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ABSTRACT
We define the class of games called simulation-based games,
in which the payoffs are available as an output of an oracle
(simulator), rather than specified analytically or using a pay-
off matrix. We then describe a convergent algorithm based
on a hierarchical application of simulated annealing for es-
timating Nash equilibria (if they exist) in simulation-based
games with finite-dimensional strategy sets. Additionally,
we present alternative algorithms for best response and Nash
equilibrium estimation, with a particular focus on one-shot
infinite games of incomplete information. Our experimen-
tal results demonstrate that all the approaches we introduce
are efficacious, albeit some more so than others. We show,
for example, that while iterative best response dynamics has
relatively weak convergence guarantees, it outperforms our
convergent method experimentally. Additionally, we pro-
vide considerable evidence that a method based on random
search outperforms gradient descent in our setting.

1. INTRODUCTION
The field of Game Theory has enjoyed great success as a

framework for modeling strategic interactions between agents.
A plethora of theoretical game models and analysis tech-
niques have been developed over the years [3], and a num-
ber of numerical solvers exist, for example, GAMBIT [7] and
GameTracer [1]. To the best of our knowledge, however, few
solution or approximation tools exist for any general class of
infinite games. Reeves and Wellman solver [10] is one such
tool; however, it can only be applid to two-player games with
a restricted class of piecewise linear utility functions. The
dearth of general-purpose solvers or approximation tools for
infinite games considerably restricts the space of strategic
models that can be studied: a model must either be ana-
lytic, fall into a highly restricted class covered by available
solvers, or be amenable to coarse discretization that does
not significantly sacrifice solution quality.

In this paper, we introduce several general-purpose Nash
equilibrium approximation techniques for infinite games, with
a particular focus on one-shot infinite games of incomplete
information. All of our techniques rely on a best response
approximation subroutine, as we schematically show in Fig-
ure 1. Our goal is to take as input a black-box specification
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Figure 1: A diagramatic view of our approaches to
Nash equilibrium approximation.

of the players’ payoff functions (and type distributions, if
we are dealing with a game of incomplete information) and
output an approximate Nash equilibrium. In a fairly general
setting, we are able to demonstrate theoretical convergence
of one of our methods to an actual Nash equilibrium. Addi-
tionally, we experimentally demonstrate efficacy of all meth-
ods we study. Our experimental evidence focuses on rela-
tively simple auction settings, with most examples involving
only one-dimensional types, and, consequently, allowing the
use of low-dimensional strategy spaces. It is as yet unclear
how our approaches will fare on considerably more complex
games, as such games are not easily amenable to an experi-
mental evaluation.

2. NOTATION
A normal-form game is formally expressed by a tuple

[I, {Si}, {ui(s)}], where I refers to the set of players and
m = |I| is the number of players. Si is the set of strate-
gies available to player i ∈ I. The utility function, ui(s) :
S1×· · ·×Sm →R defines the payoff of player i when players
jointly play s = (s1, . . . , sm), where each player’s strategy sj

is selected from his strategy set, Sj . It is often convenient to
refer to the strategy (pure or mixed) of player i separately
from that of the remaining players. To accommodate this,
we use s−i to denote the joint strategy of all players other
than i.

Faced with a one-shot game, an agent would ideally play
its best strategy given those played by the other agents. A
configuration where all agents play strategies that are best
responses to the others constitutes a Nash equilibrium.

Definition 1. A strategy profile s = (s1, . . . , sm) con-
stitutes a Nash equilibrium of game [I, {Si}, {ui(s)}] if for
every i ∈ I, s′i ∈ Si, ui(si, s−i) ≥ ui(s

′
i, s−i).

An alternative way to look at the strategic landscape is
to define a function which gives for each profile the maxi-
mum benefits any agent can gain from a unilateral devia-
tion (regret): ε(s) = maxi∈I maxa∈Si [ui(a, s−i) − ui(s)] =
maxi∈I [u

∗
i (s−i)− ui(s)].

We denote a simulation-based game by [I, {Si},O], where
the oracle, O, produces a (possibly noisy) sample from the



joint payoff function of players, given a joint strategy profile.
That is, O(s) = v, where v = (v1, . . . , vm) and E[v] = u(s).
We call the normal form game [I, {Si}, {ui(s)}] in this con-
text the underlying game. As such, we will always evaluate
ε(s) of a profile s ∈ S with respect to the underlying game.
Finally, we denote an estimate of a payoff for profile s, u(s),

based on k samples from O by ûk(s) = 1
k

Pk
j=1 v(s)j , where

each v(s)j is generated by invoking the oracle.

