
ABSTRACT

In this paper we provide a motivation
and methods for using game-theoretic
analysis for combat simulations. Appli-

cation to three previously studied scenarios
using theMANA (Map-Aware Non-Uniform
Automata) simulation tool demonstrates
the efficacy of our approach, andweprovide
a concrete example of the differences be-
tween the game-theoretic and the more
standard decision-theoretic approaches.
We believe that the game-theoretic simula-
tion analysis framework can enhance the
understanding of tactical combat landscape,
especially in cases where intelligence efforts
are ineffective or provide unreliable infor-
mation, because in those cases game-theoretic
analysis may help to corroborate or challenge
intelligence-limited beliefs by assessing the
rationality of the opponent’s apparent strat-
egy. We suggest that game-theoretic simula-
tion analysis could often best beusedduring
the low-resolution, exploratory-analysis phase
of a multiresolution analysis.

INTRODUCTION
The increasing complexity of modern

warfare imposes an unprecedented level
of demand upon the efficacy of Command,
Control,Communications,Computers, Intel-
ligence, Surveillance, and Reconnaissance
(C4ISR). Additionally, as the networking
tools are becoming more advanced, the
techniques to process the information and
make effective decisions based on the re-
sults are becoming ever more precious. The
use of computing power to aid the decision-
making process must thus become an
important component of military decision-
making.

The advent of computer-based battle-
field simulation models added an impor-
tant tool to aid military analysis, and
battlefield simulations have now become
widespread in that capacity (for example,
Horne, 1997; Ipekci, 2002; Porche et al.,
2005, 2007; Porche and Wilson, 2006). How-
ever, few battlefield simulation analysis
techniques incorporate game-theoretic meth-
ods. Granted, the questions that can prac-
tically be studied using simulations are
inherently limited, and thus it is often rea-
sonable to provide only high-level informa-
tion and guidelines based on simulation

results. However, as simulations increase
in sophistication over time and as military
decision-makers are faced with an increas-
ing number of choices and increasing com-
plexity surrounding them, we anticipate
that computational decision methods based
on simulations will grow in importance and
effectiveness.

This work is a step towards a method-
ology of simulation data analysis that
provides concrete probabilistic guidelines
regarding best strategies for military opera-
tions. Our analysis takes into account a crit-
ical component that has generally been
missing from combat simulation analysis
in the past: the effect of rational decision-
making of adversaries on each other’s opti-
mal strategies.A We do so by computing
a Nash equilibrium (Nash, 1951), which is
defined to be a set of competing strategies
such that no side has an incentive to change
its strategy unilaterally, based on simula-
tion data. In contrast with the more tradi-
tional approaches that hold the tactics of
opponent forces (e.g., Red) fixed, we allow
opponents to select a strategy that is a ratio-
nal response to the decisions by a friendly
force (e.g., Blue). Moreover, our analysis in-
corporates uncertainty about numerous
random (unknown) elements of the battle-
field scenario. Analysis in the same spirit
was done by Yiu et al. (2002) to investigate
strategies to manage civil violence. How-
ever, the use of game theory in their study
was relatively rudimentary and context-
specific, with no attention paid to the
stochastic nature of simulation outcomes.
Several other game-theoretic analyses of
combat scenarios have been undertaken in
literature (for example, Haywood, 1951,
Hillestad, 1986, Lachman and Hillestad,
1986, Hamilton and Mesic, 2004), although
none of these actually undertake a study
of simulation outcomes. Very much in the
spirit of our work, Reeves et al. (2005) and
Wellman et al. (2008) present a set of
methods for game-theoretic analysis of sim-
ulations in the context of simultaneous as-
cending auctions. Walsh et al. (2002) and
Schvartzman and Wellman (2009) have
used similar analysis techniques in the con-
text of continuous double-auctions.

We chose MANA (Galligan et al., 2004)
as our combat simulation tool. MANA-
based models such as ours introduce some
artificialities that limit the ultimate validity
of our analysis (see Appendix), but they are
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suitable to illustrate the larger points that we
wish to make. Furthermore, many of the limi-
tations of MANA can be alleviated via a multi-
resolution modeling framework, in which strat-
egies obtained based on a low-resolution model
are subsequently reevaluated using a high-reso-
lution model. The main purpose of this work is,
thus, not to prescribe optimal strategies on the
particular battlefield contexts we explored, but
to advertise a set of tools that can be used to pro-
duce such results when all the proper adjust-
ments and qualifications have been made. In
what follows, we present a rigorous simulation-
based game-theoretic analysis of three MANA
combat scenarios. For each, we derive equilib-
rium outcomes and strategies for Blue and
Red in the particular restricted strategy spaces.
Additionally, we evaluate the sensitivity of our
results to simulation noise. We further com-
plement the technical results with high-level
intuition. For two of the three scenarios, we
considered both a one-stage model, in which
the players make their decisions simulta-
neously, and a two-stage model, in which Blue
first chooses one of its decision variables, and
then both Blue and Red (upon observing the
choice of Blue) make the remaining strategic
choices simultaneously.

ANALYSIS OF MANA SIMULATIONS

Parameter Choices
The first step in applying empirical game-

theoretic methods to simulation data is to spec-
ify the strategies of the players. Within MANA
we can specify parameters that define the be-
havior of Blue and Red agents on the simulated
battlefield. Two examples of such parameters
are (i) tendency to approach friendly or enemy
units and (ii) distance at which another entity
is recognized.

Suppose we can adjust B parameters for
Blue agents and R parameters for Red agents.
We define a strategy of Blue to be a particular
setting of its B parameters, and similarly, the
strategy of Red will be a setting of its R param-
eters. The respective strategy sets of Blue and
Red will then be all possible settings of their pa-
rameters. A Nash equilibrium is computed for

a game in terms of strategies, B and we map it
to the corresponding parameter settings as fol-
lows. Let PrfBi 5 big denote the probability of
Blue setting its ith parameter to a value bi in
equilibrium. We can show that this probability
is the sum of the probabilities of strategies in
which Bi ¼ bi:

PrfBi 5 big5EPrfBi 5 bijsb5ag
5

X

a2Sb

PrfBi 5 bijsb 5agPrfsb5ag;

where

PrfBi 5 bijsb 5ag

is 1 when Bi 5 bi in strategy a and 0 otherwise.
Since parameters in MANA correspond to

simple low-level behavior or capabilities of bat-
tlefield agents, the analyst must carefully select
parameters that have meaningful interpreta-
tions within an actual battlefield. For the scenar-
ios we study here, we chose to model the
following behavioral properties of agents: ag-
gressiveness (by setting an agent’s tendency to
move toward alive enemies), cohesion (by setting
the tendency to move toward alive friendly
forces), and sensing (by setting the range at
which enemy, friendly, or neutral forces are
detected and identified).

