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ABSTRACT

We present an overview of an emerging methodology for applying game-theoretic analysis to strategic environments described
by a simulator. We first introduce the problem of solving a simulation-based game, and proceed to review convergence
results and confidence bounds about game-theoretic equilibrium estimates. Next, we present techniques for approximating
equilibria in simulation-based games, and close with a series of applications.

1 INTRODUCTION

In analyzing economic systems, especially those composed primarily of autonomous computational agents, the complexities
must typically be distilled into a stylized model, with the hope that the resulting model captures the key components of
the system and is nevertheless amenable to analytics. Increasingly, the boundaries of analytic tractability are being pushed,
particularly as the systems, as well as the participating agents, are being more precisely engineered, and as the computational
barriers that had once rendered complex mechanisms impractical are now coming down en masse. Consider, for example,
combinatorial auctions, which had in the past been shunned because of the complexity of the winner determination problem,
but have now become ubiquitous in academic literature, as well as practice (Cramton et al. 2006). The advantage of the
increasingly precise models of Economic micro-systems, such as complex (e.g., combinatorial) auctions, is the ability to
model these quite closely in a stylized way. The disadvantage, of course, is the added complexity in analyzing high-resolution
models of strategic interactions.

One approach to modeling rich strategic environments is to describe them by a simulator, and generate a game model
through controlled sampling over the space of strategic options. For example, Sureka and Wurman (2005) applied this approach
to study bidding strategy for combinatorial auctions. Over the past decade, many specific methods have been introduced
to analyze game-theoretic models specified using simulations, applied to a variety of multiagent domains (Greenwald and
Kephart 2002, Reeves 2005, Vorobeychik 2008, Vorobeychik et al. 2006, Vorobeychik and Porche 2009, Walsh et al. 2002,
Wellman et al. 2005, Wellman et al. 2008). Several of these approaches estimate game models based on a finite number of
simulation samples for a collection of joint strategic choices of the players. Game-theoretic analysis of the estimated game
form (e.g., identifying Nash equilibria or other solutions) is then extrapolated to draw strategic conclusions about the actual
game.

In this paper, we present an overview of the emerging area of analyzing simulation-based games. We first introduce
the problem of solving a simulation-based game, and proceed to review convergence results and confidence bounds about
game-theoretic equilibrium estimates. Next, we present techniques for approximating equilibria in simulation-based games,
and close with a series of application studies.

2 GAME THEORETIC PRELIMINARIES

In this section we formalize the notion of strategic interactions (or games) between a set of rational agents. We denote a
normal-form game by ΓN = [I,R,u(·)], where I is the (finite) set of players with m = |I| the number of players (here |I|
denotes the cardinality of a finite set I), R the joint strategy set (pure or mixed, depending on context) with Ri the set of
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strategies of player i, and u(·) the function that maps joint strategy profiles r ∈ R to a vector of payoff entries for all players,
that is, u(r) = {u1(r), . . . ,um(r)}, where ui(r) denotes the (deterministic) payoff function of player i. We assume that all
payoffs ui(r) are finite.

We let Ai denote the set of player i’s pure strategies, with A = A1×·· ·×Am the joint pure strategy set. One may think
of pure strategies as atomic actions of players in the game, such as a choice of a specific bid in an auction or a decision
to confess in prisoners’ dilemma. Alternatively, a pure strategy can be a complex policy, such as bidding as a function of
history of past observed bids and private information, although it remains “atomic” from the perspective of normal-form
analysis: a policy can be associated with, say, an index, and selecting a pure strategy would mean selecting the corresponding
index. We denote by Si the set of i’s mixed strategies and use S to denote the joint mixed strategy set. Mixed strategies
are probability distributions over pure (atomic) strategies. A key assumption is that each player selects an action to play
according to s independently of selections made by all the other players. (For example, players cannot communicate at the
time when they randomly draw their actions. An alternative concept of correlated strategies has also been studied (Osborne
and Rubinstein 1994), although we do not deal with it here.) If s ∈ S is a mixed strategy profile, then s(a) denotes the
probability that a pure strategy profile a ∈ A is played under s. Analogously, si(ai) is the probability that player i’s mixed
strategy selects action ai and s−i(a−i) is the probability that a−i ∈ Ai is selected under the joint mixed strategy of players
other than i.

Often, we view a strategy (pure or mixed) in a simulation-based game as a black box—for example, a computer program
that implements it—and furthermore restrict the space of all strategies to some subset which we can analyze computationally.
As such, we use the more abstract notation r to denote a pure or mixed (and possibly restricted—hence the mnemonic)
strategy profile, with R denoting the set of all (restricted) strategy profiles. ri then refers to the strategy of player i and we
use notation r−i for a profile of strategies other than that of player i.

An important strategic element of a normal-form game is game-theoretic regret (or simply regret) of a profile r ∈ R,
denoted by ε(r), which is the most any player can gain by deviating from ri to any strategy in Ri. Formally,

ε(r) = max
i∈I

max
r′i∈Ri

ui(r′i,r−i)−ui(r). (1)

In specifying a normal-form model of a strategic setting, the analyst has in mind predicting what players who are faced with
decisions in such a strategic context will do. The outcomes of strategic interactions—that is, the ultimate decisions made by
the players—are commonly assumed for the purposes of prediction to be rational (alternatively, strategically stable) in the
sense that every player is playing optimally given the choices of other players. This notion of strategic stability is formalized
as a Nash equilibrium solution concept for games.

