〈I, {Si}, θ〉 constitutes an empirical game for Γ.

Under the revealed-payoff model, each evaluation in θ gives the
value of the payoff function for some profile. Under noisy pay-
offs, each evaluation in θ gives a noisy sample of the true payoff
for some profile. We use the notation E .sk to denote the resulting
empirical game after k more evaluations of profile s.
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3. PROBLEM STATEMENT
Our starting point is a game (the true, or base game) in which the

payoff function is specified by a simulator. For any available num-
ber of calls to the simulator, our objective is to obtain the highest-
quality solution we can to this game. This problem can be divided
into two interdependent parts. The first part is control of sampling
effort, to produce an empirical game given the available number of
simulator calls. The second is to generate from the empirical game
a candidate solution to the base game. Naturally, the control algo-
rithm may make use of intermediate generated solution profiles to
effectively guide the collection of further samples. And since per-
formance will be measured based on the solution ultimately pro-
duced, the control objective is shaped by the criterion for generat-
ing solutions.

We measure quality of the generated solution profile by regret—
the maximum gain to deviation from this solution in the base game.
To measure performance of our search algorithms, we generate a
solution on each iteration, calculate its regret with respect to the
base game, and repeat this for many randomly generated problem
instances. This allows us to characterize solution quality as a func-
tion of search time, for example to evaluate the average time to
achieve various levels of quality.

For search under the revealed-payoff model, we can draw a fur-
ther distinction based on whether the regret is known in the empir-
ical game, or merely bounded based on deviations evaluated thus
far. We say that a profile s is confirmed in the empirical game if all
deviations s′ ∈ D(s) have been evaluated. In some cases, we re-
quire that search algorithms return only confirmed solutions. Since
the regret of confirmed profiles is known, the best solution to return
is obviously the one with minimum regret.

4. SEARCH METHODS FOR REVEALED
PAYOFFS

Our first setting involves games in which the payoff simulator
returns an exact payoff when queried with a particular profile. We
know of only two search algorithms for this model studied previ-
ously in the literature: one based on TABU best response (or sim-
ply, TABU) [14], and another applying regret bounds in a minimum-
regret-first search (MRFS), employed by Vorobeychik et al. [15].
Below, we describe the two methods and, in the section that fol-
lows, evaluate them experimentally on several classes of randomly
generated games.

4.1 TABU Best-Response Search
The TABU best-response algorithm [14] begins by selecting an

arbitrary profile as active. Subsequently, each iteration involves (a)
selecting a “deviant” player i, (b) finding a most profitable devia-
tion for i from the current active profile s, (c) selecting the profile
s′ = (ti, s−i) as the next active profile, where ti is the best re-
sponse of i to s, and (d) adding either si in the attribute based
memory version or s in the explicit memory version of the algo-
rithm to the tabu list, L. When the attribute based memory version
of the algorithm is used, deviation options for player i are restricted
to strategies not in the tabu list. When the explicit memory version
of the algorithm is used, deviation options for player i are restricted
to strategies not yielding profiles in the tabu list. The process ter-
minates once the algorithm selects a PSNE as its active profile.

The original experiments by Sureka and Wurman evaluate per-
formance based on the number of search steps required to find a
PSNE. Since the experimenters know the base game and therefore
its equilibria, they can simply terminate search when one of the
known PSNE becomes the active profile.

In practice, when searching an unknown game, the algorithm
cannot generally determine that an equilibrium profile is actually
such when it first becomes active.2 Thus, we also consider perfor-
mance measures that require generated solutions to be confirmed,
as discussed above. Addressing this confirmation requirement re-
quired that we modify TABU to seek confirmation rather than move
always to best response. In the modified version, instead of imme-
diately placing the active profile on the tabu list L and branching
to the best response, we do so only if the best response strictly in-
creases the player’s payoff; otherwise we keep the active profile un-
changed. With this modification, we can confirm an active profile
upon iterating through all the players. However, it now becomes
possible in the explicit memory version of the algorithm (the ver-
sion used in the experiments below) that we visit a profile for which
all neighbors are in the tabu list. In this case we allow the player to
deviate to the best response if that best response gives a higher pay-
off than the current profile. Pseudo-code for the tabu best-response
algorithm used in our experiments is presented below.

