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The field of Game Theory has proved to be of great importance in modeling interactions between
self-interested parties in a variety of settings. Traditionally, game theoretic analysis relied on
highly stylized models to provide interesting insights about problems at hand. The shortcom-
ing of such models is that they often do not capture vital detail. On the other hand, many
real strategic settings, such as sponsored search auctions and supply-chains, can be modeled in
high resolution using simulations. Recently, a number of approaches have been introduced to
perform analysis of game-theoretic scenarios via simulation-based models. The first contribution
of this work is the asymptotic analysis of Nash equilibria obtained from simulation-based mod-
els. The second contribution is to derive expressions for probabilistic bounds on the quality of
Nash equilibrium solutions obtained using simulation data. In this vein, we derive very general
distribution-free bounds, as well as bounds which rely on the standard normality assumptions,
and extend the bounds to infinite games via Lipschitz continuity. Finally, we introduce a new
maximum-a-posteriori estimator of Nash equilibria based on game-theoretic simulation data and
show that it is consistent and almost surely unique.

Categories and Subject Descriptors: I.6.6 [Simulation and Modeling]: Simulation Output
Analysis; J.4 [Social and Behavioral Sciences]: Economics

General Terms: Game theory, Simulation and Modeling

Additional Key Words and Phrases: Game theory, simulation, Nash equilibrium

1. INTRODUCTION

In analyzing economic systems, especially those composed primarily of autonomous
computational agents, the complexities must typically be distilled into a stylized
model, with the hope that the resulting model captures the key components of the
system and is nevertheless amenable to analytics. Increasingly, the boundaries of
analytic tractability are being pushed, particularly as the systems, as well as the
participating agents, are being more precisely engineered, and as the computational
barriers that had once rendered complex mechanisms impractical are now coming
down en masse. (Consider, for example, combinatorial auctions, which had in the
past been shunned because of the complexity of the winner determination problem,
but have now become ubiquitous in academic literature, as well as practice [Cramton
et al. 2006].) The advantage of the increasingly precise models of Economic micro-
systems, such as complex (e.g., combinatorial) auctions, is the ability to model
these quite closely in a stylized way. The disadvantage, of course, is the added
complexity in analyzing high-resolution models of strategic interactions.

Recently, a number of approaches have been introduced to analyzing game-
theoretic models specified using simulations [Vorobeychik 2008; Wellman et al.
2005; Reeves 2005; Vorobeychik et al. 2006; Vorobeychik and Porche 2009; Well-
man et al. 2008]. Many of these approaches focus on estimating Nash equilibria
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based on a finite number of simulation samples for a collection of joint strategic
choices of the players. Often, an estimate of the payoff matrix is constructed from
simulation data and a Nash equilibrium of the estimated game is used as an estimate
of the actual Nash equilibrium. In this work, we focus on precisely such a setting,
assuming (with one exception) that estimates of the payoff matrices of all players
are available based on i.i.d. payoff samples for each profile of player strategies in
the game. Intuitively, since the law of large numbers guarantees strong consistency
of the estimated payoff matrices, we should see similar results in Nash equilibrium
estimates based on these. Indeed, we obtain analogous convergence results in sev-
eral senses in the context of Nash equilibrium estimation. Furthermore, we present
the first (to our knowledge) analytical expressions for probabilistic bounds on Nash
equilibrium estimates obtained from simulations, first by making no distributional
assumptions on noise, and thereafter using the standard normality assumption. Fi-
nally, we present an alternative Nash equilibrium estimator which uses information
about the distribution of noise. This estimator preserves the consistency property
of data-based Nash equilibria, but is, in addition, almost surely unique when de-
fined over the set of pure strategy profiles. Significantly, our proposed estimator
provides, in a particular precise sense, the best Nash equilibrium estimates.

2. RELATED WORK

2.1 Simulation-Based Game Theoretic Analysis

Stylized analytic models of strategic interactions have been studied by game the-
orists for many years. For example, auction theory [Krishna 2002] has a deep
understanding of a variety of auction mechanisms. Nevertheless, complex auction
variants have recently emerged that are rather difficult to analyze in closed-form.
For example, game-theoretic solutions to many interesting variants of combinatorial
auctions that allow bidders to bid on any subset of a finite set of items have proved
elusive. Furthermore, simulation models of various other strategic settings, such
as supply chains [Collins et al. 2004] and combat [Lauren and Stephen 2002], are
available and some effort has already been devoted to analyzing these (e.g., [Well-
man et al. 2005; Vorobeychik and Porche 2009]). As yet, however, there is little
statistical understanding of how game-theoretic solutions behave when the games
are represented by simulations and constructed using Monte Carlo techniques (i.e.,
when payoffs are sampled from simulations for various joint strategic choices avail-
able to the players in the game). In this paper, we provide initial results, with a
focus on finite games (games with finite sets of actions available to players), while
entertaining several simple extensions to well-behaved infinite games.