3. BEST RESPONSE APPROXIMATION
Best-response approximation is a subroutine in all the

methods for equilibrium approximation we discuss below.
Thus, we first describe this problem in some detail and
present a globally convergent method for tackling it.

3.1 Continuous Stochastic Search for Black-
Box Optimization

At the core of our algorithms for approximating best re-
sponse lies a stochastic search subroutine which can find an
approximate maximizer of a black-box objective function on
continuous domains. The topic of one-stage black-box con-
tinuous optimization has been well-explored in the litera-
ture [11]. In this work, we utilize two algorithms: stochastic
approximation and simulated annealing. The overall ap-
proach, of course, admits any satisfactory black-box opti-
mization tool that can be effective in continuous settings. A
part of our goal is to assess the relative difference between
the performance of a local and a global search routine.

3.1.1 Stochastic Approximation
Stochastic approximation [11] is one of the early algo-

rithms for continuous stochastic search. The idea of stochas-
tic approximation is to implement gradient descent algo-
rithms in the context of a noisy response function. As with
all gradient descent algorithms, convergence is guaranteed
only to a local optimum.1 However, together with random
restarts and other enhancements, stochastic approximation
can perform reasonably well even in global optimization set-
tings.

3.1.2 Simulated Annealing
Simulated annealing is a well-known black-box optimiza-

tion routine [11] with provable global convergence [4]. Sim-
ulated annealing takes as input an oracle, f , that evalu-
ates candidate solutions, a set X of feasible solutions, a
candidate kernel K(Xk, ·) which generates the next candi-
date solution given the current one, Xk, and the temper-
ature schedule tk that governs the Metropolis acceptance
probability pk(f(x), f(y)) at iteration k, which evaluates to

exp[− f(y)−f(x)
tk

] when f(y) < f(x) and 1 otherwise. It then

follows a 3-step algorithm, iterating steps 2 and 3:

1. Start with X0 ∈ X.

2. Generate Yk+1 using candidate kernel K(Xk, ·).

3. Set Xk+1 = Yk+1 with Metropolis acceptance proba-
bility pk(f(Xk), f(Yk+1)), and Xk+1 = Xk otherwise.

1For example, Kiefer and Wolfowitz [5] demonstrated con-
vergence of this technique when gradient is estimated via a
finite difference method—that is, based on the difference of
function values at neighborhood points.

3.2 Globally Convergent Best Response Ap-
proximation

We now present the application of simulated annealing
search to the problem of best response in games in Algo-
rithm 1, where tk be a schedule of temperatures, and nk be
a schedule of the number of samples used to evaluate the
candidate solutions at iteration k.

Algorithm 1 BR(O, Si, s−i, K(·, ·), tk, nk)

1: Start with a0 ∈ Si

2: For k > 0, generate bk+1 ∈ Si using K(sk, ·)
3: Generate U1 = ûnk,i(ak, s−i) and U2 = ûnk,i(bk+1, s−i)

from O
4: Set ak+1 ← bk+1 w.p. pk(U1, U2) and ak+1 ← ak o.w.

For the analysis below, we need to formalize the notion of
candidate Markov kernel, K(·), which describes a distribu-
tion over the next candidate given the current:

Definition 2. A function K : A×B → [0, 1] is a candi-
date Markov kernel if A ⊂ Rn and B is a Borel σ-field over
A. The first argument of K(·, ·) is the current candidate,
and the second is a subset of candidates, for which K gives
the probability measure.

In order for simulated annealing to have any chance to con-
verge, the kernel must satisfy several properties, in which
case we refer to it as an admissible kernel.

Definition 3. A kernel K : A×B → [0, 1] is admissible
if (a) K is absolutely continuous in second argument, (b)
K(x, B) =

R
B

r(x, y)dy with infx,y∈A r(x, y) > 0, and (c)
For every open B ⊂ A, K(x, G) is continuous in x.

The following conditions map directly to the sufficient
conditions for global convergence of simulated annealing ob-
served by Ghate and Smith [4]:

1. EXISTENCE holds if Si is closed and bounded and the
payoff function ui(si, s−i) is continuous on Si. This
condition is so named because it implies that the best
response exists by the Weierstrass theorem.