TABU-BEST-RESPONSE-SEARCH

L← ∅
Select initial profile at random
while termination criteria not satisfied

do
i← next player
if Di(s) ⊆ L

then s← player i’s best response to s
else if s has an improving deviation in Di(s) \ L

then Push s onto L
s← player i’s best response to s not in L

4.2 Minimum-Regret-First Search
The idea of minimum-regret-first search (MRFS) is to expand

a search tree by exploring the fringe node that is best according
to some priority measure. In our setting, the objective is to find a
profile minimizing the maximal gain from deviation. Therefore we
adopt as our priority measure a lower bound, ε̂(s), on the possi-
ble gain to deviation from profile s, which is just the greatest gain
among deviations from s that have been evaluated. The pseudo-
code below describes the MRFS procedure.

MINIMUM-REGRET-FIRST-SEARCH

Select initial profile at random
while Queue is not empty

do
Select lowest ε̂(s) profile s from queue
if s is confirmed

then Remove it from queue and assign ε(s) = ε̂(s)
else s̄← SELECT-DEVIATION(s)

Insert s̄ into queue if previously unevaluated
Update ε̂(ŝ) for ŝ ∈ {s̄} ∪ D(s̄) in the queue

The subroutine SELECT-DEVIATION(s) returns some deviation
from s which has yet to be sampled. In this selection we try to pre-
dict which unevaluated deviation from s is likely to give the largest
gain from deviation. While the efficacy of the deviation selection
heuristic depends on the game class, we have empirically found
one heuristic that works well in a variety of cases. Specifically,
2Moreover, in general we cannot assume that a PSNE even exists
for the base game. We can relax the criterion to allow approximate
equilibria, though we typically do not know a priori the regret of
the best pure-strategy approximate solution.
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our method tracks deviations by player index and target strategy,
and selects the unevaluated deviation from the current profile that
has most frequently produced an improvement in the search history
thus far.

5. EVALUATION OF SEARCH METHODS
FOR REVEALED PAYOFFS

Our experiments employ games of various classes generated by
GAMUT [8]. When applicable, we select game instances similar
in size to those used by Sureka and Wurman [14]. Initially we ex-
periment with a game class used in their prior study to establish a
baseline for algorithm comparison. We then proceed to investigate
a game class whose structure is known to be exploited by a best-
response dynamic, so that we may compare the algorithms in an
environment expected to be favorable to TABU. Results for other
game classes were qualitatively similar, reported in a prior work-
shop version of our revealed-payoff algorithm study [5].

5.1 Uniform Random Games
Our first class of games has payoffs that are uniformly and in-

dependently distributed in the range [-100,100]. The game class
is denoted URG(|I|, |Si|), where |I| is the number of players and
|Si| is the strategy set size of each player. We compare MRFS
and TABU on two sizes of games: the smaller URG(5,5) and the
larger URG(5,10). To construct the data sets for comparing the al-
gorithms we generated 20 games in each class, and checked which
instances possess a PSNE. For each instance we ran each algorithm
100 times, with randomly selected starting profiles on each run.

Our first comparison measures the number of evaluation steps
(expressed in terms of percentage of profile space) required to con-
firm an equilibrium. For this measure, we necessarily limited at-
tention to those games possessing a PSNE. The results of this com-
parison are shown in Table 1.

URG(5,5) URG(5,10)
Mean (%) Median (%) Mean (%) Median (%)

MRFS 53.42 52.12 37.10 31.41
TABU 52.25 49.28 41.79 34.75
p value 0.18 3.5e-05

Table 1: Percentage of profile space explored to confirm a
PSNE, among URGs with at least one PSNE.

Our analysis of URG(5,5) included 12 games which contained at
least one PSNE. Seeds 0, 1, 3, 4, 8, and 15 contained one PSNE;
seeds 5, 13, 16, 17, and 18 contained two; and seed 20 contained
three. The performance of MRFS and TABU varied drastically ac-
cording to the individual game. For instance, in seeds 4, 8, and 15,
TABU rarely succeeded in confirming the solution.3 Similarly in
seed 3, MRFS on average requires nearly all the search space to
be evaluated. It should be noted that although the equilibrium was
not confirmed until near the last iteration, many near-equilibrium
profiles were confirmed much earlier.