2.2 Sample Average Approximation

It goes without saying that the results of this paper have the flavor of classical
statistical analysis such as confidence bounds and estimator consistency. Similarly,
there is a clear relationship, insofar as we are evaluating the probability that a
particular strategic choice of a player is the best one available, to the literature on
simulation optimization and probabilistic analysis of optimal outcomes of a finite
set of choices [Kim and Nelson 2007] (indeed, a part of this work builds on Chang
and Huang [2000] who provide confidence intervals for a best of N random choices
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under strong distributional assumptions).
This paper is also closely related to the literature on sample average approxi-

mation (SAA) [Shapiro 2001]. A superficial relationship to SAA is the same as
to other simulation optimization techniques: a part of the problem of analyzing
game-theoretic (Nash) equilibria is to assess each player’s incentives to deviate,
that is, the likelihood that the particular choice of each player is close to the op-
timal one. It turns out, however, that a deeper and more interesting relationship
exists. One way to characterize equilibria is as global minima of a game-theoretic
regret function, which, for any joint strategic choices of all players, measures the
amount that each player can gain by selecting his truly optimal action (given that
others stick to their strategy). In our setting, regret values are not available exactly,
but can be estimated from simulations. As such, we can (and do) ask analogous
questions about convergence of sample-based optima to those addressed in the SAA
literature. A significant difference between the two settings is that in classic SAA
analysis, the interest is on optimizing an expected value of a response function,
with simulations yielding sample mean approximations of this expectation for ev-
ery instance of a domain variable. In our case, we do not actually obtain samples of
regret. Rather, the simulations yield payoff samples, and regret can be estimated
by evaluating possible deviations from the prescribed strategic choices of all players.
(A formal distinction between our setup and SAA can be found in Appendix A.)
We use the structure of finite games to show that law of large numbers extends
to the game-theoretic regret function (defined on an infinite mixed-strategy space)
and use this result to recover results analogous to standard convergence [Kleywegt
et al. 2001] and bounds [Shapiro and Homem-de-Mello 2001] of the sample average
approximation technique.

3. SIMULATION-BASED AND EMPIRICAL GAMES

In this section we formalize the notion of strategic interactions (or games) between
a set of rational agents. We denote a normal-form game by ΓN = [I,R, u(·)], (the
subscript N denotes a normal-form game, as compared to simulation-based games
described below) where I is the (finite) set of players with m = |I| the number
of players (here |I| denotes the cardinality of a finite set I), R the joint strategy
set (pure or mixed, depending on context) with Ri the set of strategies of player i,
and u(·) the function that maps joint strategy profiles r ∈ R to a vector of payoff
entries for all players, that is, u(r) = {u1(r), . . . , um(r)}, where ui(r) denotes the
(deterministic) payoff function of player i. We assume that all payoffs ui(r) are
finite. We use notation r−i for a profile of strategies other than that of player i and
R−i =

∏
j 6=i Rj .

We let Ai denote the set of player i’s pure strategies, with A = A1 × · · · × Am

the joint pure strategy set. One may think of pure strategies as atomic actions of
players in the game, such as a choice of a specific bid in an auction or a decision
to confess in prisoners’ dilemma. We denote by Si the set of i’s mixed strategies
and use S to denote the joint mixed strategy set. Mixed strategies are probability
distributions over pure (atomic) strategies. A key assumption is that each player
selects an action to play according to s independently of selections made by all the
other players. (For example, players cannot communicate at the time when they
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randomly draw their actions. An alternative concept of correlated strategies has
also been studied [Osborne and Rubinstein 1994], although we do not deal with it
here.) If s ∈ S is a mixed strategy profile, then s(a) denotes the probability that a
pure strategy profile a ∈ A is played under s. Analogously, si(ai) is the probability
that player i’s mixed strategy selects action ai and s−i(a−i) is the probability that
a−i ∈ A−i is selected under the joint mixed strategy of players other than i. For
s ∈ S, we define

ui(s) =
∑
a∈A

ui(a)s(a).

In this paper, unless stated otherwise, we focus on finite games in the sense that the
joint set of pure strategies A is finite. We also assume throughout that A ⊆ R ⊆ S.

For some of the results below, it will be necessary to have a specific topology of
the mixed strategy space in mind. Having in mind that a mixed strategy profile
is just a probability distribution over a finite set of action for each player, we let
the set of mixed strategy profiles be S ⊂ [0, 1]k, where k =

∑
i∈I |Ai|. Thus, a

mixed strategy profile s ∈ S is just a vector of probabilities, with sij denoting the
weight (probability) a player i places on the corresponding action j. Thus, if action
sets are identical, we can view a mixed strategy profile as a matrix with players i
as rows and actions j as columns. Naturally, since s must be a valid probability
distribution, the constraint on s ∈ S is that∑

j∈Ai

sij = 1 ∀ i ∈ I.

An important strategic element of a normal-form game is game-theoretic regret
(or simply regret) of a profile r ∈ R, denoted by ε(r), which is the most any player
can gain by deviating from ri to any strategy in Ri. Formally,

ε(r) = max
i∈I

max
r′i∈Ri

ui(r′i, r−i)− ui(r) = max
i∈I

max
ai∈Ai

ui(ai, r−i)− ui(r). (1)

Remark 3.1. To see that it is sufficient to take the maximum just over the set
of pure strategies, let a∗i be the strategy in Ai that yields the highest payoff to i and
suppose that it is unique. Then for any s that doesn’t put all its weight on a∗i we
can increase player i’s payoff by shifting the weight from some suboptimal a′i to a∗i .
In general, any optimal s∗ can only have positive weights on optimal a∗i which must
necessarily yield identical payoffs. More generally, this would be true whenever R
includes all pure strategy profiles, i.e., when A ⊂ R.