Definition 1 A Nash equilibrium of the normal-form game ΓN is a profile r ∈ R such that for every player i ∈ I,

ui(r)≥ ui(r′i,r−i) ∀r′i ∈ Ri.

We can alternatively define the Nash equilibrium concept using the game-theoretic regret: r is a Nash equilibrium if
and only if ε(r) = 0.

In an approximation context—for example, when a game is too large to compute a Nash equilibrium exactly, or when
only payoff estimates are available—a common concept is that of an ε-Nash equilibrium.

Definition 2 An ε-Nash equilibrium of the normal-form game ΓN is a profile r ∈ R such that for every player i ∈ I,

ui(r)+ ε ≥ ui(r′i,r−i) ∀r′i ∈ Ri.

We may again relate ε-Nash (or approximate Nash) equilibria to the regret function by noting that any profile r ∈ R is
an ε(r)-Nash equilibrium. Henceforth, whenever we talk about solutions or equilibria in games, we mean Nash equilibria
or corresponding approximations.

3 SIMULATION-BASED GAMES

In this paper we are interested in analyzing game-theoretic models in which player payoff functions are specified using
simulations; we refer to these models as simulation-based games. A simulation-based game retains all the basic elements of
the normal-form game, but makes the notion of utility functions u(·) somewhat more precise in a way pertinent to analysis.
Specifically, a utility function in a simulation-based game is represented by an oracle, O , which can be queried with any
strategy profile r ∈ R to produce a possibly noisy sample payoff vector U . In simulation-based games, we presume to
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Figure 1: A schematic of simulation-based game analysis.

have a simulation model of the player payoffs, and we must run this simulation to obtain a noisy sample of player payoffs
for any fixed joint strategy profile. Figure 1 presents a schematic view of simulation-based game analysis. For example,
we may imagine an agent-based combat simulation in which the analyst can set strategic parameters of the adversaries
and run the simulation to obtain a sample outcome of a battle or a campaign. As another example, consider a one-item
first-price sealed-bid auction game with two players, represented by a simulation. Suppose that each of two players has some
valuation (v1,v2 respectively) for the item that is being auctioned off, but the valuations is randomly chosen according to
some distribution (each player does get to observe his own valuation, but not that of his opponent). Suppose that the bidders
submit bids which are a fixed fraction of their value, that is, bi = αivi. If bi > b j, bidder i gets the good and pays his bid,
for a utility of (1−αi)vi. Otherwise, he does not receive the good and pays nothing (utility of zero). For a fixed strategy
profile {α1,α2}, a simulator samples values v1,v2, computes the corresponding bids, and then determines the allocation (who
receives the good) and payments, returning the corresponding payoff samples to both players.

Formally, a simulation-based game is denoted by ΓS = [I,R,O], where the oracle (simulator) O produces a sample vector
of payoffs U = (U1, . . . ,Um) to all players for a (typically pure) strategy profile r. We assume throughout that E[U ] = u(r).
We denote an estimate of a payoff to player i for profile r based on n(r) i.i.d. samples (that is, the number of samples n
can be different for different strategy profiles r) from O by

ûi,n(r) =
1

n(r)

n(r)

∑
j=1

Ui(r) j,

where each U(r) j is generated by invoking the oracle with profile r as input. The vector of payoff estimates for all players
we denote by ûn(r), where n is the number of payoff samples taken for the profile r (or just û(r) where we would like to
talk about any estimate of the payoff at r).

Using the estimates û(r), we can construct an estimated payoff matrix for a finite game from simulation data. We often
call this estimated game an empirical game to reflect the empirical source of its payoff estimates. Since an empirical or
estimated game can be viewed as a normal-form game in its own right, all the concepts defined on normal-form games
apply. Thus, we obtain empirical regret as

ε̂(r) = max
i

max
r′i∈Ri

ûi(r′i,r−i)− ûi(r),

and, similarly, an empirical (ε-)Nash equilibrium is just a (ε-)Nash equilibrium of the empirical game.
One key distinction between O and u(·) is that u(·) provides direct access to exact payoff evaluations, whereas O

evaluates payoffs with noise. Another distinction, no less vital but somewhat more subtle, is that by specifying the payoff
function as an oracle, we resign ourselves to the fact that payoffs are not available in any easily tractable form and focus
our attention to controlling the simulation experiments.

Implicit to the discussion of both the simulation-based games and empirical games is that they are defined with respect
to an underlying game ΓN←S characterized by the set of players I, a set of strategy profiles R, and the payoff function u(·)
from which the oracle, in effect, takes noisy samples. Given ΓN←S, the true regret of a profile r ∈ R, ε(r), in both the
simulation-based and the empirical game is evaluated with respect to u(·) of this underlying game.
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4 NASH EQUILIBRIUM ESTIMATION IN FINITE GAMES

We begin our discussion with some results and techniques applicable only (or primarily) to games that are finite (i.e., have
finite sets of pure strategy profiles A). In much of this section, we assume that samples have been taken for every pure
strategy profile a ∈ A, in which case the game needs to actually be small enough to allow this (what “small enough” means
depends on the running time of simulations; if simulations are fast, the size of strategy space can be rather large, whereas
when simulations that take hours to run, even a game with relatively few strategies and players will be large).