Our analysis of URG(5,10) also included 12 games which con-
tained at least one PSNE. Algorithm performance differences are
statistically significant in the large game. In these larger games the

3Since TABU is not guaranteed to confirm an existing solution a
timeout was placed on the number of iterations equal to the size of
the strategy space. If TABU exceeded the timeout it was credited
for finding the solution in the greatest possible number of steps
required by MRFS.

average performance of MRFS and TABU improves from approxi-
mately 50% of the space searched to the mid-30% range.

Figure 2 shows the minimum confirmed ε as a function of the
space explored, which is our second performance measure. In many
practical settings it may be that near equilibrium profiles are just as
useful as PSNE. Therefore in those cases we consider the second
measure more appropriate. Notice that MRFS confirms low ε pro-
files much earlier than TABU, which is the desired result.

5.2 Congestion Games
The second comparison we present is an experiment using con-

gestion games. The GAMUT [8] user documentation describes the
class as follows:

In the congestion game, each player chooses a sub-
set from the set of all facilities. Each player then re-
ceives a payoff which is the sum of payoff functions
for each facility in the chosen subset. Each payoff
function depends only on the number of other players
who have chosen the facility.

A convenient feature of congestion games is that they possess
a potential function [11]. As a consequence, they exhibit two key
properties for our purposes: they possess PSNE, and best-response
learning processes converge to this equilibrium [7]. This latter
property suggests that the TABU best-response search algorithm
should be effective.

We compare MRFS and TABU on four-player four-facility con-
gestion games. Congestion(4,4) has 65, 536 distinct profiles since
each player chooses a subset of the 4 facilities to play. Exploit-
ing player symmetry would reduce this to 3876 distinct profiles,
though in our experiments the algorithms do not do this. Exploit-
ing symmetry would of course have only improved performance
for the fixed game size. The results of the congestion game com-
parison are shown in Table 2. Twenty games were generated for
experimentation using GAMUT. As expected, these games were
extremely easy for TABU, which needed to search only a tenth of
one percent of the profile space on average to confirm a PSNE.
They were quite easy for MRFS as well, although this algorithm
required 0.15 of one percent. The differences are statistically sig-
nificant, but practically negligible given the miniscule amount of
search required.

MRFS Tabu
Mean (%) 0.15 0.10
Median (%) 0.15 0.10
p value < 2.2e-16

Table 2: Congestion game (4,4). Percentage of profile space
explored to confirm a PSNE.

6. SEARCH METHODS FOR NOISY PAY-
OFFS

When payoff realizations are noisy, it is clear that the MRFS and
TABU best-response algorithms are inadequate, since these do not
consider how to allocate samples across evaluated profiles. Nev-
ertheless, we can apply them to the problem in a modified form,
interpreting an evaluation step as a decision to draw k payoff sam-
ples for the target profile. Clearly, as k increases, so does reliability
of the answers. On the other hand, increasing k reduces the num-
ber of profiles that can be explored with a given number of samples.
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Figure 2: Mean lowest confirmed regret (ε) for URG(5,5) on the left and URG(5,10) on the right.

An analyst can, perhaps, guess a reasonable value for k for a par-
ticular problem, using higher k when more noise is present. Such a
solution is unsatisfactory for two reasons. First, it seems a waste to
sample each profile an equal number of times, since some profiles
will show to be hopeless as solution candidates after only a few
samples. Second, we would like to develop an algorithm that can
automatically adjust sampling allocation appropriately for a given
problem, rather than involve the analyst in the process.

We are aware of two previous approaches to the problem of sam-
ple allocation in games with noisy payoffs, one by Walsh et al. [17]
and another by Reeves et al. [10]. Walsh et al. introduced a search
algorithm founded on the principles of metareasoning [13], using
an approximate regret function to determine the value of choosing
a specific profile to sample. Reeves et al. proposed a method of
search by which profiles are selected to be sampled according to
the estimated probability mass placed on the specific profile in a
sample equilibrium. Below we introduce another approach which
is based on information gain as measured by the Kullback-Leibler
divergence criterion [6].