Aggressiveness models an agent’s (sol-
dier’s) reactive behavior towards encountered
enemy units. We can view aggressiveness as
a reflection of orders to engage enemy units
upon encounter. A non-aggressive agent, on
the other hand, may be following orders to
avoid enemy in order to achieve its goal as co-
vertly as possible. Aggressiveness may also re-
flect a type of training that soldiers may
receive. Additionally, this parameter can model
intangible character traits such as patriotism or
fear. In the reported experiments, we consid-
ered three settings of aggressiveness. We refer
to the first setting as evasive (MANA enemy en-
counter setting of 2100), alluding to the ten-
dency of agents to avoid confrontation with
enemy agents. The second setting is passive
(MANA enemy encounter setting of 0), which
suggests that agents do not respond to encoun-
ter with unfriendly forces, moving neither to-
ward nor away from them. The third setting is
aggressive (MANA enemy encounter setting of
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100), which imbues agents to approach the en-
emy forces upon encounter.

Cohesion is the proclivity of an agent to re-
main close to other friendly units. This may
model the training that instructs soldiers to stick
together to avoid being singled out by smallmo-
bile enemy units. (We do not necessarily mean
that soldiers would be immediately next to
one another, but simply in reasonable proxim-
ity.) On the other hand, lack of cohesion may
correspond to commander instructions to en-
gage in diversionary tactics or split up a search
party into small but highly mobile units. Addi-
tionally, cohesion may reflect intangible traits
such as camaraderie and morale amongst sol-
diers. We differentiate between three settings
of cohesion. When the corresponding MANA
parameter is set to 2100, we call the agents iso-
lated, referring to their tendency to stay away
from detected friends. Indifferent agents do not
react in any way to detected friendly forces. Fi-
nally, we call a force clustered when the agents
tend to remain close to other friendly agents.

Sensing is a capability of detecting and
identifying other agents. This capability may
map to the appropriate sensing equipment
available to solders on the battlefield, or to indi-
vidual characteristics such as eyesight. Addi-
tionally, it may reflect training that helps
identify enemy soldiers who attempt to blend
in with civilians. The lowest setting of sensing
that was used in our experiments was 10, which
we simply refer to as low. A medium setting of
sensing was 30, whereas the final setting we
allowed was 50, termed high.

Setup
Opposing forces clashingonabattlefield can

be described as zero-sum games (von Neumann
andMorgenstern, 1953) inwhich one side’s gain
is the other side’s loss. While the situation is
more complicated in practice, this aspect is an
instructive focus, as it is generally quite signifi-
cant.C

It is common for studies and analyses of
combat simulations to use Expected Loss Ratio
and/or probability of success as measures of ef-
fectiveness (MOEs) of the Blue force (e.g., Lauren,
2001; Porche et al., 2005, 2007; Porche andWilson,
2006); MOEs are designed to evaluate the

accomplishment of mission objectives and
achievement of desired effects (JCDRP, 2004).
To use only the former means to ignore en-
tirely the fact that missions are generally fo-
cused around specific goals and are typically
considered unsuccessful if the goal is not
reached. On the other hand, considering only
the probability of success ignores the impor-
tance of achieving the goal with a minimum ca-
sualty rate. Thus, in this study, we combine the
two metrics and introduce a parameter, w, that
determines their importance vis-à-vis each
other.

Since our study is game-theoretic in nature,
we need to define utilities (real-valued func-
tions corresponding to underlying preferences)
for both players. However, the fact that our
model is a zero-sum game imposes a restriction
that utilities of players sum to zero, thereby
eliminating the need to specify both, since one
implies the other. In this work, wewill generally
refer only to the utility of Blue, leaving the
utility of Red implicit. Formally, we define the
utility function of Blue to be ub 5LR1
wIfBlue reaches goalg and the utility of Red to
be ur 5 2 ub. LR refers to loss ratio (adjusted to
avoid a singularity when there are no Blue casu-
alties): LR5 RedCasualties1 1

BlueCasualties1 1. IfBlue reaches goalg
is 1 when Blue reaches its goal and 0 otherwise.
Finally, w is the weight parameter that indicates
the relative importance to Blue of reaching the
goal as compared to the Loss Ratio. A large
value of w indicates that reaching the goal is
very important to the Blue force, even at the ex-
pense of a high casualty rate. Avalue ofw¼ 0 in-
dicates that reaching the goal is irrelevant to
Blue, and small values suggest that Blue places
a low value on the goal if many casualties can be
sustained in the process of reaching it. Since
there is considerable uncertainty about the out-
comes (i.e., Loss Ratio and probability of suc-
cess) even when all the parameters played by
both Blue and Red are specified, the task of both
sides would be to maximize their respective
expected utility functions. Thus, for Blue the
problem would take the form of maxsb2Sb
(E½LRðsb; srÞ%1wpfBlue reaches goal j ðsb; srÞg),
where sb is the strategy of Blue, sr is the strategy
of Red (fixed in this optimization problem), and
Sb is the strategy set of Blue. Red, on the other
hand, would be minimizing this same quantity
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(for a fixed sb) over its own strategy set Sr. Note
that both the Loss Ratio and Blue probability of
success are functions of the strategies of both
players.

After we appropriately restrict the strategy
space of the players,we run a fixed number of si-
mulations for each strategy profile and average
the results. Upon thereby acquiring an empiri-
cal payoff matrix, the first order of business is
to find an empirical Nash equilibrium. When
the game has few strategies played by both
sides, it can be analyzed analytically, and the
equilibrium can be found as a closed-form func-
tion of w. The analysis can then proceed to dis-
cuss the meaning of the equilibrium strategies,
as well as the meaning of any change in equilib-
rium strategies or utility as w changes. The ‘‘Fu-
ture’’ scenario belowwas small enough to allow
such detailed analysis.