4.1 Baseline (Direct) Nash Equilibrium Estimation

The most direct—although not necessarily optimal—method for estimating Nash equilibria in finite games in which we have
at least some samples for every a ∈ A is the following:

1. Generate an empirical game ΓE by sampling the simulator (oracle) O to obtain a data set D of profile-payoff tuples
(r,U).

2. Apply a game solver (e.g., the GAMBIT toolbox (McKelvey et al. 2005)) to ΓE to obtain Nash equilibrium estimates.

A level of sophistication can be added if we use variance reduction techniques rather than sample means to estimate payoffs
of the underlying game (Reeves 2005, Wellman et al. 2005). For example, control variates, conditioning, and quasi-random
sampling can achieve a considerable increase in sampling efficiency (Ross 2001, L’Écuyer 1994). In this paper, however,
we assume that we use sample means as payoff estimates—as described above.

4.2 Convergence

An important property of game-theoretic regret function ε(s) on a mixed strategy space S in finite games is that we can
extend the Law of Large Numbers to obtain uniform regret convergence. The following theorem states this result formally.

Theorem 1 (Vorobeychik (2009)) ε̂n(s)→ ε(s) a.s. uniformly on S.
Several useful facts, shown in Vorobeychik (2009), follow from this result.
Theorem 2 For every γ > 0, there is M such that ∀n≥M, N ⊂Nn,γ a.s., where Nn,γ = {s ∈ S : ε̂n(s)≤ γ}.
Informally, Theorem 2 assures us that when enough samples of all profiles have been taken, the set of all Nash equilibrium

solutions (which could be infinite in degenerate cases, but would normally be finite) is contained in the set of all approximate
equilibrium solutions (for a fixed approximation constant) of the corresponding empirical game. This result can be extremely
useful if we are interested in evaluating, for example, worst-case equilibrium outcomes in a game. In such case, a conservative
approach of using a worst-case approximate equilibrium outcome of a game produced by simulations is, thus, asymptotically
sound.

Theorem 3 hD(Nn,N ) converges to 0 a.s., where hD(X ,Y ) = supx∈X infy∈Y d(x,y).
The meaning of Theorem 3 is that every Nash equilibrium in an empirical game becomes arbitrarily close to some

equilibrium of the underlying game, as long as enough samples are taken. Note that we do not claim the converse: indeed,
it is not difficult to construct an example with a set of all Nash equilibria of the underlying game which has points that are
never close to any estimated Nash equilibria of an empirical game, no matter how many samples have been taken.

4.3 Confidence Bounds

We now turn our attention to exploring confidence bounds for the estimates of the regret function ε̂(s) on the (infinite) mixed
strategy space S.

Theorem 4 (Vorobeychik (2009)) Suppose that simulation samples Ui(a) are bounded between 0 and 1 and we
have taken at least n samples for every strategy profile a ∈ A. Then, for s ∈ S,

Pr{|ε(s)− ε̂(s)| ≥ γ} ≤ m|A|(K +1)e−γ2n/2,

where K = maxi∈I |Ai|.
Thus, for example, if ŝ is a Nash equilibrium of a game obtained using simulations with at least n samples taken for

every pure strategy profile a ∈ A,

Pr{ε(ŝ)≥ γ} ≤ m|A|(K +1)e−γ2n/2.
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Note that the confidence bound above required rather minimal assumptions on the nature of randomness in the simulation.
We now make, instead, a very strong assumption, and use it to derive a tight bound.

To begin, suppose that we have an improper prior on ui(a) for all a ∈ A, and the sampling noise is Gaussian with known
variance σ2

i (a) (i.e., variance may be different for different players and strategy profiles). The result below builds on the
derivation of the distribution of the maximum of k variables based on samples of these with zero-mean additive Gaussian
noise by Chang and Huang (2000), who demonstrate that if we start with an improper prior over the actual payoffs and
observe samples distorted by Gaussian noise, the posterior distributions of ui(·) | ûi(·) are Gaussian random variables with
mean ûi(·) and variance σ2

i (a). Furthermore, if payoffs are sampled independently, the actual (posterior) payoffs ui(·) are
also independently distributed, conditional on ûi(·). Given these assumptions, the following confidence bound can derived
for a mixed strategy profile s ∈ S (in the sequel we omit conditioning on ûi(·) for brevity):

Theorem 5 (Vorobeychik (2009)) Suppose that payoffs for every a ∈ A are sampled independently with zero-mean
additive Gaussian noise, and suppose that we have an improper prior on ui(a). Let s ∈ S be a mixed strategy profile. Then,

Pr(ε(s)≤ ε) = ∏
i∈I

∫
R

∏
b∈Ai

[Pr(Wi(b)≤ u+ ε)] fW ∗i (u)du,

where

Pr(Wi(b)≤ u+ ε) = 1−Φ

∑c∈A−i ûi(b,c)s−i(c)−u− ε√
∑c∈A−i

σ2
i (b,c)s2

−i(c)
n(b,c)


and

W ∗i ∼ N

(
∑
a∈A

ûi(a)s(a), ∑
a∈A

σ2(a)s2(a)
n(a)

)
.