6.1 ECVI (Walsh et al.)
First, we discuss the approach to guided search in noisy games

introduced by Walsh et al. [17]. Below we overload s to denote a
profile s ∈ S as well as the action of sampling it and let ST be
the space of sequences of sampling actions of length T . We also
use the notation E .s to indicate an empirical game which results
by sampling a profile s and adding the resulting sample payoff to
the current data set in E . Let x(E) be some decision model based
on the information encompassed within the current empirical game
and let ψ(s) be the error model for selecting a profile s. We can
define the expected value of information (EVI) from sampling a
particular profile s under the current information state E to be

EV I(s|E) = EE .s|E
ˆ
ψE .s(x(E))− ψE .s(x(E .s))

˜
. (1)

Walsh et al. propose two algorithms. The first of these is EVI as
defined in Equation 1, in which x(E) selects an arbitrary, possibly
mixed-strategy, Nash equilibrium in the empirical game E . Addi-
tionally, their error model is cumulative regret, defined to be

ψ(s) =
X

i ∈ I, ŝ ∈ Di(s)

max(0, ui(ŝ)− ui(s)).

Finally, they develop a particular model of future information which

uses distributional estimates for the payoffs ui(s) of the form

µE.s∞(ui(s)) = µE(ui(s)) and σE.s∞(ui(s)) =
σE(ui(s))

nE(s) + |s∞|

where s∞ is some large repeated sampling sequence of s, nE(s) is
the number of samples of profile s already in E , and σE(ui(s)) is the
sample variance of ui(s).

When calculating the expectation of ψE .s(x(E .s)), Walsh et al.
generate Monte Carlo samples which each define a future error
function ψE .s(·). For each of these samples, a new set of Monte
Carlo samples is generated for the decision process x(E .s). Walsh
et al. found that this EVI approach is computationally infeasible for
large games, which motivated their development of a second algo-
rithm termed expected confirmational value of information (ECVI).
Whereas in EVI sampling s has positive value in expectation only
if it is expected to change (refute) the current equilibrium choice,
ECVI gives more value to s if it is likely to confirm the current
equilibrium x(E). This was done in an attempt to approximate the
true regret and decision functions in the base game. Specifically,
the authors [17] calculate ECVI as

ECV I(s|E) = EE .s|E
ˆ
ψE (x(E))− ψE .s(x(E))

˜
.

To help understand the implications of using ECVI, we consider an
alternate formulation of the expected error of ψE .s(x(E .s)). In-
stead of generating Monte Carlo samples for ψ(·) and x(·) inde-
pendently, we use each additional sample for the error and decision
function’s empirical game E .s. Because a Nash equilibrium will
always exist in our finite E .s, we know that one will be returned
by the decision process x(E .s). We know from the definition of
the error function that for each Monte Carlo sample, ψE .s(x(E .s))
will be zero. Therefore the EVI equation is simplified to

EV I(s|E) = EE .s|E
ˆ
ψE .s(x(E))

˜
. (2)

Notice that in ECVI the left term in the expectation is not a ran-
dom variable and is constant for all s. Both EVI and ECVI seek to
maximize the value of their respective information notions. Thusly
EVI will chose the s which maximizes the expectation in Equation
2, while ECVI will chose the s which minimizes it.

Intuitively, the left and right terms in the expectation of Equation
1 provide an implicit balance between exploitation and exploration,
respectively. Under its entailing assumptions, the exploration com-
ponent vanished in Equation 2. Notice that EVI will choose a pro-
file s which is the most likely in expectation to refute the current
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candidate solution. This is precisely what MRFS attempts in the
revealed payoff domain by selecting unobserved deviations from
the current candidate solution. Thus Equation 2 also provides a
qualitative link between EVI and MRFS.

While our implementation of ECVI adopts the future informa-
tion model used by Walsh et al. without change, this is not so with
their decision and error models. Since we could be dealing with
very large games in which computing a sample mixed strategy Nash
equilibrium is in general an intractable operation, we restrict their
decision model to select a pure strategy Nash if one exists, and a
pure profile with smallest regret otherwise. Furthermore, our error
model is regret, ε(s) as defined above, rather than cumulative regret
that they use.