Note that since the maximum above is taken over the set of pure strategies, if that
set is finite, the computational complexity of it is insignificant (just a linear search,
in principle, would do). While we do not deal with intractably large or infinite pure
strategy sets directly in this work, the problem of approximating best responses
and Nash equilibria in such settings is addressed elsewhere [Jordan et al. 2008;
Vorobeychik and Wellman 2008].

In specifying a normal-form model of a strategic setting, the analyst has in mind
predicting what players who are faced with decisions in such a strategic context
will do. The outcomes of strategic interactions—that is, the ultimate decisions
made by the players—are commonly assumed for the purposes of prediction to be
ACM Journal Name, Vol. V, No. N, Month 20YY.
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rational (alternatively, strategically stable) in the sense that every player is playing
optimally given the choices of other players. This notion of strategic stability is
formalized as a Nash equilibrium solution concept for games.

Definition 3.2. A Nash equilibrium of the normal-form game ΓN is a profile
r ∈ R such that for every player i ∈ I,

ui(r) ≥ ui(r′i, r−i) ∀r′i ∈ Ri.

We can alternatively define the Nash equilibrium concept using the game-theoretic
regret: r is a Nash equilibrium if and only if ε(r) = 0.

In an approximation context—for example, when a game is too large to compute
a Nash equilibrium exactly, or when only payoff estimates are available—a common
concept is that of an ε-Nash equilibrium.

Definition 3.3. An ε-Nash equilibrium of the normal-form game ΓN is a profile
r ∈ R such that for every player i ∈ I,

ui(r) + ε ≥ ui(r′i, r−i) ∀r′i ∈ Ri.

Remark 3.4. From the perspective of each player, the incentives to deviate may
be smaller then ε. However, we utilize the worst-case bound in evaluating stability
of a strategy profile to deviations by any player.

We may again relate ε-Nash (or approximate Nash) equilibria to the regret function
by noting that any profile r ∈ R is an ε(r)-Nash equilibrium. (Recent computational
complexity results suggest that the problem of computing exact Nash equilibria is
hard [Daskalakis et al. 2006], while Lipton et al. [2003] demonstrate that there
exist approximate Nash equilibria with small support which can be computed in
quasi-polynomial time.)

A wide variety of games analyzed in connection with practical domains (such as
auctions) are modeled as symmetric, a notion we now define formally.

Definition 3.5. A normal-form game [I,R, u(·)] is symmetric if for all players
i, j ∈ I, Ri = Rj, and ui(ri, r−i) = uj(rj , r−j) whenever ri = rj and r−i = r−j.
In simulation-based games, the latter requirement applies to expected payoffs, with
expectation taken with respect to simulation noise.

Informally, in a symmetric game all players have the same sets of strategies and
their payoff functions are identical.

Remark 3.6. A symmetric game is more general than a coordination game, in
which payoffs are the same for all players no matter what they play. A symmetric
game merely requires that the payoffs of any two players are the same when they
play an identical strategy and face identical strategies by the opponents.

Since all payoff functions are identical, the vector of payoffs u(·) can be replaced
by a single symmetric payoff function, which we denote by v(·). Additionally we
use a1 (analogously, r1 and s1) to denote a single player’s strategy in a symmetric
strategy profile a (r, s) and A1 (R1, S1) to denote the symmetric strategy sets of
players. Similarly, am−1 (rm−1, sm−1) and Am−1 (Rm−1, Sm−1) denote a strategy
profile and set of strategy profiles for m − 1 players. A well-known example of a
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symmetric game is a prisoner’s dilemma. Significantly, every finite symmetric game
is guaranteed to have a symmetric Nash equilibrium, which is a Nash equilibrium
strategy profile r with the property that ri = rj for all i, j ∈ I (that is, all players
play the same strategy) [Cheng et al. 2004]. Now, consider a symmetric strategy
profile r in a symmetric game. In order to compute its game-theoretic regret (e.g.,
to verify if it is a Nash equilibrium), we need only check deviations for a single
player, since utility functions of all players are identical. Note that if a game is
symmetric, a regret of a symmetric strategy profile (that is, a strategy profile r in
which all players play an identical strategy r1) can be simplified slightly:

ε(r) = max
a1∈A1

v(a1, rm−1)− v(r).

Since symmetric profiles in symmetric games are especially clean and compelling
(for example, they do not require an assumption that players coordinate who plays
which strategy in an asymmetric profile), they frequently are the subject of game
theoretic analysis in general [Krishna 2002], and simulation-based game theoretic
analysis in particular [Vorobeychik and Wellman 2008].

In this paper we are interested in analyzing game-theoretic models in which
player payoff functions are specified using simulations; we refer to these models as
simulation-based games. A simulation-based game retains all the basic elements
of the normal-form game, but makes the notion of payoff functions u(·) somewhat
more precise in a way pertinent to analysis. Specifically, a payoff function in a
simulation-based game is represented by an oracle, O, which can be queried with
any pure strategy profile a ∈ A to produce a possibly noisy sample payoff vector
U . In simulation-based games, we presume to have a simulation model of the
player payoffs, and we must run this simulation to obtain a noisy sample of player
payoffs for any fixed joint strategy profile. For example, we may imagine an agent-
based combat simulation in which the analyst can set strategic parameters of the
adversaries and run the simulation to obtain a sample outcome of a battle or a
campaign. Other examples include simulation-based game theoretic analyses of
supply-chains [Vorobeychik et al. 2006; Wellman et al. 2005] and simultaneous
ascending auctions [Wellman et al. 2008].