4.4 Exploring Large Finite Games

In our results above, we spent no time discussing a process by which profiles are selected to be sampled. Indeed, our results
do not very much depend on that. However, it is rather intuitive that intelligent allocation of simulation samples (if these
are somewhat expensive) can considerably improve Nash equilibrium estimates. Walsh et al. (2003) present an approach to
selecting profiles to query from the simulator at each step of the exploration process which uses a measure, dubbed EVI or
expected value of information. Their first step is to define the information state to be an empirical game, ΓE , and utility
estimate to be a measure of Nash equilibrium approximation error with respect to the empirical game, f̂ΓE

(·). EVI is then
defined in this setting as follows:

EVI(r | ΓE ) = EΓE .r|ΓE
[ f̂ΓE .r(x(ΓE ))− f̂ΓE .r(x(ΓE .r))],

where ΓE .r designates an empirical game obtained by adding to ΓE a payoff sample (or a constant number of samples) for
the profile r. Now, define the error function f to be game-theoretic regret with respect to every Nash equilibrium estimate
in ΓE , that is, with respect to the set N (ΓE ) of equilibrium estimates. First, recall the definition of game-theoretic regret
above. Generalizing the notion of regret in empirical games, define empirical regret of a profile r to be

εΓE
(t) = max

i∈I
max

b∈Di(t)
[ui(b,r−i)−ui(r)]. (2)

In this expression, Di(t) is the set of profiles in the data set of the empirical game ΓE with only player i deviating from t.
Let the set of solutions to the empirical game N (ΓE ) to be the set of regret-minimizing profiles on the restricted strategy
space R. Define the error of solutions to empirical game Γ1

E with respect to another empirical game (perhaps, one with a
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better estimate of the payoff function), Γ2
E , to be

e(Γ1
E ,Γ2

E ) =
1

|N (Γ1
E )| ∑

t∈N (Γ1
E )

ε
Γ2

E
(t).

Using this notation, EVI becomes

EVI(r | ΓE ) = EΓE .r|ΓE
[e(ΓE ,ΓE .r)− e(ΓE .r,ΓE .r)].

Now, assume that every t ∈N (ΓE ) has zero game theoretic regret evaluated with respect to the game ΓE , that is,
εΓE

(t) = 0 (this would be tantamount to assuming that there is a profile t which is an equilibrium of ΓE ). If we impose
no restrictions on our strategy set R, allowing it to be the set of all mixed strategy profiles, all solutions in N (ΓE ) are
guaranteed to have zero regret and, thus, the assumption will necessarily hold. Under this assumption, e(ΓE .r,ΓE .r) = 0 for
any ΓE .r, and EVI simplifies to

EVI(r | ΓE ) = EΓE .r|ΓE
[e(ΓE ,ΓE .r)] =

1
|N (ΓE )| ∑

t∈N (ΓE )
EΓE .r[εΓE .r(t)].

Now, consider a profile r which is neither an equilibrium estimate (i.e., r /∈N (ΓE )) nor a neighbor to an equilibrium
estimate (i.e., r /∈ Di(t) ∀i ∈ I, ∀t ∈N (ΓE )). By sampling this profile, EΓE .r[εΓE .r(t)] will remain unchanged for every
t ∈N (ΓE ), since r has no bearing on it. Consequently, EVI = 0 for every such profile r. Since EVI ≥ 0 ∀r ∈ R, we need
only to consider profiles r that are either current solutions or their neighbors. Generically, the number of solutions to ΓE is
very small compared to the size of the game, and the number of neighbors is linear in the size of N (ΓE ), in the number
of players I and in the number of player strategies Ri (if finite).

Note that EVI is highly computationally intensive, requiring the computation of the entire set of Nash equilibria many
times during the evaluation sequence for a single profile r. One alternative (cheaper) approach, described by Jordan et al.
(2008), is to select a profile that maximizes a Kullback-Leibler divergence, which is based on the distribution of minimum
regret before and after sampling a chosen profile. They begin by presuming that the sampling action will take k samples,
that is, each profile s ∈ S is sampled k times, and then a profile is selected that yields the highest value of information gain.
The core of the approach to computing information gain, based on Kullback-Leibler divergence, is very general in that it
can use any prior distribution on profiles obtained based on the current empirical game, ps(ΓE ). Thus, Jordan et al. (2008)
first develop it for an arbitrary distribution, and then specialize to use the one of particular interest to empirical game search.

First, define the entropy of a profile s, H (s;ΓE ):

H (s;ΓE ) =−ps(ΓE ) log2 ps(ΓE )− (1− ps(ΓE )) log2(1− ps(ΓE ))

The standard definition of cross entropy of s, denoted here by
H (s;ΓE , Γ̂E ), is then

H (s;ΓE , Γ̂E ) =−ps(ΓE ) log2 ps(Γ̂E )− (1− ps(ΓE )) log2(1− ps(Γ̂E ))

Based on these, define the information gain for a profile s from taking k additional samples of ŝ, denoted G (s;ΓE ,ΓE .ŝk),
to be

G (s;ΓE ,ΓE .ŝk) = H (s;ΓE ,ΓE .ŝk)−H (s;ΓE )

Finally, the aggregate information gain from sampling a profile s a total of k times, denoted G (ΓE ,ΓE .sk), is