Like the Walsh et al. error model, ε(·) has a zero at a Nash equi-
librium. However, the ε regret measure has different properties with
regards to non-zero error profiles. Example 1 highlights the differ-
ence between the two. The Walsh et al. error model will assign the
same value (10) to both profiles. The ε error model will assign 1 to
the first profile and 10 to the second. We believe the ε measure is
more representative of agent regret.

EXAMPLE 1. Consider a profile in symmetric game Γ1 with 10
different deviations. In each of the deviations the deviating player
gains 1.

Now consider a profile in another symmetric game Γ2 with 10
different deviations. In one of the deviations the deviating player
gains 10. The other deviations give the deviating player a gain of
0.

6.2 Information Gain Approach
In this section we present our core algorithm for intelligent search

in games: the information gain algorithm. While past approaches,
such as EVI and ECVI above, focus on improving a particular (per-
haps arbitrary) Nash equilibrium estimate (in our setting, a pure
strategy equilibrium), the information gain approach focuses on
improving a model which is based on any model which yields the
distribution over profiles given an empirical game. Such profile
distributions arise, for example, as belief distributions of play [16],
which are beliefs constructed by an outside observer (e.g., mech-
anism designer) about the relative likelihood of different profiles
arising as a result of actual strategic interaction which is modeled
by the game. Belief distributions of play may model players as
selecting an arbitrary Nash equilibrium, or may involve more com-
plex beliefs—for example, a probability distribution which assigns
higher probability to profiles with lower regret will likely assign
positive (albeit often small) probability to every profile in a finite
game. Below, we are interested in a particular such belief model
which assigns the relatively likelihoods to profiles based on their
respective probabilities of having the smallest regret.

Our information gain algorithm is, in principle, straightforward.
We begin by presuming that our sampling action will take k sam-
ples. With each profile s ∈ S we compute (or approximate) infor-
mation gain from sampling this profile k times. We then select the
profile which promises the greatest information gain. The core of
the approach to computing information gain, based on Kullback-
Leibler divergence, is very general in that it can use any prior dis-
tribution on profiles obtained based on the current empirical game,
ps(E). Thus, we first develop it for an arbitrary distribution, and
then specialize to use the one of particular interest to us in this
work.

First, we define the entropy of a profile s,H(s; E):

H(s; E) = −ps(E) log2 ps(E)− (1− ps(E)) log2(1− ps(E))

The standard definition of cross entropy of s, denoted here by

H(s; E , Ê), is then

H(s; E , Ê) = −ps(E) log2 ps(Ê)− (1− ps(E)) log2(1− ps(Ê))

Based on these, we define the information gain for a profile s from
taking k additional samples of ŝ, denoted G(s; E , E .ŝk), to be

G(s; E , E .ŝk) = H(s; E , E .ŝk)−H(s; E)

Finally, the aggregate information gain from sampling a profile s a
total of k times, denoted G(E , E .sk), is

G(E , E .sk) =
X

ŝ∈D(s)

G(ŝ; E , E .sk)

The information gain so defined is then used as a part of our Info-
Gain-Search selection algorithm:

INFO-GAIN-SEARCH(E(∅); k;T )

Select initial profile at random s
E ← k samples of s
while Termination criteria not satisfied

do
s← arg max

ŝ
EE .ŝk|E

h
G(E , E .ŝk)

i
E ← E ∪ k samples of s

return arg maxŝ pŝ(E)

In developing our assessment of likely strategic outcomes based
on the evidence encompassed by the empirical game, we posit that
players are most likely to play a profile with the lowest regret. Since
we restrict our search space to pure strategy profiles, such profiles
need not constitute Nash equilibria, although often they will (par-
ticularly in very large games), and even more often the smallest re-
gret will be indeed quite low to justify our belief. Thus, we define
our information gain with respect to the distribution ps(E) which
assigns probabilities to profiles s in proportion to their likelihood of
having the smallest regret. We now develop these distributions for-
mally, beginning with the definition of the highest payoff a player i
can obtain by deviating from s to another strategic option:

DEFINITION 6.1 (MAXIMUM DEVIATION PAYOFF). For a given
player i and profile s, the maximum deviation payoff is

δi(s) = max
ŝ ∈ Si \ si

ui(ŝ, s−i).