When the number of strategies is relatively
large, however, we need numerical tools to ana-
lyze the resulting empirical games. Since an
equilibrium solution of a zero-sum game can
be formulated as a linear program, we used
ILOG CPLEX (IBM, 2006) as the equilibrium so-
lution tool. In order to analyze the relationship
between equilibrium outcomes and strategies
(or the corresponding parameter settings) in

terms of w, we ran ILOG CPLEX using the pay-
off matrices for a discrete set of w.

‘‘Future’’ Scenario
This scenario pitted a small Blue force, con-

sisting of two squads, against a Red force, which
consisted of 100 dismounted fighters. (The term
squad is used conceptually in MANA to repre-
sent any number of soldiers sharing the same
characteristics.) A squad of six Blue infantry
armed with direct fire weapons is moving from
a position in the northwest to the southeast cor-
ner (see Figures 1a). They have the support of an
indirect precision weaponwith enough range to
cover the entire city and a communication link
that allows the Blue infantry squad to pass tar-
get information back to the indirect fire squad.
The Blue force structure is illustrated in Figures
1b. Red forces were randomly placed through-
out the map.

For our purposes, movement speed was left
at one cell per simulation time step.We calibrate
this to real-world time by considering that aver-
age human motion from walking to running is
approximately 1-6 m/s. We assume that each
cell is approximately five meters in length, that
the agents move one cell per time step, and that

Figures 1a & b. MANA ‘‘Future’’ scenario.
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a time step is one second in duration. Since our
scenario environment was 200 3 200 cells, the
approximate size of this fictitious urban envi-
ronment is 1 km2.

We defined the strategies of Blue and Red as
their respective setting of the cohesion parame-
ter. We then simulated 2,000 runs for each strat-
egy profile (nine in total), with the averages of
the Blue utility function values comprising the
resulting payoff matrix of Blue. The resulting
empirical payoff matrix is shown in Table 1. Es-
timated payoffs based on MANA ‘‘Future’’ sce-
nario, with rows corresponding to different
strategies of Blue and columns corresponding
to Red’s strategies. In each cell we record the av-
erage utility value of Blue when Blue and Red
play their corresponding strategies. For exam-
ple, when Blue and Red jointly play -100, the
utility of Blue is 7.17 1 0.14w. Observe that the
utility of Blue is specified as a function of w.
Consequently, we can incorporate this parame-
ter in our analysis.

First, we determine the (empirical) optimal
strategy of Bluewhen Red’s cohesion parameter
is its default setting of 0 (indifferent). In this
case, Blue’s best response is to be isolated. We
can interpret this result as follows: When Red
is moderately spread out (Red agents are indif-
ferent between staying close or away from other
Red agents), Blue will gain by splitting its mis-
sion up and allowing some proportion of forces
to distract Red troops (Red will generally try to
attack detected Blue troops), while the rest will
be more likely to slip by unnoticed toward the
goal, thereby maximizing probability of success
and minimizing casualties. This result is inde-
pendent of w, although it is important to recog-
nize that even when w is zero, it does factor
indirectly into the casualty rate, since the simu-
lation ends as soon as Blue reaches the goal,
thereby sparing Blue any additional casualties.

(The analysis is somewhat more complex, since
Blue is better armed but outnumbered, and con-
sequently, the effect could be in either direc-
tion.)

Now we will allow Red to change its strat-
egy in anticipation of Blue’s decision and pay-
offs. We can readily observe from Table 1 that
both the default setting of 0 (indifferent) and
the setting of 100 (clustered) are strictly domi-
nated for Red, that is, Red will not choose these
strategies for any possible strategy of Blue. The
effect of this reasoning is to cause Red’s 100
troops to disperse (the ‘‘isolated’’ strategy in
Table 1) throughout the battlefield, and theywill
likely remain relatively dispersed even when
Blue ‘‘diversionary’’ agents are encountered.
Thus, the strategy of Blue that calls for a high
level of dispersion (as discussed above) will
no longer be very effective. Instead, the best re-
sponse of Blue in this case is to form a tight
(clustered) group, taking advantage of its supe-
rior weaponry.

It is important to note here that the high-
level conclusion we just made is not obvious
prior to performing the empirical evaluation of
the strategic landscape. The reasoning that we
used to justify Blue being isolated when Red
strategy is fixed at default can still in principle
apply when Red is allowed to switch to 2100
(isolated). It is only through the analysis of data
that we were able to conclude that the benefit of
forming a tight fighting unit was greatest.

In order to determine the significance of this
conclusion, we assumed that the entries in the
payoff matrix in Table 1 come from a Normal
distribution (since they are means, they are
asymptotically normally distributed, and with
2,000 samples per profile, the assumption is
likely to be quite reasonable) and used the prob-
abilistic bounds from Vorobeychik (2009). The
results of this analysis (for w varying between

Table 1. Estimated payoffs based on MANA ‘‘Future’’ scenario

Red

isolated indifferent clustered

Blue
isolated 7.17 1 0.14w 12.48 1 0.60w 18.54 1 0.89w
indifferent 7.09 1 0.14w 11.57 1 0.53w 15.89 1 0.80w
clustered 8.08 1 0.15w 11.83 1 0.39w 15.16 1 0.68w
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0 and 100) suggest that we have no problem
with statistical significance of our results in this
scenario: for almost all settings of w the empir-
ical equilibrium is an actual equilibrium with
probability above 95%.

‘‘Mosque’’ Scenario: Direct Fire
Weapons Only

This scenario involves a small group of Red
leaders attempting to enter a mosque (hence the
name) under the protection of Red ‘‘leader pro-
tection’’ troops (Figure 2). The Blue forces (four
6-man infantry squads) armed only with direct
fire weapons try to prevent Red from achieving
their goal. Blue forces have the support of UAVs
that have stronger sensing capabilities. To keep
Blue from firing on targets inside the mosque,
a special terrain type was added that gave the
Red forces 100% concealment while inside.
There are two squads of Red forces, 6 leaders,
and 30 security forces. The security forces are
equipped with direct fire weapons, but with
lower hit rate than Blue. They succeed (Blue
fails) when the Red leaders can move unim-
peded to the mosque.