G (ΓE ,ΓE .sk) = ∑
ŝ∈D(s)

G (ŝ;ΓE ,ΓE .sk)

In developing their assessment of likely strategic outcomes based on the evidence encompassed by the empirical game,
Jordan et al. (2008) posit that players are most likely to play a profile with the lowest regret. Since they restrict the search
space to pure strategy profiles, such profiles need not constitute Nash equilibria, although often they will (particularly in
very large games), and even more often the smallest regret will be indeed quite low to justify the belief. Thus, they define
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the information gain with respect to the distribution ps(ΓE ) which assigns probabilities to profiles s in proportion to their
likelihood of having the smallest regret. To develop these distributions formally, let us begin with the definition of the highest
payoff a player i can obtain by deviating from s to another strategic option:

Definition 3 (Maximum deviation payoff) For a given player i and profile s, the maximum deviation payoff is

δi(s) = max
ŝ ∈ Si \ si

ui(ŝ,s−i).

The distribution of δi(s), denoted by Fδi(s)(δ ), is the nth order statistic (maximum) over the mean payoffs of the deviations,
given by

F
δi(s)(d) = ∏

ŝ ∈ Si \ si

Fui(ŝ,s−i)(d).

The distribution of player regret, r, denoted by F
εi(s)(r) can be obtained by conditioning on the payoff to i from playing s:

F
εi(s)(r) =

∫
R

F
δi(s)(u+ r) ·dFui(s)(u). (3)

The integral in (3) is estimated using Monte Carlo with importance sampling (Ross 2001). The distribution of regret for a
particular profile, s, is then simply

F
ε(s)(r) = ∏

i∈I
F

εi(s)(r).

Now, as the final piece, we can define the actual distribution of minimum regret, that is, we can define, for each profile
s ∈ S, the probability that s has minimum regret given the evidence in the empirical game:

ps(ΓE ) =
∫

R

 ∏
ŝ ∈ S\ s

(
1−F

ε(ŝ)(r)
)dF

ε(s)(r). (4)

The estimation of the value of the integral in (4) using Monte Carlo requires generating M realizations of the random
variable. Each of these M realizations requires in turn computing or estimating the Equation (3) expression |S|−1 times. Since
the resulting algorithm can become quite computationally cumbersome, the authors suggest as an alternative approximating
the integral by using point estimates for the mean regret of the remaining profiles:

p∗s(θ) = F
ε(s)(ε

(1)
S\s), (5)

where ε
(1)
S\s is the lowest regret over all profiles except s calculated using the expected mean payoffs given the empirical

game ΓE .
The problem of sample selection is substantially easier if we consider a setting in which the simulator produces samples

with no noise. Jordan et al. (2008) present a heuristic, which they call, min-regret-first search (MRFS), for such a setting.
The MRFS algorithm proceeds from an arbitrary starting point to sample a profile which is a neighbor to some (arbitrary)
approximate Nash equilibrium solution of the current empirical game. They find that MRFS is very effective in a variety of
settings. The reason for this is, perhaps, that in the noise-free setting and given the regret error measure, MRFS is nearly
equivalent to EVI—equivalent if we assume that solutions have zero regret with respect to the empirical game, as above.
With this assumption, we already demonstrated that under EVI only solutions or neighbors need to be considered as sampling
actions. When there is no sampling noise, there is no need to sample solution profiles again, since the values of the players’
utilities at these profiles are already known exactly. Furthermore, the neighbors that have already been sampled need not be
sampled again for the same reason. Therefore, the only profiles that need to be considered are the neighbors to solutions
which have not been added to the data set of the empirical game, and that is precisely what MRFS would prescribe.
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4.5 Hierarchical Reduction for Symmetric Games

Consider a 4-player symmetric game in which each player has 35 strategies (in a symmetric game, all players have identical
pure strategy sets (Ai = A j for all i, j ∈ I) and symmetric utility functions in the sense that ui(ai,a−i) = u j(a j,a− j) whenever
ai = a j and a−i = a− j for all i, j ∈ I). The total number of distinct strategy profiles in such a game is 73,815, a large,
but, perhaps, manageable number. Now, if we double the number of players, the number of strategy profiles exploads to
118,030,185—over 118 million! Now, if we additionally imagine that such a game is represented using simulations, and,
furthermore, that each strategy profile yields a noisy sample payoff, the 8-player variant becomes clearly intractable (even if
we run a simulation every second and take 10 samples for each strategy profile, we would need in excess of 13,500 days,
or roughly 37 years, to explore the entire game).

The exploration techniques in the previous section suggest that we may be able to avoid exploring the entire game and
still arrive at reasonable Nash equilibrium estimates. An alternative (which may well be complementary) to the sophisticated
exploration techniques is to shrink the size of the game. Such an idea was explored by Wellman et al. (2005). Specifically,
they propose, given an original K-player game, constructing a smaller game with K/q players (naturally, assuming that K
is divisible by q), where each player “controls” c others (i.e., groups of c players form a meta-player with c “arms”, with
the player selecting an identical strategy for each of its arms). For example, the original 8-player game would be reduced
to a 4-player game, with each meta-player controlling 2 players. Clearly, such a reduced game will likely have different
equilibrium solutions from the underlying game. However, as it may now be explored more completely, better solution
estimates could be obtainable for the reduced game. Wellman et al. (2005) provide theoretical and experimental support for
this approach in a variety of settings.