2. ACCESSIBILITY holds if for every maximal a∗ ∈ Si

and for any ε > 0, the set {a ∈ Si : ‖a− a∗‖ < ε} has
positive Lebesgue measure

3. DECREASING TEMPERATURES (DT) holds if the
sequence tk of temperaturesconverges to 0

4. CONVERGENCE OF RELATIVE ERRORS (CRE)
holds if the sequences |ũnk,i(ak, s−i) − ui(ak, s−i)|/tk

and |ũnk,i(bk+1, s−i)−ui(bk+1, s−i)|/tk, where bk+1 is
the next candidate generated by the kernel, converge
to 0 in probability

The first two conditions ensures that the global optimum
actually exists and can be reached by random search with
positive probability. The third and fourth conditions ensure
that the iterates stabilize around optima, but do so slowly
enough so that the noise does not lead the search to stabilize
in suboptimal neighborhoods.

Theorem 1 (Ghate and Smith [4]). If the problem sat-
isfies EXISTENCE and ACCESSIBILITY, and the algo-
rithm paramters satisfy DT, and CRE, Algorithm 1 utiliz-
ing an admissible candidate kernel converges in probability
to u∗i (s−i) = maxa∈Si ui(a, s−i).



Let ûi,k(s−i) to be the answer produced when Algorithm 1
is run for k iterations. This will be our estimate of u∗i (s−i),
which, by Theorem 1, is consistent.

4. NASH EQUILIBRIUM APPROXIMATION
Our goal in this paper is to take a simulation-based game

as an input and return a profile constituting an approximate
Nash equilibrium in the underyling game. Below, we present
two general approaches to Nash equilibrium approximation:
a well-known iterative best response approach, as well as
our own algorithm based on simulated annealing. Both of
these can use any best response approximation algorithm as
a subroutine.

4.1 Equilibrium Approximation via Iterated
Best Response

While the problem of best-response approximation is in-
teresting in its own right, it may also be used iteratively
to approximate a Nash equilibrium. For ease of exposition,
we describe the procedure used for symmetric profiles (i.e.,
profiles in which all players play the same strategy):

1. Generate an initial symmetric profile s0

2. Find approximate best response, ŝ, to current profile
sk

3. Set sk+1 = ŝ and go back to step 2

When the procedure terminates after a finite number of
steps K, we return the final iterate sK as an approximate
Bayes-Nash equilibrium. Under very restrictive assumptions
(e.g., in supermodular games with unique Nash equilibria [8]
and in congestion games [9]) iterated best response is known
to converge to a Nash equilibrium.

4.2 A Globally Convergent Algorithm for Equi-
librium Approximation

In this section we are interested in developing a globally
convergent algorithm for finding approximate Nash equilib-
ria. The approach we take, visualized in Figure 2, is to min-
imize approximate regret, ε̂(s), where approximations are
produced by running Algorithm 1. For the task of minimiz-
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Figure 2: A diagramatic view of our algorithm based
on approximate regret minimization.

ing regret we again use an adaptation of simulated anneal-
ing, but now need to establish the convergence conditions
for this meta-problem.

First, let us define a candidate kernel for this problem as
a combination of admissible kernels for each agent i:

K(x, B) =

Z
B

Y
i∈I

ri(x, yi)
Y
i∈I

dyi, (1)

where Ki(x, C) =
R

C
ri(x, y)dy with ri(·) the Kernel density

used by the simulated annealing routine for player i. We now
confirm that the resulting kernel is admissible.

Lemma 2. The candidate kernel defined in Equation 1 is
admissible.

Proof. Since each ri(x, yi) is positive everywhere, so is
the product. Furthermore, it is clear that if B is of measure-
zero, then so is K(x, B). Finally, K(x, B) is continuous on
x since each ri(x, yi) is continuous and therefore so is the
product.

Thus, we need only define admissible kernels on each player’s
strategy set.

Given the candidate kernels for each player and the con-
structed candidate kernel for regret minimization, we present
a meta-algorithm—Algorithm 2—to find approximate Nash
equilibria.