We engaged in a somewhat more extensive
analysis of this scenario, attempting to use em-
pirical game theory to complement the analysis
of Porche and Wilson (2006) and Porche et al.

(2005, 2007) of the effect that sensing capability
of Blue infantry troops (henceforth, Blue sens-
ing) has on the effectiveness of Blue (in terms
of the Blue utility function as defined above).
We restricted the domain of Blue sensing to 10
(low), 30 (medium), and 50 (high) and selected
two additional parameters for Blue and Red: ag-
gressiveness and cohesion. The domain of ag-
gressiveness and cohesion for both players
was restricted as we had already described.
The simulations were run 600 times for each
strategy profile, and the average utility values
were recorded as the estimates of the corre-
sponding expected utilities. (The lower number
of replications as compared to the ‘‘future’’ sce-
nario is mainly due to the considerably in-
creased simulation time.)

Our choice of complementary parameters
was driven primarily by the observation that
sensing capability only comes into play in
MANAwhen agents react to the resulting Situ-
ational Awareness (SA) map, and this effect is
manifested in their tendencies to move toward
or away from other agents detected. Thus, we
expect the optimal choice of the aggressiveness
and cohesion parameters of both players to
change when sensing parameter value changes.

We study two alternativemodels of sensing.
In one, Blue chooses its sensing parameter si-
multaneously with all the others and simulta-
neously with the strategy choice of Red. We
call this the simultaneous choice model. In the
second sequential choice model, we model the
strategic interaction as a two-stage game (Figure
3). In stage one, Blue first selects its sensing ca-
pability. In stage two, Red observes the sensing
choice of Blue, and both Blue and Red set the
values for the remaining parameters simulta-
neously.

The most important difference between the
two models is that the observation of strategic
choice of Blue in stage one conditions the strat-
egy choice of both players in stage two. The for-
mer model may correspond to the training of
Blue troops (in secret), with Red unable to
gather intelligence regarding the specifics of
the training. The latter model is more appropri-
ate when sensing capability models the actual
sensing devices used by the troops that are well
known. It may also (more generally) model ef-
fective intelligence efforts by the Red.

Figure 2. MANA ‘‘Mosque’’ Scenario. (Black boxes
represent obstacles [e.g., buildings].)
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In the analysis that follows, we present all of
our results in terms of Nash equilibrium out-
comes (loss ratio [LR] and probability of success
in equilibrium) and strategies (parameter set-
tings). As a part of the analysis, we varied the
relative importance of mission success to Blue
(variable w), and present our results as func-
tions of this variable.

Simultaneous Choice Model. Recall that in the si-
multaneous choicemodel, Blue and Red are seen
to select values for all parameters over which
theyhavecontrolsimultaneously.Thus,ourequi-
libria may (and will in general) involve either
or both sides ‘‘mixing,’’ that is, playing several
values for each parameter with varying proba-
bilities to avoid exposure to effective opponent
response.

Figure 4a shows the plot of LR, and Figure
4b shows the probability of success of Blue in
equilibrium as functions of w. We do not neces-
sarily expect the relationships to be monotone,
since a number of factors, including the op-
ponent’s (Red’s) change in strategy, contribute
to the resulting equilibrium outcome. Indeed,
there are some intriguing non-monotonicities
that we can observe. Consider, for example,
the outcomes for w ¼ 6.5 and w ¼ 7 (circled in
Figures 4a & b). In this instance, even though
the importance of reaching the goal to Blue
increases, the probability of success actually
decreases slightly, although LR increases con-
siderably. A result like this adds value to an ad-
ditional strategy that Blue can entertain that
deceives the adversary into believing that suc-
cess is more important to Blue than it actually

Figure 3. Sequential choice model.

Figure 4. Loss Ratio (a) and Probability of success of Blue (b) as functions of w.
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is in order to get the enhanced LR at little loss in
probability of success. A similar non-monoto-
nicity can be observed for w ¼ 0 and w ¼ 0.5.
Here a deception strategy that leads the adver-
sary to overvalue the importance of success to
Blue may be in order. The availability of such
deception strategies, of course, may dramati-
cally change the nature of strategic interactions
between the agents andwewould need a careful
study of an appropriate model of these to make
concrete conclusions.

We can additionally observe that when w is
high (above 7) its precise setting no longer af-
fects the outcomes. We will see that equilibrium
strategies stabilize in this region as well, al-
though they tend to be highly dependent on
the value of w when it is below 7.

As in the ‘‘Future’’ scenario, we would like
to evaluate the statistical significance of our re-
sults, and to do this we apply the results from
Vorobeychik (2009) for the range of w between
0 and 10. For each setting of w, we compute an
equilibrium of the resulting empirical game
and evaluate the probability with which it con-
stitutes an actual equilibrium of the game (i.e.,
when actual expected payoffs are available).
Figure 5a presents the resulting plot, and we
can see that probabilities tend to be relatively
low. It is somewhat expected that they will de-
crease as w increases, since the value of w pro-
vides a squared contribution to the variance of

the empirical results. However, this relationship
need not be monotone, since equilibrium strate-
gies and outcomes do not necessarily vary
nicely with w.

Although the probability that our empirical
equilibria constitute actual equilibrium strate-
gies and outcomes is relatively low, we have
another way of measuring the quality of our ap-
proximation: e-bound.We define e-bound as the
smallest e such that the maximum benefit that
any player can get by deviating to an alternative
strategy is below e. If this metric is small, we
would expect that the outcomes and strategies
based on empirical data are not very different
from actual equilibrium results. (This need not
hold in general, but we conjecture that it is true
in typical games.) In order to normalize this
metric, we divide it by the equilibrium utility
of Blue, thereby producing the results seen in
Figure 5b.

The plot in Figure 5b is more promising
than Figure 5a, as it suggests that although our
analysis deals with strategies and outcomes that
are unlikely to be exact equilibria, they are likely
to be approximate equilibria, with maximum
benefit to deviation between 6% and 10% of em-
pirical equilibrium utility with 95% confidence.
Nevertheless, the high degree of uncertainty in
the results gives us pause inmaking far-reaching
conclusions based on these. Instead, we would
like to suggest that our results provide an

Figure 5. Probability that the equilibrium of the empirical game is an equilibrium of the actual game (a) and
maximum benefit for deviation to any player with 95% confidence (b).
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important insight into the nature of the strategic
interactions between the adversaries in this sce-
nario, and further explorations should be made
into these.