Formally, a simulation-based game is denoted by ΓS = [I, R,O] (the subscript
S denotes a simulation-based game) where the oracle (simulator) O produces a
sample vector of payoffs U = (U1, . . . , Um) to all players for a (typically pure)
strategy profile r. We assume throughout that E[U ] = u(a), that is, the expected
value of samples from the oracle is the actual (expected) payoff vector for the
corresponding pure strategy profile.

Remark 3.7. Observe that there are two sources of randomness in games de-
rived from simulations. One is the randomness in the Monte Carlo simulation ex-
periments themselves, for example, cost and revenue from operating a supply chain
given realized demand. The other is randomness that is a part of players’ mixed
strategies. The actual expected payoff to player i given a mixed strategy profile s
involves the expectation taken with respect to both of these sources of noise. Typi-
cally, when we use the term “actual payoff”, we mean actual expected payoff.

We denote an estimate of a payoff to player i for profile a based on n(a) i.i.d.
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samples from O by

ûi,n(a) =
1

n(a)

n(a)∑
j=1

Ui(a)j ,

where each U(a)j is generated by invoking the oracle with profile a as input. The
vector of payoff estimates for all players we denote by ûn(a) (or just û(a) where we
would like to talk about any estimate of the payoff at a).

Using the estimates û(a), we can construct an estimated payoff matrix for a finite
game from simulation data. We often call this estimated game an empirical game
to allude to the empirical nature of its payoffs. Since an empirical or estimated
game can be viewed as a normal-form game in its own right, all the concepts defined
on normal-form games apply. Thus, we obtain empirical regret as

ε̂(r) = max
i

max
ai∈Ai

ûi(ai, r−i)− ûi(r),

and, similarly, an empirical (ε-)Nash equilibrium is just a (ε-)Nash equilibrium of
the empirical game.

One key distinction between O and u(·) is, thus, that u(·) is presumed to provide
easy access to exact payoff evaluations, whereas O evaluates payoffs with noise.
Another distinction, no less vital but somewhat more subtle, is that by specifying
the payoff function as an oracle, we in practice resign ourselves to the fact that
payoffs are not available in any easily tractable form and the game must of necessity
be analyzed using simulation experiments. Thus, for example, even though the
payoff function may have a closed-form specification, the Nash equilibria of the game
(or some useful qualitative properties thereof) cannot be obtained using analytic
means.

Implicit to the discussion of both the simulation-based games and empirical games
is that they are defined with respect to an underlying game ΓN←S characterized by
the set of players I, a set of strategy profiles R, and the payoff function u(·) from
which the oracle, in effect, is taking noisy samples. Given ΓN←S , the true regret
of a profile r ∈ R, ε(r), in both the simulation-based and the empirical game is
evaluated with respect to u(·) of this underlying game.

4. NASH EQUILIBRIUM ESTIMATION IN SIMULATION-BASED GAMES

Suppose that we are given a simulation-based game and our mission is to estimate
its Nash equilibrium (or the entire set of Nash equilibria). Suppose further that
every pure strategy profile a ∈ A has been sampled at least once. Then the most
direct—although not necessarily optimal—method for estimating Nash equilibria
is the following:

(1) Estimate the payoff matrix of the game based on simulation data; let û(r) be
such an estimate

(2) Numerically compute Nash equilibria of the estimated game (e.g., using the
GAMBIT toolbox [McKelvey et al. 2005])

A level of sophistication can be added if we use variance reduction techniques
rather than sample means to estimate payoffs of the underlying game [Reeves 2005;
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Wellman et al. 2005]. For example, control variates, conditioning, and quasi-random
sampling can achieve a considerable increase in sampling efficiency [Ross 2001;
L’Écuyer 1994]. In this paper, however, we assume that we use sample means as
payoff estimates—as described above.

Observe that the method for estimating Nash equilibria we just described uses
only a part of the available information. Specifically, it does not use any information
about the sampling noise. Intuitively, if such information can be used, we can
perhaps reduce estimation variance. We follow this intuition to define a maximum
a posteriori (MAP) equilibrium estimator in Section 7, which produces estimates
based on a payoff prior, a noise distribution, and the simulation data.

5. CONSISTENCY RESULTS ABOUT NASH EQUILIBRIA IN EMPIRICAL GAMES

In much of what was described above, the set of Nash equilibria of the empirical
game is used as the estimator of Nash equilibria of the underlying game. This seems
intuitively to be a sensible approach, and we now confirm this by demonstrating
convergence (in several senses) of sets of Nash equilibria computed in a finite empir-
ical game to the set of equilibria of the underlying game. In this section we assume
that all samples taken of the entire payoff matrix are independent of each other
(that is, we obtain n i.i.d. samples for any fixed player i and profile a). However,
we do not require that samples are independent for different entries in the payoff
matrix. We use the notation Γn to refer to the game [I,R, {ûi,n(·)}], whereas Γ
denotes the underlying game, [I,R, {ui(·)}], with R = A (the set of pure strategy
profiles) or R = S (the set of mixed strategy profiles), depending on context below.
Thus, ε̂n(r) is the (empirical) regret function computed with respect to the game
Γn.

Our first result is that the empirical regrets converge uniformly on the joint mixed
strategy space.

Theorem 5.1. Suppose that |I| < ∞, |A| < ∞. ε̂n(s) → ε(s) a.s. uniformly on
S.