Algorithm 2 EQEstimate(O, S, K(·, ·), Ki(·, ·), tl, nl, t
i
k, ni

k)

1: Start with s0 ∈ Si

2: Generate ql+1 ∈ Si using K(sl, ·)
3: Generate ûnl,i(sl) and ûnl,i(ql+1) from O
4: Let ûi,l(s−i,l)← BR(O, s−i,l, Si, K

i(·, ·), ti
k, ni

k)
5: Let ûi,l(q−i,l+1)← BR(O, q−i,l, Si, K

i(·, ·), ti
k, ni

k)
6: Set sl+1 ← ql+1 w.p. pl(sl, ql+1) and sl+1 ← sl o.w.

We now present the sufficient conditions for convergence
of Algorithm 2. First, we verify what we need for continuity
of ε(s) in the following Lemma.

Lemma 3. If ui(s) are uniformly continuous on S for ev-
ery i, then ε(s) is continuous on S.

The proof of this and other results is in the Appendix of the
extended version.

Based on Lemma 3, we need to modify the EXISTENCE
criterion slightly as follows:

EXISTENCE* holds if Si is closed and bounded and the
payoff function ui(si, s−i) is uniformly continuous on Si for
every player i.

Since we are concerned about every player now and, fur-
thermore, need to avoid “undetectible” minima in ε(s), we
also modify the ACCESSIBILITY condition:

ACCESSIBILITY* holds if for any δ > 0, for every profile
s, for every player i, and for every maximal a∗ ∈ Si the set
{a ∈ Si : ‖a − a∗‖ < δ} has positive Lebesgue measure;
furthermore for every minimal s∗ ∈ S the set {s ∈ S :
‖s− s∗‖ < δ} has positive Lebesgue measure

We also need to augment the conditions on algorithm pa-
rameters to include both the conditions on the parameters
for the problem of minimizing ε(s), as well as the condi-
tions on parameters for finding each player’s best response.
For clarity, we will let l denote the iteration number of the
meta-problem of minimizing ε(s) and k denote the iteration
number of the best response subroutine.

DECREASING TEMPERATURES* (DT*) holds if for
every agent i the sequence ti

k of temperatures converges to
0, and the sequence tl of temperatures converges to 0

CONVERGENCE OF RELATIVE PAYOFF ERRORS
(CRPE) holds if for every agent i the sequences of ratios
|ûni

k
,i(ak, s−i) − ui(ak, s−i)|/ti

k and the sequence of ratios

|ûni
k

,i(bk+1, s−i) − ui(bk+1, s−i)|/ti
k, where bk+1 is the next



candidate generated by the kernel, converge to 0 in proba-
bility.

Now, define ε̂l(s) = maxi∈I [ûi,nl(s−i)− ûi,nl(s)].

Lemma 4. If EXISTENCE*, ACCESSIBILITY*, DT*,
and CRPE hold, ε̂l(s) converges to ε(s) in probability for
every s ∈ S.

We need one more condition on the algorithm parameters
before proving convergence:

CONVERGENCE OF RELATIVE EPSILON ERRORS
(CREE) holds if the sequences of ratios |ε̂l,i(sk, s−i,k) −
εi(sk, s−i,k)|/tk and |ε̂nk,i(rk+1, s−i,k) − εi(rk+1, s−i,k)|/tk,
where rk+1 is the next candidate generated by the kernel,
converge to 0 in probability.

Theorem 5. Under the conditions EXISTENCE*, AC-
CESSIBILITY*, DT*, CRPE, and CREE, Algorithm 2 con-
verges to ε̄ = mins∈S ε(s).

Proof. While Ghate and Smith [4] prove convergence
for functions which are expectations of the noisy realiza-
tions, their proof goes through unchanged under the above
sufficient conditions, as long as we ascertain that ε̂l → ε(s)
for every s ∈ S. This we showed in Lemma 4.

Corollary 6. If there exists a Nash equilibrium on S,
Algorithm 2 converges to a Nash equilibrium when the con-
ditions EXISTENCE*, ACCESSIBILITY*, DT*, CRPE,
and CREE obtain.

5. INFINITE GAMES OF INCOMPLETE IN-
FORMATION

Perhaps the most important application of the methods
we have discussed is to infinite games of incomplete informa-
tion. In what follows, we define one-shot games of incom-
plete information and adapt our methods to this domain.
Additionally, we introduce another best response approxi-
mation method specifically designed for strategies that are
functions of private information.