For the analysis of equilibrium strategies, we
assume that our equilibrium outcomes based on
the empirical data represent the actual outcomes,
and we ignore the issue of uncertainty about
these we had just now addressed. Our main rea-
son for doing so is that, given the data, we want
to prescribe the best choices to the decision-
maker. If we had more data, our conclusions
would be more significant, but the analysis
would proceed in much the same fashion.

Figure 6a shows the equilibrium probability
with which all settings of the sensing parameter
will be played by Blue. Our results here are es-
sentially bi-modal: When w is low, medium
sensing dominates, whereas for high values of
w, Blue will select the low setting of sensing. It
is most perplexing that Blue will never choose

the highest possible sensing capability in spite
of the fact that this comes at no direct cost (i.e.,
our model does not impose a cost on Blue for
selecting a better sensing capability, even
though realistically there would be some cost,
either through retraining or due to purchasing
the necessary equipment). Indeed, the lowest
possible capability is selected for all values of
w between 3 and 10. This result strongly contra-
dicts our intuition, which suggests that our out-
comes should never be worse when greater
capabilities are available to us no matter what
the opponent decides to do — this may not be
the case in general games, but it is so in zero-
sum games. Our intuition is based, among other
things, upon the assumption that everything else
is equal, which, it turns out, is not the case here.
Particularly, we observe that actions available to
players given equivalent information are differ-
ent for different settings of sensing. We will dis-
cuss this issue in some detail later.

Figure 6. Sensing (a) and aggressiveness (b) of Blue. Aggressiveness (c) and cohesion (d) of Red.
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Figure 6b displays the equilibrium proba-
bility distribution over different settings of ag-
gressiveness of the Blue force, which is highly
dependent on the value of w. When probability
of success is unimportant, Blue will be evasive,
avoiding encounters with Red troops. But even
when the probability of success has importance,
aggressiveness is relatively low (Blue is only oc-
casionally aggressive). This result is likely due
to the distracting effect of aggressiveness, which
leads Blue troops to overcommit to the early in-
flows of Red forces, distracting them from the
ultimate goal of keeping the leaders, who are
generally trailing behind, from getting into the
mosque. On the other hand, Blue must be ag-
gressive with some probability, since it would
otherwise not engage Red leaders at all.

Cohesion of Blue is high for all values of w
in the range (thus, we do not display it in a plot).
Thus, Bluewill form tight squads in equilibrium
to prepare for likely encounters with well-
equipped Red troops.

Figures 6c and 6d display the equilibrium
behavior of Red forces. Cohesion of Red is
highly affected by w. When w ¼ 0, Red will ig-
nore friendly agents, presumably to avoid ‘‘put-
ting all eggs in one basket’’ in instances of
encounters with Blue. When w is high, Red
forces will tend to make relatively close forma-
tions with roughly 50% probability (no reaction
to SA the rest of the time), possibly to increase
probability of repeated encounters that provide
a sufficiently long distraction to allow Red
leaders to ‘‘sneak by’’ into the mosque. Aggres-
siveness appears to settle for w . 3.5, with Red
becoming evasive. Furthermore, for no value of
w does Red behave aggressively. This result is
quite intuitive since Redwill minimize its losses
by avoiding confrontation and, as it turns out,
maximize the chances of Red leaders entering
the mosque unharmed.

Let us now try to put everything together.
When probability of success is unimportant
(w ¼ 0), Blue disperses its troops and avoids en-
counters with the well-equipped Red forces,
thereby limiting its casualties. Medium level of
sensingallowsBlue a sufficient detection capabil-
ity to attain the above objectives, but a greater ca-
pability (sensing¼50) may actually work against
Blue agents, who may become overly impulsive,
responding tomanystimuli atonceandasaresult

possibly moving to undesirable locations with
too many Red troops. In response to Blue, Red
will avoid reacting to sensing readings entirely.
Adeviation tohighcohesionmayreduce itsprob-
ability of encountering Blue troops, whereas low
cohesion may result in Blue forming tight units
and eliminating individual Red soldiers. Simi-
larly, high aggressivenessmaywarrant a Blue re-
sponse of forming very clustered units that
increase their survivability in encounters against
small groups of Red agents, whereas a high level
of evasiveness may force Red into undesirable
encounters with undetected Blue troops.

When w is 10, Blue will reduce its equilib-
rium sensing capability to 10 (lowest setting),
remain dispersed, and will generally ignore
Red troops when those are detected. In re-
sponse, Red will be evasive and will form tight
units about 50% of the time, ignoring them the
other 50% of the time. Consider deviations in
which Blue has higher sensing. By the same ra-
tionale as above, high sensing may cause Blue
agents to be overly impulsive. The fact that Red
forces become more likely to reach their goal
with increased sensing levels of Blue suggests
that reacting to other agents on themap provides
too much distraction for Blue, which should in-
stead essentially remain fixed around the possi-
ble entrance areas into the mosque in order to
stand guard against Red leaders. Occasionally,
Blue can then afford to be aggressive, since low
sensing capability suggests that Red agents
detected are close to entering the mosque and
may need to be stopped. Since achieving the goal
is now of prime importance to Red, they will
avoid Blue at all costs, trying to move around
them into themosque.Muchof the time, Redwill
form close units that are capable of drawn-out
battles if approached by Blue, allowing Red
leaders to enter the mosque during the window
of opportunity provided by such battles.

Sequential Choice Model. The sequential choice
model involves Blue first making its strategic
choice regarding the setting of its sensing pa-
rameter, which is observed by Red. Thereafter,
both Red and Blue select their remaining pa-
rameter settings and play them ‘‘simulta-
neously.’’ (The play is simultaneous as long as
no player can obtain any information about
the strategies of other players.)