The distribution of δi(s), denoted by Fδi(s)(δ), is the nth order
statistic (maximum) over the mean payoffs of the deviations, given
by

Fδi(s)
(d) =

Y
ŝ ∈ Si \ si

Fui(ŝ, s−i)
(d).

The distribution of player regret, r, denoted by Fεi(s)(r) can be
obtained by conditioning on the payoff to i from playing s:

Fεi(s)
(r) =

Z
R
Fδi(s)

(u+ r) · dFui(s)
(u). (3)

We estimate the integral in (3) using Monte Carlo with importance
sampling [12]. The distribution of regret for a particular profile, s,
is then simply

Fε(s)(r) =
Y
i∈I

Fεi(s)
(r).

1068



Now, as the final piece, we can define the actual distribution of
minimum regret, that is, we can define, for each profile s ∈ S,
the probability that s has minimum regret given the evidence in the
empirical game:

ps(E) =

Z
R

264 Y
ŝ ∈ S \ s

“
1− Fε(ŝ)(r)

”375 dFε(s)(r). (4)

To estimate the value of the integral in (4) using Monte Carlo,
we have to generate M realizations of the random variable. Each
of theseM realizations requires computing or estimating the Equa-
tion (3) expression |S| − 1 times. The latter, as we already men-
tioned, is also estimated using Monte Carlo by generating N real-
izations of its respective random variable. Thus, each iteration re-
quiresO(|S|NM) operations, for at total running time ofO(|S|NM T

k
).

Furthermore, we may have to use a very large M to get a reason-
able approximation. Consequently, running time of our algorithm
quickly becomes impractically long. To keep it somewhat in check,
we instead approximate the integral by using point estimates for the
mean regret of the remaining profiles:

p∗s(θ) = Fε(s)(ε
(1)

S\s), (5)

where ε(1)S\s is the lowest regret over all profiles except s calculated
using the expected mean payoffs given the empirical game E . The
approximation in (5) requires O(|S|N) calculations in each itera-
tion, for a total running time of O(|S|N T

k
).

7. EVALUATION OF SEARCH METHODS
FOR NOISY PAYOFFS

Unlike our evaluation of search algorithms for games with re-
vealed payoffs, which used randomly generated games of various
classes, we evaluate the approaches for noisy games in a more
representative setting. The base game used for this purpose is a
Supply-Chain Management game in the Trading Agent Competi-
tion (TAC/SCM [1, 2]) with the strategy sets of players comprised
of heuristic strategies. The game is modeled as a symmetric normal
form game with five heuristic strategies4, for a total of 35 strategy
profiles. The payoffs in the game are estimates based on collected
data for every strategy profile of a three-player reduction of the
original six-player game, obtained using the hierarchical game re-
duction technique [19]. We use those estimated payoffs [4] to con-
struct a base game which has structure similar to the true TAC/SCM
game. Therefore it is with respect to the approximated TAC/SCM
base game that we measure error. This technique, in our applica-
tion, creates three player-pairs. Each of these pairs is constrained
to play the same strategy and the payoff for the pair is the aver-
age of the payoffs of each member in the original game. In typical
TAC/SCM analysis, sampling is the dominant cost, taking nearly an
hour per data point. In our study, we eliminate this cost by simulat-
ing additive zero-mean normal Gaussian noise on top of the already
sampled base game.

We present the results of two experiments. The first experiment
uses Gaussian noise with standard deviation of 3.75 million, which
is roughly the order of magnitude of the noise found in TAC/SCM
simulations. The second experiment has a larger standard deviation
of 10 million. For each of these experiments, we tested four differ-
ent algorithms. For each experiment and algorithm we generated
4The heuristic strategies are a subset of the agents who participated
in the TAC/SCM 2006 tournament and released binary versions of
their agent software.

100 runs and average the score over runs. The score is the true re-
gret ε of the returned profile in the base game as a function of the
number of samples.

The first algorithm tested was the MRFS extension to noisy games,
labeled MRFS-30 in Figure 3. MRFS-30 samples each profile 30
times and uses the resultant mean as if it were the actual payoff in
a revealed payoff game.