5.1 Definitions and Notation
We denote one-shot games of incomplete information by

[I, {Ai}, {Ti}, F (·), {ui(r, t)}], where I refers to the set of
players and m = |I| is the number of players. Ai is the set of
actions available to player i ∈ I, and A1, · · · , Am is the joint
action space. Ti is the set of types (private information) of
player i, with T = T1 × · · · × Tm representing the joint type
space. A one-shot game of incomplete information is said to
be infinite if both A and T are infinite. Since we presume
that a player knows his type prior to taking an action, but
does not know types of others, we allow him to condition his
action on own type. Thus, we define a strategy of a player
i to be a function si : Ti → R, and use s(t) to denote the
vector (s1(t1), . . . , sm(tm)). F (·) is the distribution over the
joint type space. We define the payoff (utility) function of
each player i by ui : A × T → R, where ui(ai, a−i, ti, t−i)
indicates the payoff to player i with type ti for playing action
ai ∈ Ai when the remaining players with joint types t−i play
r−i. Given a strategy profile s ∈ S, the expected payoff of
player i is ũi(s) = Et[ui(s(t), t)].

Given a known strategy profile of players other than i,
we define the best response of player i to s−i to be the
strategy s∗i that maximizes expected utility ũi(si, s−i). A

configuration where all agents play best responses to each
other in such a setting constitutes a Bayes-Nash equilibrium.

Since we defined the normal form games in terms of strat-
egy sets which are subsets of Rn, we cannot represent games
of incomplete information perfectly in our restricted normal
form. What we can do, however, is restrict the sets of strate-
gies allowed for each player to a finite-dimensional function
space on reals, and thereby parametrize each strategy using
a vector θi ∈ Θi ⊂ Rn. Let Θ = Θ1×· · ·×Θm. Let us denote
this restricted spaceHi for each player i. Then, hθi,i(t) ∈ Hi

is a particular type-conditional strategy of player i. We ag-
gregate over all players to obtain hθ(t) = (hθ1,1, . . . , hθm,m).
We then describe a restricted game of incomplete informa-
tion by [I, {Hi}, {Ti}, F (·), {ui(s)}], where Ti is the set of
player i’s types and F (·) is the joint distribution over player
types. We can map this game into the normal form as de-
scribed previously by letting Si = Θi, the set of parametriza-
tions, and for any θ ∈ Θ, ũi(θ) = EF ui(hθ(t)). Thus, the
transformed game is [I, {Θi}, {ũi(θ)}]. Now, Algorithm 2
is directly applicable and will guarantee convergence to a
strategy profile with the smallest expected benefit for a uni-
lateral deviation to any player.

5.2 Best Response Approximation
Given a best response subroutine, Algorithm 2 can be

applied to the infinite games of incomplete information, al-
though we guarantee convergence only when Algorithm 1
comprises this subroutine. Below, we describe two methods
for approximating best response functions: the first is a di-
rect adaptation of the techniques we described above; the
second is based on regression. We note that both methods
rely on an assumption that we can define a relatively low-
dimensional hypothesis class for each player which contains
good approximations of the actual best response. Later, we
experimentally verify that this is indeed possible for a num-
ber of interesting and non-trivial games. More generally, an
analyst may need to hand-craft low-dimensional restricted
strategy sets in order to effectively apply our techniques.

Direct Method.
Our first method for approximating best response func-

tions in infinite games is simply an application of Algo-
rithm 1. Here, the oracle O performs two steps: first, gen-
erate a type t ∈ T from the black-box type distribution;
and next, generate a payoff from the simulation-based pay-
off function for the strategy profile evaluated at t. As we
have noted above, we can guarantee convergence to global
best response function in the finite-dimensional hypothesis
class Hi; indeed convergence obtains even for an arbitrary
black-box specification of the strategies of other players.

Regression to Pointwise Best Response.
Our second method takes an indirect route to approximat-

ing the best response, approximating best response actions
for each of a subset of player types, and thereafter fitting
a regression to these. The outline of this algorithm is as
follows:

1. Draw L types, {t1, . . . , tL}, from the black-box type
distribution

2. Use simulated annealing to approximate a pointwise
best response for each tj , ŝj



3. Fit a regression ŝ(t) to the data set of points {tj , ŝj}

The regression ŝ(t) is the resulting approximation of the best
response function.