GAME-THEORETIC METHODS FOR ANALYSIS OF TACTICAL DECISION-MAKING USING
AGENT-BASED COMBAT SIMULATIONS

Page 30 Military Operations Research, V14 N4 2009



We model this particular mode of interac-
tion as a two-stage game, in which Blue moves
first by setting its kth parameter to bk, and Blue
and Red move together thereafter by playing
a game in which Blue now has a restricted strat-
egy set, selecting values for all parameters other
than parameter k. Since bk is observed, the strate-
gic choices of both Blue and Red are now func-
tions of bk, as the value of bk will generally
change the mutually optimal choices for the
players. In formal notation, we define the set of
choices that Blue has for bk in the first stage to
be Bk. In the second stage, Blue can no longer
choose a setting for its kth parameter, but can still
set others, whereas the strategy set of Red re-
mains Sr. Since the actual strategies of players
will be conditioned on bk, we define the set of
Nash equilibria of the game in the second stage
as s&ðbkÞ and the corresponding utility of Blue
in equilibrium to be u&ðbkÞ. (We need not specify

which equilibrium strategy will be played be-
cause the equilibrium value is unique in
a zero-sum game.) It is not difficult to show that
if b &

k5 argmaxbk2Bk
u&ðbkÞ, then (b &

k ; s
&ðb &

k Þ) is
the set of Nash equilibria of the two-stage game.

Figure 7c displays the equilibrium utility of
Blue in the second-stage game for each of the
three settings of Blue sensing (10, 30, and 50).
This plot echoes what we had observed in the si-
multaneous choice game: High sensing is not
played in equilibrium for any value of w be-
tween 0 and 10, and low sensing is preferred
for most values of w. Figures 7a and 7b provide
more insight by showing LR and probability of
success of Blue in equilibrium. Herewe see that,
again, the choice of 50 for the sensing parameter
is never preferred for either of thesemeasures of
effectiveness, and the choice of 10 results in con-
siderably higher probability of success of Blue
in equilibrium.

Figure 7. Equilibrium Loss Ratio (a), Probability of success (b), and utility (c).
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Discussion of Results. Themost surprising result of
our analysis of this scenario is that improved
sensing capability appears to hurt the Blue
forces. Conventional wisdom would suggest
that improved capabilities in general should im-
prove outcomes, or at the very least not hurt the
decision-maker. Although this intuition gener-
ally breaks down when rational self-interested
agents engage in game-theoretic reasoning
(Rubinstein, 1997), we do expect it to hold in
zero-sum games since they can be modeled as
optimization programs. To our bafflement, this
intuition failed to hold in the ‘‘Mosque’’ sce-
nario. (We get qualitatively similar results even
whencommunicationcapacity isnotaconstrain-
ing factor in inter-squad communications.)

The first caveat that enters the picture indi-
rectly is the implicit cost of medium and high
sensing due to low target hit rate for distances
between 10 and 20 cells. When sensing is low,
the only agents detected are within a relatively
high (60%) probability of hit range. When sens-
ing is medium or high, some number of enemy
troops appearing on an agent’s situational aware-
ness map are too far and unlikely to be hit (20%
probability). Concentrating fire on agents that
are far more likely to be hit will be beneficial
when many agents are detected. On the other
hand, added sensing capability will help Blue
when only distant Red agents are detected.
Thus, there is a clear tradeoff between the three
sensing levels.

Our results also suggest that there is a cost to
switching from a medium to a high sensing set-
ting. To understandwhy it arises, wemust delve
precisely into the reason that the intuition that
better capabilities should not be detrimental
breaks down. The support of this intuition is
the fact that the choices available to agents are
still available when new capabilities are added,
and this assumption breaks down in our case.
When sensing capabilities are high, at any point
during an identical run of the battle scenario, the
situational awareness map of Blue may contain
agents that would not have been detected when
sensing was medium. Now suppose that Blue
agents move toward or away from detected
agents. When this is the case, agents that are
not detected when sensing is medium would
not influence the movement algorithm of Blue.
If these agents are detected due to better sensing

capability, Blue no longer has the option of not react-
ing to agents that would not be on the map with
a lower sensing setting. The consequent tradeoff
is due to the impulsiveness of Blue agents
caused by the many sensing stimuli. In an at-
tempt to react to sensing input, the agentmay ac-
cidentally be driven to an undesirable state,
which may have been avoided if the agent had
an option not to react to a subset of the stimuli.

Thus, we have an apparent difficulty that
we could not resolve because of the limitations
of the MANA simulator. On the one hand, tak-
ing advantage of information requires strategies
that prescribe the mode of behavior given infor-
mation. On the other hand, when these are rule-
based, they will tend to result in different sets of
choices under the same actual combat states. In
theory, we need strategies that prescribe possi-
bly different choices of action from the same
choice set for every possible SA map. In prac-
tice, such strategies would have to be extremely
complex in order to produce interesting agent
behavior. Indeed, this complexity will likely be
confounding in actual combat scenarios as well.
Certainly we cannot envision a commander
even suggesting one of only two movement di-
rections (left or right) for every possible scenario
encountered, especially since the number of
possible scenarios is likely to be extremely large.
Instead, strategies do in practice have to be heu-
ristic, and this will generally come at the cost of
optimality that we theoretically can achieve.

‘‘Mosque’’ Scenario: Indirect Fire
Support

This scenario is the same as the ‘‘Mosque’’
scenario just described, except an indirect fire
squad is added to Blue that relies on communi-
cation with other Blue squads for its situational
awareness. The experimental setup is unchanged,
with three parameters (aggressiveness, cohe-
sion, and sensing) available to Blue and two (ag-
gressiveness and cohesion) available to Red. We
approximate the game by taking a sample aver-
age of the utility function of Blue over 600 sam-
ples for each strategy profile.

Simultaneous Choice Model. Figures 8a and 8b de-
pict equilibrium Loss Ratio and probability of
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success of Blue in the simultaneous choice
model. There are no real surprises, with proba-
bility of success increasing sharply when its im-
portance is high (w . 8.5). The probability that
our equilibrium analysis corresponds to an ac-
tual equilibrium of the game is shown in Figure
8c. Observe that for most values ofw, our results
have considerably more significance than for
the Mosque scenario without indirect fire sup-
port. However, particularly when strategies ap-
pear to be in flux (w between 8.5 and 10), the
probability drops significantly. Figure 8d shows
the relative maximum benefit to deviation. We
see that the values of the latter metric are low
(between 3.5 and 6%) and vary little with w.
Thus, it appears likely that our results provide
a reasonable strategic guideline in this scenario.