The proof of this theorem is in the appendix.
The implication of our first result is the next corollary, which suggests a slight

modification of the Nash equilibrium estimator we have considered. Let N denote
the set of all Nash equilibria of Γ. If we define Nn,γ = {s ∈ S : ε̂n(s) ≤ γ}, we have
the following corollary to Theorem 5.1:

Corollary 5.2. Suppose that |I| < ∞, |A| < ∞. For every γ > 0, there is M
such that ∀n ≥ M , N ⊂ Nn,γ a.s.

Proof. Since ε(s) = 0 for every s ∈ N , we can find M large enough such that
Pr{supn≥M sups∈N ε̂n(s) < γ} = 1.

By the corollary, for any game with a finite set of pure strategies and for any ε > 0,
all Nash equilibria lie in the set of empirical ε-Nash equilibria if enough samples
have been taken. This result suggests that if our goal is to estimate the set of Nash
equilibria, we may in some settings effectively use the set of approximate empirical
Nash equilibria. This estimation may be especially useful if the analyst is interested,
for example, in the worst-case outcome of the entire set of equilibria, as is the case
with strong implementation of social choice rules [Osborne and Rubinstein 1994].
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 9

Next, we show that when the number of samples is large enough, every Nash
equilibrium of Γn is close to some Nash equilibrium of the underlying game. For
the exposition that follows, we need a bit of additional notation. Let (Z, d) be a
metric space, X, Y ⊂ Z, and define directed Hausdorff distance from X to Y to be

hD(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y).

Observe that U ⊂ X ⇒ hD(U, Y ) ≤ hD(X, Y ). For the purpose of the next
theorem, Z is the space of mixed strategy profiles S ⊂ [0, 1]k, with k as defined in
Section 3, and d(s, s′) = ‖s − s′‖∞ for s, s′ ∈ S. (The specific choice of a norm
in our case is not significant, since all norms are equivalent on a finite dimensional
normed vector space.) Let Nn denote all Nash equilibria of the game Γn. We can
then obtain the following general result, the proof of which is in the appendix.

Theorem 5.3. Suppose |I| < ∞ and |A| < ∞. Then hD(Nn,N ) → 0 a.s.

In words, every empirical Nash equilibrium is eventually arbitrarily close to some
Nash equilibrium of the underlying game. Note that we have not proved the con-
verse, and, indeed, it is not difficult to conceive of a counterexample. Consider,
simply, a game with a constant payoff for every strategy profile. Every mixed strat-
egy profile in this game is a Nash equilibrium. However, sampling noise would
induce generic games, and it is well-known that the number of Nash equilibria in
generic finite games is finite and, there are some mixed strategy profiles that are not
close to any one of these. (More precisely, certain distributions of sampling noise—
for example, Gaussian noise—would induce generic games. The term generic is
used in Game Theory to denote a game in which a small change to any one of
the payoffs does not introduce new Nash equilibria or remove existing ones [Webb
2006].)

The significance of the last result is that it does confirm a very important in-
tuition that empirical Nash equilibria are reasonable Nash equilibrium estimates:
the analyst who uses simulation-based game models is unlikely to be lead astray to
spurious conclusions if enough samples are taken.

6. PROBABILISTIC BOUNDS ON EQUILIBRIUM APPROXIMATION QUALITY

The fact that we can demonstrate certain kinds of asymptotic convergence of em-
pirical Nash equilibria affirms that these estimators are indeed reasonable. For
practical purposes, however, that is not entirely sufficient: we would like also to
establish statistical confidence in our results based on simulation data. Much of
the past work on game-theoretic analysis using simulations had resorted to worst
case sensitivity analysis procedures [Walsh et al. 2002] and indirect evidence [Well-
man et al. 2005]. While these can be used to support certain claims, they are not
entirely satisfactory, and it certainly seems possible to engage in statistical anal-
ysis of empirical equilibria given appropriate distributional assumptions. Reeves
[2005] discusses sensitivity analysis procedure in the same spirit as our derivations
which follow. His analysis involved sampling payoffs from a normal distribution
centered at the sample mean and deriving an empirical probability distribution
that particular strategies are played in an actual equilibrium.

In this section, we introduce a statistical framework for sensitivity analysis of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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solutions based on empirical games. Specifically, we derive probabilistic confidence
bounds on the quality of empirical equilibria given various assumptions about the
nature of noise and the structure of the underlying game.

6.1 Distribution-Free Bounds

We begin by deriving distribution-free bounds on the probability that the specified
profiles are ε-Nash equilibria for some fixed ε. While most general, these bounds
are likely the least useful of the bounds presented in this paper, as they will in
practice rarely be very tight.

Theorem 6.1. Suppose that for a subset A ⊂ A

Pr
{

max
a∈A

|ui(a)− ûi(a)| ≥ γ

}
≥ δ

for all i ∈ I. Then

Pr{|ε(s)− ε̂(s)| ≥ 2γ} ≤ m(K + 1)δ,

for all s ∈ S such that {a : s(a) > 0} ⊂ A, where K = maxi∈I |Ai|.

The proof of this result can be found in the appendix.
The bound above is rather abstract, and it is helpful to consider two concrete

examples. First, suppose that the random variable Ui(a) for the profile a ∈ A
has finite variance σ2 < ∞. Then a simple application of Chebyshev’s inequality
combined with the union bound gives us δ = |A|σ2

nγ2 . Similarly, if the random variable

Ui(a) ∈ [a, b], we obtain the above result with δ = |A| exp
{
− γ2n

2(b−a)2

}
. Perhaps the

most interesting cases are (a) when A = {a}, yielding a bound for a specific pure
strategy profile, and (b) when A = A, yielding the bound on any mixed strategy
profile.