6. EXPERIMENTAL EVALUATION OF BEST
RESPONSE QUALITY

6.1 Experimental Setup
In this section, we explore the effectiveness of the two

methods we introduced as best-response routines for infi-
nite one-shot games of incomplete information. The best
response methods were both allowed 5000 queries to the
payoff function oracle for each iteration, and a total of 150
iterations. For both, the total running time was consistenty
under 4 seconds. We compared our methods using both
stochastic approximation (indicated by “ stochApprox ” in
our plots) and the simulated annealing stochastic search sub-
routines. Besides comparing the methods to each other, we
include as a reference the results of randomly selecting the
slope parameter of the linear best response. We want to
emphasize that our goal is not merely to beat the random
method, but to use it as calibration for the approximation
quality of the other two.

We test our methods on three infinite auction games. The
first is the famed Vickrey, or second-price sealed-bid, auc-
tion [6]. The second is first-price sealed-bid auction [6]. The
final game to which we apply our techniques is a shared-good
auction, with payoff function specified in Equation 2.

ui(ai, a−i, ti, t−i) =

8>><>>:
1
v
(ti − m−1

m
ai + 1

m
maxj 6=i aj)
if ai = maxj 6=i aj ,

ti − m−1
m

ai if ai > maxj 6=i aj ,
1
m

maxj 6=i aj otherwise.

(2)

We experimented with two- and five-player games with uni-
form type distributions, noting that the best-response finder
proposed by Reeves and Wellman [10] cannot be directly
applied to games with more than two players. In our ex-
periments with these auctions, we focus on the hypothe-
sis class H of linear functions, with θ = (α, β) such that
hθ(ti) = αti + β, which includes an actual best response in
many auction domains. In all best-response experiments,
we sought a best response to a linear strategy of the form
s(t) = kt, with k generated uniformly randomly in [0, 1].
The results were evaluated based on regret, ε(s), computed
on the underlying game. We took the average value of ε(s)
over 100–1000 trials and based our statistical tests on these
samples. Statistically significant difference at the 99% con-
fidence level between our two methods when both use sim-
ulated annealing was indicated by a “*”. In our plots, we
also include 99% confidence intervals for further statistical
comparisons.

6.2 Two-Player One-Item Auctions
Our first experiment is largely a sanity check, as there is

an exact best response finder for all three auction games we
consider here [10].2 Our results are shown in Figure 3. We
group the initial results into two categories. The first cate-
gory is comprised of settings in which there is a linear best

2There is not a significant difference in running times be-
tween the exact best response finder and our approximators.
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Figure 3: Comparison of best response methods in
2-player games with reserve price = 0.

response function. This is satisfied by Vickrey for any value
of k, first-price sealed-bid auction (fpsb) with k ≥ 1/2, and
shared-good auction (sga) with k ≥ 2/3.3 In all of these set-
tings, our best response approximations are orders of magni-
tude better than random. Indeed, in every auction we study,
the difference between all of our methods (using stochastic
approximation or simulated annealing) and random is quite
statistically significant (p-value < 10−10). Therefore, we
omit the results for random from the subsequent figures. Ad-
ditionally, in all but Vickrey, the regression-based method is
better than direct, most likely because this method is partic-
ularly sample-efficient went the actual best response is linear
and there are not many alternative best response options.

The settings in the second category yield non-linear best
response functions. All the remaining comparisons in Fig-
ure 3 fall into this category. As expected, the performance of
linear best response approximation is somewhat worse here,
although in all cases far better than random. It is worth
noting that in all of these the direct method performs sta-
tistically no worse, and in several cases much better than
the regression-based method. The result is intuitive, since
the direct method seeks the most profitable linear best re-
sponse, whereas regression presumes that linearity is a good
fit for the actual best response, and may not do well when
this assumption does not hold.

While it is good to see the effectiveness of our methods
in settings which we can already solve, our goal is to apply
them to problems for which no general-purpose numerical
solver exists. Our first such examples are two-player Vick-
rey and first-price sealed-bid auctions with reserve prices,
denoted by vickrey rp and fpsb rp respectively (Figure 4).4

In both of these, the direct method far outperforms the
regression-based method. In nearly all cases simulated an-
nealing yielded statistically significant improvement over stochas-
tic approximation; indeed, at times it was better by more
than a factor of magnitude. The reason, we believe, is that
stochastic approximation expends much of its computing
budget estimating gradients, while simulated annealing can
guide and make use of all the function evaluations it gen-
erates along the search path. Additionally, stochastic ap-

3Recall that k is the randomly generated slope of the line
to which we are approximating a best response function.
4Of course, both of these are analytically tractable. Our
study, however, is solely concerned with numerical methods
for solving games.
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price sealed-bid auction.

proximation is a local search method (even with random
restarts, which considerably enhance its performance), and
our problems appear more suited to global search.