5 NASH EQUILIBRIUM APPROXIMATION IN INFINITE GAMES

5.1 Heuristic Exploration Techniques

Recall our measure of game-theoretic regret, ε(r), of a profile r ∈ R. By definition, ε(r)≥ 0 and ε(r) = 0 iff r is a Nash
equilibrium. Consequently, the problem of computing a Nash equilibrium is equivalent to global non-linear constrained
optimization. When the game is finite, it means that by taking a finite sample of payoff vectors for all pure strategy profiles,
we can obtain an estimate of the payoff function and, hence of the regret function, on the mixed strategy space S, which is
strongly consistent (with respect to the actual regret function).

This is, of course, only for (small) finite games. In the case of infinite games, naturally we cannot expect to sample
every pure strategy profile even once. Nevertheless, formulating the problem as optimization opens the door for the use
of simulation optimization techniques. Specifically, suppose that we have a simulation optimization technique, T , which is
globally convergent as long as estimates of the objective are convergent. Then, if we have a consistent estimator of ε(r) for
any fixed point r, we can apply T to get global convergence to a Nash equilibrium (when one exists on the strategy space
R). While in our setting we only have access to samples from the payoff function for any fixed r, we can use the same
technique T to obtain a consistent estimator for ε(r), as required above. Combining these, we can obtain a provably globally
convergent algorithm for estimating a Nash equilibrium in infinite games, so long as we can find an appropriate T . An
example of such a globally convergent method is simulated annealing (with appropriate schedules of temperatures) (Ghate
and Smith 2008). The formal statement of the Nash equilibrium convergence result is somewhat involved; the details can
be found in Vorobeychik and Wellman (2008).

Now, consider the following alternative Nash equilibrium estimation scheme to the convergent algorithm just described.
Say that T is still some technique (perhaps convergent) for (stochastic) simulation optimization, and suppose that we still
retain T for the purpose of estimating a best response vector to a profile r, br(r) (that is, best response choices by all players
given that others maintain their strategies in r), as well as the corresponding regret ε(r). We can now utilize a well-known
best response dynamic, which simply follows a sequence of best responses, with rk+1 = br(rk), with k denoting a current
iteration. While not in general convergent, iterative best response has been shown empirically to be very effective as a search
heuristic (i.e., after the requisite number of best response iterations, we still use profiles with the smallest estimated regret
as Nash equilibrium estimates) (Vorobeychik and Wellman 2008).

5.2 Learning Payoff Functions from Exploration Data

No matter what technique we may follow to guide the simulations, we in the end obtain a “trail” of data, D = {(a j,U j)L
j=1},

with L data points featuring strategy profiles and corresponding payoff (sample) tuples. A “direct” (or sample based) way
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of using this data to produce a Nash equilibrium estimate would be by using a profile with the smallest empirical regret
given data. Vorobeychik et al. (2007) proposed an alternative: treat this as a supervised learning problem for estimating
players’ payoff functions, and then use the learned payoff functions (and, consequently, the learned game) to obtain solution
estimates. Experimental experience suggests that the learning technique can yield considerably better equilibrium candidates
than direct estimation of the empirical game. The general problem of inducing a game model from simulation data can be
formulated as a loss minimization problem, with cross-validation employed to select among candidate models (Jordan and
Wellman 2009).

6 APPLICATIONS

Many of the developments in methodology for analysis of simulation-based games have been driven by applications. We
present a sample, biased toward our own work, illustrating the nature of some of the games and issues that have been addressed
through these methods. The first example presents a case where simulation-based game analysis enabled development and
validation of a superior strategy for a common (but analytically intractable) auction mechanism. Subsequent sections describe
applications that shed light on incentive properties of established economic mechanisms, and qualitative phenomena observed
in supply chain scenarios.

6.1 Bidding Strategies for Simultaneous Ascending Auctions

In many trading situations, agents interact with several markets simultaneously, buying and selling multiple goods. Though
these markets may operate independently, the agents’ values or costs for these goods are often interrelated. This poses a
challenging strategic problem, given the pervasive uncertainty about other agents’ behavior and market conditions in general.

One canonical model of multiple interdependent markets is the simultaneous ascending auction (SAA) mechanism
(Cramton 2006). In an SAA, agents decide in each discrete round which goods to bid on, and the price of a good is
incremented whenever an agent not currently winning the good bids on it. When a round passes with no new bids, the game
ends and goods are allocated to their current winners at current prices.

Despite the simplicity of this mechanism, and ubiquity of SAA variants in practice, auction theory has little to say about
equilibrium strategies for simultaneous markets. Simulation-based approaches, in contrast, have fruitfully informed strategic
reasoning in this domain (Wellman, Osepayshvili, MacKie-Mason, and Reeves 2008). As typical in empirical game studies,
our investigation is based on a reformulation of strategy space based on a basic agent architecture. In the case of SAA
bidding, we defined the class of perceived-price bidding strategies, in which agents select a set of goods to bid on based on
a specification of beliefs about the effective prices of these goods. The method for generating perceived prices provides a
convenient way to parametrize this strategy space. For example, bidding based on current prices (i.e., myopic behavior) is
called straightforward bidding.