We can now use the result above to obtain a probabilistic bound on ε(r) by noting
that

Pr{ε(r) ≥ ε̂(r) + 2γ} = Pr{ε(r)− ε̂(r) ≥ 2γ} ≤ Pr{|ε(r)− ε̂(r)| ≥ 2γ}. (2)

6.2 Confidence Bounds for Finite Games with Normal Noise

Suppose that the game is finite and it is feasible to sample the entire payoff matrix
of the game, with payoffs for every pure strategy profile sampled independently.
Extension to using common random numbers is described in Section 6.4. Further,
suppose that the game is symmetric and we are interested in probabilistic bounds
on symmetric strategy profiles (that is, strategy profiles s in which all players play
an identical strategies). Recall that we will use notation v(a) to denote a payoff
function in symmetric games, and denote each player’s strategy in a symmetric
strategy profile by r1, while referring to identical sets of strategies by R1. A sub-
script m − 1 will denote a strategy profile and products of strategy sets for an
arbitrary subset of m− 1 players.

To derive a generic probabilistic bound for a pure strategy profile a ∈ A, suppose
that we have an improper prior on v(a) for all a ∈ A, and the sampling noise is
Gaussian with known variance σ2(a) (i.e., variance may be different for different
strategy profiles).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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The results below build on the derivation of the distribution of the maximum
of k variables based on samples of these with zero-mean additive Gaussian noise
by Chang and Huang [2000], who demonstrate that if we start with an improper
prior over the actual payoffs and observe samples distorted by Gaussian noise,
the posterior distributions of v(·)|v̂(·) are Gaussian random variables with mean
v̂(·) and variance σ2(a). Furthermore, if payoffs are sampled independently, the
actual (posterior) payoffs v(·) are also independently distributed, conditional on
v̂(·). Given these assumptions, the following general bound can derived (in the
sequel we omit conditioning on v̂(·) for brevity):

Theorem 6.2. Suppose that payoffs for every a ∈ A are sampled independently
with zero-mean additive Gaussian noise, and suppose that we have an improper
prior on v(a). Then, for any symmetric strategy profile r ∈ R and ε ≥ 0,

Pr (ε(r) ≤ ε) =
∫

R

∏
b∈R1\r1

Pr(v(b, rm−1) ≤ u + ε)fv(r)(u)du,

where fv(r)(u) is the pdf of N(v̂(r), σ(r)).

Proof.

Pr
(

max
b∈R1\r1

v(b, rm−1)− v(r) ≤ ε

)
= Ev(r) Pr( max

b∈R1\r1

v(b, rm−1)− v(r) ≤ ε|v(r))

= Ev(r)

 ∏
b∈R1\r1

Pr(v(b, rm−1)− v(r) ≤ ε|v(r))


=
∫

R

∏
b∈R1\r1

Pr(v(b, rm−1) ≤ u + ε)fv(r)(u)du.

The posterior distribution of the actual mean under the assumption of Gaussian
noise was derived in Chang and Huang [2000]:

Pr (v(a) ≤ c) = 1− Φ

[√
n(a)(v̂(a)− c)

σ(a)

]
, (3)

where a ∈ A and Φ(·) is N(0, 1) distribution function. Plugging this into the
expression in Theorem 6.2 we get

Pr (ε(a) ≤ ε) =
∫

R

∏
b∈A1\a1

(
1− Φ

[√
n(a)(v̂(a)− (u + ε))

σ(a)

])
fv(a)(u)du (4)

for any ε ≥ 0.
Having derived bounds on pure strategy profiles, it is not difficult to extend the

results to bounds on mixed strategy profiles, as we do in the following theorem.

Theorem 6.3. Suppose that payoffs for every a ∈ A are sampled independently
with zero-mean additive Gaussian noise, and suppose that we have an improper
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prior on v(a). Let s ∈ S be a mixed strategy profile. Then,

Pr (ε(s) ≤ ε) =
∫

R

∏
b∈A1

[Pr(W (b) ≤ u + ε)] fW∗(u)du,

where

Pr(W (b) ≤ u + ε) = 1− Φ

∑c∈Am−1
û(b, c)sm−1(c)− u− ε√∑

c∈Am−1

σ2(b,c)(s1(c))2

n(b,c)


and

W ∗ ∼ N

(∑
a∈A

û(a)s(a),
∑
a∈A

σ2(a)(s1(a))2

n(a)

)
.

Proof. Since the posterior distribution of v(a) for each a is Normal and since
a mixed strategy profile s ∈ S induces a linear combination of v(a), the resulting
payoffs are also distributed normally, where mean is just the linear combination of
means, and variance is

∑
a∈A

σ2(a)s2(a)
n(a) . This, in combination with Theorem 6.2

yields the result.

6.3 Confidence Bounds for Infinite Games Based on Finite Game Restrictions

Suppose that we are trying to estimate a Nash equilibrium for a symmetric game
Γ = [I,R, v(·)] with R ⊂ Rn infinite. Let Rl ⊂ R be finite and define Γl =
[I, Rl, v(·)] to be a finite restriction of Γ. To draw any conclusions about Γ based
on its finite restriction we must make some assumptions about the structure of the
actual payoff functions on the infinite domain. We assume that the payoff function
v(·) satisfies the Lipschitz condition with Lipschitz coefficient B.