6.3 Five-Player One-Item Auctions
Since there is no general-purpose best response finder for

five-player infinite games of incomplete information, the only
viable comparison of our results is to each other. As we
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Figure 5: Comparison of best response methods in
5-player games with uniform type distribution.

can see from Figure 5, in the five-player setting the di-
rect method tends to produce substantially better approxi-
mate best response than the regression-based method. Ad-
ditionally, in two of the three auctions in this setting, simu-
lated annealing showed substantial advantage over stochas-
tic approximation. Since these results echo those in smaller
games, the reasons are likely to be the same.

6.4 Sampling and Iteration Efficiency
In this section, we compare the “regression” and “direct”

methods in terms of efficiency in their use of both samples
from the payoff function and iterations of the optimization
algorithm. Our results below are roughly representative of
the entire set of results involving several auction games with
varying numbers of players.

First, we consider sampling efficiency. As Figure 6 sug-
gests, the “direct” method seems no worse and at times
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Figure 6: Comparison of sampling efficiency of best
response methods in two-player first-price sealed-
bid auctions.

substantially better than the “regression”-based method for
various sample sizes we consider: when very few samples are
taken, both methods seem to perform almost equally poorly,
but as we increase the number of samples per iteration, “di-
rect” method quickly surpasses “regression”. Iteration effi-
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Figure 7: Comparison of iteration efficiency of best
response methods in two-player first-price sealed-
bid auctions.

ciency results are presented in Figure 7. Interestingly, these
results appear somewhat different from those for sampling
efficiency: the “direct” method seems particularly affected
by a dearth of iterations, while “regression” is quite robust.
Note, however, that even in the case of sampling efficiency,
regression is quite robust across different sample sizes; its
flaw is that it fails to take sufficient advantage of additional
sampling. We conjecture that the robustness of regression is
partly because linear approximation of actual best response
is somewhat reasonable in this setting, and, if so, regression
smoothes out the noise much better when iterations are few.

7. EXPERIMENTAL EVALUATION OF EQUI-
LIBRIUM QUALITY

7.1 Experimental Setup
We now turn to an application of best response techniques

to Bayes-Nash equilibrium approximation in infinite one-
shot games of incomplete information. One potential ap-
plication is to extend the Automated Mechanism Design



framework introduced by Vorobeychik et al. [12] beyond
linear two-player games with piecewise-uniform type distri-
butions, a possibility heretofore precluded due to lack of
general-purpose numerical solvers.

Since the games we consider are all symmetric, we will
focus on approximating symmetric equilibria, that is, equi-
libria in which all agents adopt the same strategy. Assuming
that we can compute a best response to a particular strategy,
we can use iterated best response dynamics to find equilib-
ria, assuming, of course, that our dynamics converge. Here,
we will avoid the issue of convergence by taking the last
result of five best response iterations as the final approxi-
mation of the Bayes-Nash equilibrium. In all cases, we seed
the iterative best response algorithm with truthful bidding,
i.e., a(t) = t. All other elements of experimental setup are
identical to the previous section.

As before, in every application the difference between both
our methods and random is quite statistically significant and
the actual experimental difference is always several orders of
magnitude.

7.2 Two-Player One-Item Auctions
We first consider three two-player games for which we can

numerically find the exact best response and two for which
we cannot. We present the results in Figure 8. In all three
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Figure 8: Comparison of equilibrium approximation
quality in two-player games.

games that can be solved exactly (vickrey, fpsb, and sga),
the regression-based method outperforms the direct method.
In the case of Vickrey auction with reserve price of 0.5, this
result is reversed, and the perfomance of the two methods
on first-price sealed-bid auction with reserve price of 0.25 is
not statistically different. As we have observed previously,
simulated annealing tends to be considerably better than
stochastic approximation.