Simulation-based experimentation, and experience in related trading games, suggested that generating perceived prices
based on predictions could address the key strategic challenges in this domain. There are many potential sources of price
predictions, each representing a strategy candidate given the underlying agent architecture. One particularly effective approach
is to identify self-confirming prices: a set of prices such that, when all agents bid based on price-prediction using these prices,
these come out to be correct, on average. Generalization of this approach to probabilistic predictions yields the strategy we
label PP(FSC), which stands for price-prediction (PP) using the self-confirming probability distribution FSC.

A comprehensive simulation-based game-theoretic analysis for one particular SAA environment (five goods and five
agents) revealed that PP(FSC) constitutes a pure-strategy Nash equilibrium, in the empirical game comprising 53 strategies
evaluated. Somewhat less extensive analyses confirmed that PP(FSC) supports an equilibrium—exactly or approximately—in
a range of different SAA configurations. What these configurations do have in common is that agents’ preferences for
the goods are complementary. When goods are substitutes, different strategic issues come to the fore, and analyses of
simulation-based games under this assumption led to the conclusion that simple demand-reduction strategies fare best.

The SAA game is just one instance of a trading game where simulation-based methods have led to new conclusions
about best known strategies. Other examples include the well-studied domain of continuous double auctions (Schvartzman
and Wellman 2009), and the Trading Agent Competition travel (Wellman, Greenwald, and Stone 2007) and supply chain
management (Jordan, Kiekintveld, and Wellman 2007) games.
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Figure 2: (a) Incentives to deviate from sincere bidding and (b) average fraction of true value bid in equilibrium, when vi
and ei are i.i.d. uniform in [0,1] with varying numbers of players.

6.2 (Un)Truthful Bidding in Keyword Auctions

Sponsored search auctions (also known as keyword, slot, or ad auctions) have become one of the primary sources of revenue
for the major search engines. Since their beginnings these auctions have undergone a series of changes, from a first-price
to a next-price format, from rank-by-bid to rank-by-revenue. Roughly, the consensus today stands at the rank-by-revenue
schemes, which augment the ranking rule to include advertiser quality scores (reflecting the effect of the ad quality on the
probability it is clicked) and a next-price (or generalized second-price (GSP)) format (under which each advertiser pays the
minimum amount sufficient to remain in the currently allocated slot).

Since the GSP pricing rule was, as its name suggests, an attempt to generalize a second-price (Vickrey) auction, one may
anticipate that incentive compatibility (i.e., bidders have an incentive to be sincere about their actual preferences), being the
central property of Vickrey auctions, would carry over. In reality, it is known that GSP is not, in fact, incentive compatible.
The problem is that it is difficult to quantify analytically exactly to what extent incentives to be insincere exist in actual
auctions. These incentives, however, can be quantified using simulation-based game theoretic analysis methods. In Figure 2
(a) and (b) we show incentives to deviate from truthful bidding (i.e., submitting bids that are actual valuations) and the
fraction of value that the advertisers actually submit as their (approximate) equilibrium bids. Figure 2 demonstrates that
incentives to deviate exceed 100% of bidder profits, and, furthermore, equilibrium bids are well below actual willingness to
pay, suggesting that GSP is unlikely to elicit bids that are in any sense close to sincere. As a bidder, the results suggest that
consideration of these incentives should be a significant component of a bidding strategy.

6.3 Combinatorial Auctions with Approximate Allocation Algorithms

Whereas prevalent GSP mechanism in keyword auctions generalizes the single-item second-price (Vickrey) auction in some
respects, it does not preserve the theoretical incentive to report truthful valuations. As we observed in the previous section,
analysis of the simulation-based game confirms that the GSP mechanism induces rational agents to bid considerably below
actual valuations. Another mechanism, called VCG (Vickrey-Clarke-Groves), however, does yield a socially optimal allocation
(in the sense that it maximizes the sum of bidders’ valuations) and is also incentive compatible (Krishna 2002). However,
VCG requires that the optimal allocation given bids be computed exactly—approximation will, in general, result in the loss
of incentive compatibility. As in the previous study, our goal is to quantify this loss, as displayed in Figure 3 for a particular
kind of combinatorial auction (one in which valuations of bidders for items satisfy a submodularity property, that is, a
marginal value of a fixed set of items falls as more items are added to the total bundle). In the figure we can see that, while
the greedy algorithm in the submodular setting is a 2-approximation, the incentives to deviate are quite low (in fact, likely
to be even lower since the greedy, rather than optimal, outcome is used as a measuring stick).
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Figure 3: Average game-theoretic regret, with greedy algorithm approximating the allocation in a combinatorial auction with
submodular valuations and random marginal valuations (that is, a marginal value of an item given a fixed set of other items
is uniformly random over a unit interval), as a function of the number of (a) players (number of items fixed at 20), (b) items
(number of players is fixed at 5).