Define d(Rl
1) to be the maximum distance from a point in Rl

1 to its closest
neighbor in R1 for any player:

d(Rl
1) = sup

r1∈R1

inf
r′1∈Rl

1

{‖r1 − r′1‖} < ∞,

where ‖ · ‖ denotes Euclidean norm in Rn. Then if r is an ε-Nash equilibrium of
Γl with probability 1 − α, then it is an (ε + Bd(Rl

1))-Nash equilibrium of Γ with
probability at least 1− α. Consequently, we have the following bound:

Theorem 6.4. Suppose that payoffs for every r ∈ Rl are sampled independently
with zero-mean Gaussian noise, and suppose that we have an improper prior on
v(r). Furthermore, suppose that v(r) are Lipschitz continuous with a coefficient at
most B. Then,

Pr
(

sup
t∈R1

v(t, rm−1)− v(r) ≤ ε

)
≥
∫

R

∏
t∈Rl

1

Pr(v(t, rm−1) ≤ u + ε−Bd)fv(r)(u)du.
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Proof.

Pr
(

sup
t∈R1

v(t, rm−1)− v(r) ≤ ε

)
≥ Pr

(
max
t∈Rl

1

v(t, rm−1)− v(r) ≤ ε−Bd(Rl
1)
)

=
∫

R

∏
t∈Rl

1

Pr(v(t, rm−1) ≤ u + ε−Bd(Rl
1))fv(r)(u)du.

6.4 Extension to Using Common Random Numbers

In the derivation of tight confidence bounds in Section 6.2 we had been work-
ing with a strong simplifying assumption that payoffs for all pure strategy profiles
a ∈ R are sampled independently. In some situations these assumptions are reason-
able. For example, the game payoff function simulator maybe a binary executable
provided by a third party (e.g., the Trading Agent Competition simulation-based
analysis [Wellman et al. 2005]), and some variance reduction techniques that would
introduce dependence (e.g., common random numbers) are difficult to implement.
In general, however, this assumption entails a rather expensive sampling process,
and it is quite desirable to use variance reduction techniques to reduce the simu-
lation cost. One widely used and effective variance reduction method is to enforce
common random numbers (CRN) in each replication. In our context, it would mean
either (a) running a single simulation to obtain a vector of payoffs u(a), but retain
the assumption that each profile a is sampled independently, or (b) use a common
random variables to obtain a sequence of samples of the entire payoff matrix.

While the convergence results and distribution-free bounds (Sections 5 and 6.1
respectively) do not require our independence assumptions (or symmetry assump-
tions) and hold even after introducing CRN, independence is required for our tight
Gaussian bounds in Sections 6.2 and 6.3. We now generalize these results. For
the foregoing discussion, we assume that we are interested in analyzing a symmet-
ric strategy profile of a symmetric game with true (expected) payoff function v(·).
The results can be generalized to non-symmetric games or strategy profiles in a
straightforward way using, for example, Bonferroni inequality.

Let a be a pure strategy profile for which we want to obtain a regret bound. Select
an arbitrary player i and fix a−i. Since the number of pure strategies of player i
is finite, we number them arbitrarily as {a0

i , a
1
i , . . . , a

L
i }, where L = |Ai \ ai| with

a0
i = ai (the pure strategy played by i under a), and overload ai to denote a vector

of all pure strategies of player i. We let v(ai, a−i) now be a vector of payoffs with
each entry corresponding to v(al

i, a−i) for l = 0, . . . , L. Similarly, let v̂(ai, a−i)
denote a vector of payoff estimates for ai.

As a first step, we note that given an improper prior on the actual payoff func-
tion v(a), if the payoff estimate vector v̂(ai, a−i) has a multivariate normal distri-
bution with mean vector v(ai, a−i) and (known) covariance matrix Σ(ai, a−i) with
Σ(akl

i , a−i) the covariance between payoffs of actions ak
i and al

i, the posterior dis-
tribution of actual (mean) payoffs is also multivariate normal with mean v̂(ai, a−i)
and covariance matrix Σ(ai, a−i)/n, where n is the number of samples taken to
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obtain the estimated vector v̂(·) [DeGroot 2004]. Next, we use the distribution of
the maximum of a multivariate normal distribution derived by Arellano-Valle and
Genton [2008] to obtain the desired bound.

Since we are interested in obtaining a bound on ε(a) = maxb∈Ai\ai
v(b, a−i)−v(a),

it is easiest to work with the difference ∆v(ai, a−i) = v(ai, a−i) − v(a) instead of
individual payoffs. Let ∆v̂(ai, a−i) = v̂(ai, a−i) − v̂(a). Since ∆v̂(a0

i , a−i) is then
just a constant 0, we let ai in this notation be a truncated vector with strategy ai

omitted. Now, define

B =


−1 1 0 · · · 0
−1 0 1 · · · 0

. . .

. . .

. . .
−1 0 · · · 0 1


where B has L rows, and let ∆Σ(ai, a−i) = BΣ(ai, a−i)BT . This is the convariance
matrix of the posterior of the difference v(ai, a−i)− v(a).