7.3 Five-Player One-Item Auctions
Now we consider five-player games, for which no general-

purpose numerical tool exists to compute a Bayes-Nash equi-
librium or even a best response. Our results are presented in
Figure 9. While the two methods are statistically indistin-
guishable from one another, the direct method was consid-
erably better than the regression-based method in Vickrey
auction experiments, and the opposite was true in the ex-
periments involving the first-price sealed-bid auction. Inter-
estingly, we can observe here considerable advantage from
using simulated annealing, as compared to stochastic ap-
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Figure 9: Comparison of equilibrium approximation
quality in five-player games with uniform type dis-
tribution.

proximation, in all instances for both the regression-based
and the direct methods.

7.4 Two-Player Two-Item First-Price Combi-
natorial Auction

In all our experiments above we faced auctions with one-
dimensional player types. Here, we apply our methods to a
first-price combinatorial auction—a considerably more com-
plex domain—although we restrict the auction to two play-
ers and two items. We allocate the items between the two
bidders according to the prescription of winner determina-
tion problem [2], which takes a particularly simple form in
this case. We further restrict our problem to bidders with
complementary valuations. Specifically, each bidder draws a
value vi for each item i from a uniform distribution on [0,1]
and draws the value for the bundle of both items vb from
the uniform distribution on [v1 +v2, 2]. We let each player’s
value vector be denoted by v = {v1, v2, vb}.

Since the game is symmetric, we seek a symmetric ap-
proximate equilibrium. Since the joint strategy space is an
intractable function space, we restrict the hypothesis class
to the functions of the form:

b1(v) = k1v
1; b2(v) = k2v

2; bb(v) = b1 + b2 +k3(v
b− b1− b2).

Unlike the experiments above, verifying the approxima-
tion quality with respect to actual best responses is ex-
tremely difficult in this case. Thus, we instead measure the
quality of our approximations against the best possible in
our restricted strategy space. Finally, we use here the di-
rect method with simulated annealing as the best response
approximation tool. As we can see from Figure 10, the best
response dynamics appears to converge quite quickly on the
restricted strategy space. Thus, at least according to this
limited criterion, our direct method is quite effective in ap-
proximating equilibria even in this somewhat complicated
case for which no general analytic solution is known to date.

8. EXPERIMENTAL COMPARISON OF EQUI-
LIBRIUM APPROXIMATION METHODS

In this section we compare the approximation quality of
best response dynamics and Algorithm 2—using simulated
annealing in one case, and stochastic approximation in an-
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dynamics in the combinatorial auction.

other.5 In this setup, both best response dynamics and Al-
gorithm 2 use the direct approximate best response method
as a subroutine, and we only look at the five-player first-
price sealed-bid auction (although we do not expect the
results to be very different for the other auction domains
above). As we can see from Figure 11, while not guaran-
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Figure 11: Comparison of equilibrium approxima-
tion quality of best response dynamics and the con-
vergent method.

teed to converge in general, best response dynamics seems
more effective than Algorithm 2; thus, while convergence is
guaranteed, it appears somewhat slow. Additionally, we ob-
serve that simulated annealing is significantly better than
stochastic approximation even in the capacity of stochastic
regret minimization.

9. CONCLUSION
We study Nash equilibrium approximation techniques for

games that are specified using simulations. Our algorith-
mic contributions include a set of methods, including a con-
vergent algorithm, for best response and Nash equilibrium
approximation. On the experimental side, we demonstrate
that all methods that we introduce can effectively be used
to approximate best response and Nash equilibria. However,
there is considerable evidence in favor of using simulated an-
nealing rather than a gradient descent-based algorithm as a

5Naturally, when stochastic approximation is used, we lose
the global convergence properties.

black-box optimization workhorse. Of the two methods for
approximating best response in games of incomplete infor-
mation, we found that the method which directly optimized
the parameters of the best response function outperformed a
regression-based method on the more difficult problems, and
was generally not very much inferior on others. Thus, faced
with a new problem, the direct method seems preferable.
There is a caveat, however: the regression-based method
appeared more robust when the number of iterations is not
very large. Our final result shows that, in spite of weak con-
vergence guarantees, best response dynamics outperforms
our globally convergent algorithm in the first-price sealed-
bid auction setting.

While our results are generally very optimistic, our exper-
imental work was restricted to relatively simple games. To
be applicable to more difficult problems, particularly those
with high-dimensional strategy sets, they will likely require
the analyst to hand-craft restricted strategy sets given some
knowledge of the problem structure.
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