6.4 Strategic Procurement in a Supply-Chain Game

The Trading Agent Competition (TAC) is an annual venue that provides a stochastic market simulation environment in
which autonomous trading agents can compete using an API provided by the designers. The first competition, held in the
summer of 2000, featured a travel-shopping scenario, in which the trading agents were to act as travel agents for simulated
customers (Wellman et al. 2001). Several years later (2003), the supply-chain game (TAC/SCM) was introduced (Arunachalam
and Sadeh 2005). Early in the seeding rounds of TAC/SCM 2003, a particular strategic element of the game began quickly
to attract considerable attention: all of the high-scoring agents were submitting very large orders for all or nearly all of the
input components on the first day of the simulation. Once this strategy became widely recognized as yielding a considerable
advantage, progressively more agents adopted it. In retrospect, this behavior, termed aggressive day-0 procurement, can be
understood from studying the supplier pricing model: it turns out that the prices of all inputs are lowest and their availability
highest on simulation day 0.

While aggressive day-0 procurement emerged as a prominent strategic aspect of the inaugural TAC/SCM tournament,
it is unclear if it was entirely in players’ interest to follow it: perhaps it only seemed so upon superficial observation of
the games. However, simulation-based game theory provides tools to systematically address questions such as this. The
first step is to define a stylized game that captures the relevant aspects of the problem. This was done by Wellman et al.
(2005), who distilled the complex space of player strategies into two: aggressive (A) and baseline (B), characterized by the
particular day-0 procurement behavior. Let iA denote the profile with i agents playing A (the rest playing B). The unique
pure-strategy Nash equilibrium in this game based on the estimated payoff matrix is 4A. That this is an equilibrium can be
seen by comparing adjacent columns in the bar chart of Figure 4. Arrows indicate for each column, whether an agent in that
profile would prefer to stay with that strategy (arrow head), or switch (arrow tail). Solid black arrows denote statistically
significant comparisons. Profile 4A is the only one with only in-pointing arrows.

Although jockeying for day-0 procurement turned out to be an interesting strategic issue in itself, the phenomenon
detracted from other important problems, such as adapting production levels to varying demand (since component costs were
already sunk), and dynamic management of production, sales, and inventory. In response to the problem, the TAC/SCM
designers adopted several rule changes intended to penalize large day-0 orders. These included modifications to supplier
pricing policies and introduction of storage costs assessed on inventories of components and finished goods. Despite the
changes, day-0 procurement was very high in the early rounds of the 2004 competition. In a drastic measure, the Game
Master imposed a fivefold increase of storage costs midway through the tournament. Even this did not stem the tide, and
day-0 procurement in the final rounds actually increased (by some measures) from 2003 (Kiekintveld et al. 2005).

To address the mechanism design problem involved in appropriately setting a storage cost to stem the high day-0
procurement, we again turn to simulation-based game theory. First, we create a stylized game model as above by abstracting
away the complexity of player strategies, this time into actual day-0 procurement decisions (restricted to a closed interval
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Figure 4: Estimated payoffs for the 6-player 2-strategy TAC/SCM stylized game.

beyond which the choices are unlikely to be reasonable). We proceed to estimate sets of approximate Nash equilibria by
applying MRFS (described above) to a discretized joint strategy space of players, and taking an average of 5 to 10 samples
as the true mean payoff for a strategy profile. The results, shown in Figure 5, suggest that the effect of storage cost, while
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Figure 5: Aggregate day-0 procurement estimates based on search in strategy profile space compared to three machine learning
techniques. The equilibrium total procurement correspondence is the interval between “SearchMin” and “SearchMax”.

noticeable in the downward sloping equilibrium correspondence of total day-0 procurement decisions by the players, is not
sufficient to stem the tide, and more fundamental adjustments must be (and ultimately were) made to the game simulation.

REFERENCES

Arunachalam, R., and N. M. Sadeh. 2005. The supply chain trading agent competition. Electronic Commerce Research and
Applications 4:63–81.

Chang, Y.-P., and W.-T. Huang. 2000. Generalized confidence intervals for the largest value of some functions of parameters
under normality. Statistica Sinica 10:1369–1383.

Cramton, P. 2006. Simultaneous ascending auctions. See Cramton, Shoham, and Steinberg (2006).
Cramton, P., Y. Shoham, and R. Steinberg. (Eds.) 2006. Combinatorial auctions. MIT Press.



Vorobeychik and Wellman

Ghate, A., and R. L. Smith. 2008. Adaptive search with stochastic acceptance probabilities for global optimization. Operations
Research Letters 36 (3): 285–290.

Greenwald, A. R., and J. O. Kephart. 2002. Shopbot economics. Journal of Autonomous Agents and Multiagent Systems 5
(3): 255–287.

Jordan, P., Y. Vorobeychik, and M. P. Wellman. 2008. Searching for approximate equilibria in empirical games. In Seventh
International Conference on Autonomous Agents and Multiagent Systems, 1063–1070.

Jordan, P., and M. P. Wellman. 2009. Generalization risk minimization in empirical game models. In Eighth International
Conference on Autonomous Agents and Multiagent Systems.

Jordan, P. R., C. Kiekintveld, and M. P. Wellman. 2007. Empirical game-theoretic analysis of the TAC supply chain game.
In Sixth International Joint Conference on Autonomous Agents and Multi-Agent Systems, 1188–1195. Honolulu.

Kiekintveld, C., Y. Vorobeychik, and M. P. Wellman. 2005. An analysis of the 2004 supply chain management trading agent
competition. In IJCAI-05 Workshop on Trading Agent Design and Analysis.

Krishna, V. 2002. Auction theory. Academic Press.
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