We now look at the strategies that Blue and
Red are expected to play in equilibrium. Sensing
of Blue (Figure 9b) is 50 in equilibrium, unless

probability of success is extremely important
to Blue (high values ofw), inwhich case the low-
est sensing setting (sensing¼10) is played. Com-
pare this result with the previous scenario (no
indirect fire support), where a sensing setting
of 50 was never a part of the equilibrium strat-
egy of Blue (in the range ofwwe present). How-
ever, as in the previous scenario, a sensing
setting of 10 is the sole sensing setting in equilib-
rium when the probability of success has high
importance. Figure 9a suggests that both Blue
forces will be evasive for low values of w, but
there will be some value of being aggressive oc-
casionally when probability of success is im-
portant. Red forces will also be aggressive,
maintaining this strategy for all values of w
in the range (thus, we do not display it in a
plot). Ignoring detected enemy troops entirely
(aggressiveness ¼ 0) is never a part of an equi-
librium for either Blue or Red.

Figure 8. Loss Ratio (a), probability of success of Blue (b), probability that the equilibrium of the empirical game
is an actual equilibrium (c), and maximum benefit to deviator with 95% confidence (d).
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In Figure 10a, we observe that Bluewill gen-
erally prefer to be spread out (cohesion¼-100),
unless the probability of reaching the goal (i.e.,
keeping Red leaders out of the mosque) is val-
ued highly. In the latter case, Bluewill form tight
units (cohesion¼100). Red (Figure 10b) will ig-
nore the proximity of friendly forces for most
values of w. Notable exceptions to this are w¼0
(success of Red is irrelevant to Blue) and w be-
tween 9 and 10. In both cases, Red will inten-
tionally attempt to spread out their troops
(presumably to distract the Blue forces) with
high probability.

Putting everything together, when w is low,
Blue forces use high sensing, attempt to spread
out, and avoid the enemy; Red forces are also
spread out and avoid Blue. Thus, our results
suggest that high sensing does indeed help Blue

in avoiding the enemy troops. Since Red forces
are spread out, Blue maximizes its LR by
spreading out as well, as it has an advantage
in one-on-one encounters. The fact that this re-
sponse of Blue is optimal suggests that Blue
would lose if it attempted to meet the spread-
out Red forces with large groups, perhaps be-
cause this strategy would allow too many Red
troops to escape unharmed into the mosque.
Furthermore, in this scenario it appears that
the advantage of the additional information
about the location of enemy and friendly troops
outweighs the implicit costs of sensing, such
as lower hit rate and choice set dependence on
information.

When probability of success is very impor-
tant to Blue, the advantage of high sensing to
Blue in improving LR is dissipated by the

Figure 9. (a) Aggressiveness of Blue. (b) Sensing of Blue.

Figure 10. Cohesion of Blue (a) and Red (b).
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apparent disadvantage in terms of probability
of success. Blue will nowmix between attacking
and escaping the enemy upon encounter and
will attempt to cluster its troops. Interestingly,
the strategy of Red remains essentially the same.
Thus, while clustering of Blue forces is detri-
mental to Blue’s LR, it improves its probability
of success. This is intuitive, since the success
of Blue depends only on intercepting Red
leaders on their way into the mosque. As there
are relatively few of them, a close formation of
Blue forces can ensure that they kill a detected
Red leader without much disadvantage in
detecting others. Given this strategy, however,
higher sensing may be detrimental precisely be-
cause it will distract Blue clusters from their pri-
mary goal.

Sequential Choice Model. When we allow the Red
player to observe Blue’s choice of sensing pa-
rameter, the best choice of sensing for Blue is

50 for small to medium values of w, and 10 for
large values of w (Figure 11c). In comparison,
sensing¼50 was never a good setting in the sce-
nario in which Blue had no indirect fire support.
On the other hand, sensing¼10 still dominated
for high values of w.

Figures 11a and 11b present LR and proba-
bility of success of Blue forces in equilibrium
for each setting of the sensing parameter (10,
30, and 50). We observe that in this scenario,
LR (in equilibrium) appears to be an increasing
function of sensing, whereas probability of suc-
cess is a decreasing function. The former result
is different from what we observed in the first
Mosque scenario, whereas the latter is identical.

That improved sensing results in higher LR
comes as little surprise. When more Red troops
are detected, the SA map is communicated to
the indirect fire squad, and naturally this addi-
tional fire support results in considerably more
Red casualties than Blue. What is surprising is

Figure 11. Loss Ratio (a), probability of success (b), and utility (c) of Blue in equilibrium.
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that the same is not true of probability of suc-
cess. From Figure 11b we see that low sensing
results in a considerably higher probability of
success than the other two settings. We conjec-
ture that this is partly due to the distraction that
the greater number of detected Red security
forces produce: The indirect fire now has to
share time between more Red forces, and there
is therefore a greater chance that Red leaders
will reach the mosque.

Discussion of Results. Table 2 summarizes our
findings in the two Mosque scenarios. The most
important differences in equilibrium strategies
between the two scenarios are sensing of Blue
and aggressiveness and cohesion of Red when
w is low, and aggressiveness of Blue and cohe-
sion of Red when w is high. The difference in
sensing strategy is explained by its direct im-
pact on the effectiveness of the indirect fire
squad: greater sensing capabilities improve LR
and make them preferred when the goal is rela-
tively unimportant.

Explaining the reduced aggressiveness and
cohesion of Redwhen Blue has indirect fire sup-
port is also relatively intuitive. With the indirect
fire weapon present, whenever Red agents
come in contact with Blue, they will face direct
and indirect fire, the latter having potential ef-
fect on other Red agents that may be nearby.
Similarly, Red must ensure that they are spread
out enough that even if some are detected by the
Blue, indirect fire weapon discharges hit only
a relatively small proportion of Red agents,
and will potentially have to share its firing time
over spread out pockets of Red troops instead of
concentrating fire on nearby locations. It is easy

to see that concentrated fire would be more
likely to be successful, since only one of the
shots needs to hit the target. When probability
of success is of greatest importance, Red will re-
main relatively isolated when indirect weapons
are present, since spreading the indirect fire
over a large region will increase the chance that
Red leaders will sneak by unharmed into the
mosque. Blue, on the other hand, will take ad-
vantage of the indirect fire and react to Red
forces by sharing its time between engaging
them (with the help of indirect fire) and escap-
ing, thereby leaving the detected Red troops to
the indirect fire squad and seeking out the other
Red troops fleeing the scene.