Secondly, we tested the IGS and ECVI algorithms. These are re-
peated sampling algorithms and normally require some initial sam-
ples of every profile in the game. Therefore we prefixed the re-
peated sampling portion of the search with a MRFS search where
3 samples are taken per profile. Each iteration of IGS and ECVI
algorithms took 5 samples of each profile per iteration. These al-
gorithms were labeled IGS-MRFS-3 and ECVI-MRFS-3, respec-
tively.

Finally we tested the IGS algorithm with a zero-mean Gaussian
prior payoff distribution over profiles. In the small-variance game
the standard deviation of the Gaussian prior was taken to be 5 mil-
lion, whereas in the large-variance game it was 20 million. This
algorithm was labeled IGS-WITH-PRIOR.

Figure 3 shows the results of the analysis. In the small vari-
ance game we see that MRFS-30 does not perform as well as the
other algorithms for most of the sample sizes. Using MRFS-3 to
gather initial samples seemed to help substantially for the first 200
samples, after which IGS-WITH-PRIOR caught up with the per-
formance of IGS-MRFS-3. Note that MRFS-3 uses up the first 105
samples. Finally, we note that IGS-MRFS-3 offers a performance
improvement over ECVI-MRFS-3.

In the large-variance game we note the surprising result that all
of the algorithms outperformed ECVI-MRFS-3, particularly when
more samples were taken. MRFS-30 display a particularly strong
performance in this game class, essentially on par with IGS-MRFS-
3 and IGS-WITH-PRIOR.

8. DISCUSSION
We have investigated the problem of searching for approximate

equilibria in games where determining the payoff for particular pro-
files is costly. We considered two models of payoff evidence:

• revealed-payoff: each search step evaluates a profile, obtain-
ing exact payoff information

• noisy-payoff: each search step produces a sample stochasti-
cally generated conditional on actual payoffs

For each model, we experimentally evaluated the known approaches
from prior literature—all, as far as we are aware—along with new
algorithms and variants, on a range of game instances and game
classes.

For the revealed-payoff model, we compared MRFS and TABU
on classes of games with or without helpful structure. In all cases,
we found that the methods require approximately the same number
of search steps on average to confirm a PSNE. MRFS significantly
outperforms TABU, however, in terms of its ability to confirm bet-
ter approximate equilibria earlier, for games that require significant
search. Another important attribute of the MRFS algorithm is that
it will confirm all available profiles eventually, whereas TABU may
not. This is important not only in the case where no PSNE exists,
but also when we wish to analyze low-regret profiles when design-
ing a best response.

For the noisy-payoff model, we introduced a new algorithm based
on information gain, called IGS, and found that it outperforms the
ECVI repeated sampling algorithm, the current benchmark in the
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Figure 3: Mean regret (ε) in the SCM↓3 2006 game of the profile returned by the algorithms after a given number of samples when
small variance (left) and large variance (right) Gaussian noise is added to the payoffs.

literature. Unlike ECVI, which was an attempt to construct a com-
putationally feasible version of expected value of information, the
IGS family of algorithms does not directly resolve to improve the
mean estimate of player regret. Instead, the IGS algorithm focuses
on improving some distribution over profiles. For example, this
distribution could be a distribution of play, a likelihood of PSNE,
or the probability that a profile minimizes regret. Optimizing the
distribution rather than a point estimate can improve calculations
involving the distribution and other heretofore unknown quantities.
Consequently, an EVI-based algorithm may not completely capture
the decision theoretic-problem underlying the game analysis task.

In addition, IGS does not succumb to a problem that plagues
ECVI. That is, ECVI has a tendency to sample safe profiles, or
precisely, profiles that are not likely to change the current decision
in expectation. Thus, ECVI can easily get stuck in local optima and
never recover.

Although MRFS was developed and justified under the revealed-
payoff model, we have shown that even under noisy payoffs, using
MRFS to select initial samples can improve performance early on
in the search process. Moreover, we have shown that in some cases
MRFS can perform as well as IGS when sampling noisy games.

One significant drawback to MRFS is the constant number of
samples per iteration. Given the relative strength MRFS has dis-
played on the tested classes of games, an interesting future path of
study is a dynamic variant of MRFS which takes into account the
significance of the deviation comparisons to determine how many
times to sample a profile.
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