CONCLUSION
Modern combat simulations can become

a tremendous aid to military decision-making
and have already been used in this capacity ex-
tensively. Yet, little combat simulation analysis
work has been devoted to understanding opti-
mal tactics of all adversaries, and not just
the player that symbolizes the friendly force.
When perfect intelligence regarding enemy tac-
tics is available, game-theoretic analysis has lit-
tle value, and simulations should be used
instead to find the best response to known en-
emy plans. However, intelligence is typically
at best uncertain and at worst unreliable, and
a game-theoretic approach can significantly en-
hance the information available to a decision-
maker, by either supporting the intelligence
when the expected tactics of opponents are
indeed rational, or casting doubt upon its

Table 2. Comparison of the two ‘‘Mosque’’ scenarios

No indirect fire support Indirect fire support

w¼0 w¼10 w¼0 w¼10

SIMULTANEOUS CHOICE
Sensing (Blue) medium low high low
Aggressiveness (Blue) evasive usually passive evasive evasive or aggressive
Aggressiveness (Red) passive evasive evasive evasive
Cohesion (Blue) isolated clustered isolated clustered
Cohesion (Red) indifferent indifferent or clustered isolated usually isolated

SEQUENTIAL CHOICE
Loss Ratio high sensing medium sensing high sensing medium sensing
Probability of success low sensing low sensing low sensing low sensing
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reliability when the expected tactics of oppo-
nents are not rational.

The main contribution of this work was to
develop a computational game-theoretic frame-
work for military decision analysis based on
combat simulations. Since we defined the inter-
actions as a zero-sum game, we were able to use
a general-purpose linear programming tool to
solve games based on simulations. Extension
of our analysis to general games is in principle
straightforward, requiring merely the replace-
ment of a zero-sum game solving tool with
a general numerical equilibrium solver.

Random events are endemic to both battle-
field scenarios as well as their simulations. To
account for uncertainty in the simulation analy-
sis due to sampling noise, we include a probabi-
listic evaluation of the results as a guidance
regarding the likelihood that our results will
hold if we had run the simulations an infinite
number of times. Thus, even if simulation-based
analysis fails to provide a conclusive answer,
probabilistic analysis can provide additional
guidance in the command and control decision-
making process.

Discussion: Multiresolution
Modeling

Often, the terms ‘‘high-resolution’’ and
‘‘low-resolution’’ in the context of ground com-
bat simulations refer to the level of detail incor-
porated into the models of terrain effects on
mobility and weapons systems. In addition,
the increased role of networking and communi-
cation in combat has stimulated the need for
modeling terrain effects on sensor and radio
transmissions as a part of ‘‘high-resolution’’ in-
vestigations. Since increased resolution usually
implies longer simulation time, a smaller space
of tactical options is investigated, resulting in
a tradeoff between model fidelity and the
breadth of exploration of available options.

Phillips and Jackson (2005), aswell as others
(see NAS, 1997; Davis et al., 2001; and Bigelow
and Davis, 2003) attempt to address this prob-
lem via multiresolution modeling (MRM). Pro-
ponents of MRM argue that faster, lower-
fidelity tools should be run first to explore the
space of options more thoroughly before high-
resolution experiments are set up and run.

The work highlighted in this report lends
itself to a series of three steps that can be fol-
lowed as part of a multiresolution modeling
and simulation (M&S) analysis effort. They are
as follows:

1. Perform exploratory analysis to identify in-
teresting factors that make up strategies of
combatants. This could be done, for example,
using agent-based tools.

2. Perform game-theoretic analysis that con-
siders the restricted space of strategies identi-
fied in step 1 and determines equilibrium
strategies.

3. Perform high-resolution simulation (of weap-
ons effects, mobility, and communication)
that uses the equilibrium strategies and rep-
licates the scenario investigated with more
fidelity.

NOTES
A. By strategy, we mean a decision by a player

of any kind, whether that decision is tactical,
operational, or strategic in the military
sense. All that is important to us is that strat-
egy choices of all players affect the ultimate
outcomes.

B. In general, these will be mixed strategies, i.e.,
probability distributions over actions that
players can take. Such actions in our setting
are defined by the particular instantiations
of strategy parameters.

C. For example, if victory is critical to both
sides, the interaction is clearly zero-sum.
Typically, however, there are many factors
besides a one-time victory that are impor-
tant, such as loss ratio, and sides may not
agree on the relative importance of these,
thereby eliminating the purely adversarial
nature of the interaction. We assume here
that Red and Blue agree on the relative im-
portance of victory and loss ratio.

APPENDIX: THE LIMITATIONS OF
MANA SIMULATION TOOL

It is extremely important to understandboth
the implications and the limitations of our
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analysis.An important limitation of any analysis
of the nature we will present is the fact that any
simulator is inherently imperfect. Thus, in order
to draw conclusions from the analysis, we must
understand the shortcomings of our simulator of
choice.An important limitation ofMANA is that
it constrains the agent behavior to simple rules
that are defined by parameter settings. It may
seem especially strange to combine such rule-
driven agents with a higher-level analysis that
relies on the assumption of rationality of the
players.We justify such an approachbydrawing
the distinction between players (Blue and Red)
and individual agents in the simulations.We en-
vision that the actual rational players are com-
manders, whereas the individual agents are
soldiers. The orders from commanders to the
soldiers are frequently rule-based (e.g., attack
the enemy upon encounter if you are better
equipped and not heavily outnumbered; with-
draw otherwise), and there is relatively little
room for soldiers to engage in game-theoretic
analysis in the heat of the battle. Commanders,
however, do have a certain bird’s-eye view of
the battle and will also need to plan the rules,
training, and capabilities beforehand. Thus, the
two-tiered approach thatwe take has an analogy
in actual combat operations.

Nevertheless, we must still be cautious in
using the results of our analysis to guide actual
combat decisions. The first consideration is the
resolution of the environment captured in
MANA. MANA does allow agents to sense
walls, foliage, and other simple obstacles that
may impede movement and line of sight. How-
ever, not all weapons systems employed in
MANA take into account the battlefield envi-
ronment (e.g., weather or terrain), and, conse-
quently, any sensitivity of weapon systems to
the environment will not be captured within
MANA.
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