Let ∆v̂(a−l
i , a−i) be the vector of sample mean payoff differences for actions

other than al
i, let ∆Σ(all

i , a−i) = ∆σ2(al
i, a−i) (i.e., the llth entry of ∆Σ(ai, a−i)),

define ∆Σ(a−ll
i , a−i) = ∆Σ(al−l

i , a−i) to be covariance submatrices between payoff
differences for action al

i and action vector a−l
i , and define ∆Σ(a−l−l

i , a−i) to be the
covariance submatrix of the payoff difference for the action vector a−l

i . Further,
define

∆v̂(ai, a−i) =
(

∆v̂(a−l
i , a−i)

∆v̂(al
i, a−i)

)
and

∆Σ(ai, a−i) =
(

∆Σ(a−l−l
i , a−i) ∆Σ(a−ll

i , a−i)
∆Σ(al−l

i , a−i) ∆Σ(all
i , a−i)

)
.

Finally, define

∆v̂(a−l.l
i , a−i, x) = ∆v̂(a−l

i , a−i) + (x−∆v̂(al
i, a−i))

∆Σ(a−ll
i , a−i)

∆σ2
i (al

i, a−i)

and

∆Σ(a−l−l.l
i , a−i) = ∆Σ(a−l−l

i , a−i)−
∆Σ(a−ll

i , a−i)∆Σ(a−ll
i , a−i)T

∆σ2
i (al

i, a−i)
.

Theorem 6.5. Suppose that payoffs for every a ∈ A are sampled with zero-mean
additive Gaussian noise (not necessarily independently), and suppose that we have
an improper prior on v(a). Then, for any symmetric strategy profile a ∈ A,

Pr (ε(a) ≤ ε) =
∫ ε+u

−∞

L∑
l=1

φi
1(x)Φ−i

L−1(x)dx,

where φi
1(·) and Φ−i

L−1(·) refer to a pdf of a single-variable normal distribution and
a cdf of a multivariate normal distribution with L− 1 variables respectively, where
the former has mean ∆v̂(al

i, a−i) and variance ∆σ2
i (al

i, a−i)/n, while the latter has
mean (vector) ∆v̂(a−l.l

i , a−i, x) and covariance matrix ∆Σ(a−l−l.l
i , a−i)/n.
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Proof. Applying Corollary 4 from Arellano-Valle and Genton [2008] we have

Pr
(

max
b∈A1\a1

[v(b, am−1)− v(a)] ≤ ε

)
=
∫ ε

−∞

L∑
l=1

φi
1(x)Φ−i

L−1(x)dx,

where φi
1(·) and Φ−i

L−1(·) refer to a pdf of a single-variable normal distribution and
a cdf of a multivariate normal distribution with L− 1 variables respectively, where
the former has mean ∆v̂(al

i, a−i) and variance ∆σ2
i (al

i, s−i)/n, while the latter has
mean (vector) ∆v̂(a−l.l

i , s−i, x) and covariance matrix ∆Σ(a−l−l.l
i , a−i)/n.

To complete the discussion, we simply note that if the actual pure strategy payoff
matrix has a multivariate normal (posterior) distribution, extension to a distribu-
tion of payoffs for any mixed strategy profile (either s or (ai, s−i), where in the
latter case player i plays a pure and others play a mixed strategy profile s−i) is
direct and yields a multivariate normal distribution, since a mixed strategy applies
an affine transformation on the random payoff matrix.

6.5 Discussion

From a practical perspective, the most useful bounds are those derived with the
assumption that payoffs are sampled with Gaussian noise (Sections 6.2 and 6.4).
While the distribution-free bounds are quite general in principle, they are typically
quite loose. More significantly, they can typically be applied to finite games only
(or infinite games with strong assumptions about the actual payoff functions), and,
additionally, they become less useful as the game size increases, since the bounds on
mixed strategy profiles are linear in the size of the set of all pure strategy profiles.
The bounds in Sections 6.2 and 6.4 are, in contrast, tight. Additionally, offline
experiments with non-Gaussian noise and estimated (rather than known) variance
suggest that neither assumption is very critical in practice. Indeed, a variation on
the infinite-game bounds described in Section 6.3 has been used for probabilistic
assessment of estimated equilibrium outcomes in Vorobeychik et al. [2006].

A central assumption of all of the above discussion has been that we observe
samples of every pure strategy profile in the game. By the very nature of typical
simulation-based games, we would be required to run separate simulations for every
strategy profile, so running time is bounded from below by the size of the game.
If we suppose that a game consists of m players, each with L strategies, the game
size (the number of strategy profiles) is mL. In the previous section we introduced
symmetric games, which allow substantial reduction in the the size of the game:

a game with m players with L strategies each now includes “only”
(

m + L + 1
m

)
distinct strategy profiles. Thus, for example, a symmetric game with 5 players, 10
strategies, would have 4368 strategy profiles, whereas an asymmetric with the same
parameters explodes to 9, 765, 625.

Besides the sheer size of the game, a significant factor in practice is the actual
simulation running time, which may range from a fraction of a second [Vorobeychik
and Wellman 2008] to nearly an hour [Wellman et al. 2005] for a single simulation
experiment. Typically, even with the use of variance reduction techniques, it is not
feasible to simulate the entire game. However, it is also not strictly necessary to do
so in order to apply the bounds above. For example, suppose that a pure symmetric
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strategy profile a has been identified in a symmetric game as a likely candidate Nash
equilibrium estimator. In order to probabilistically bound its regret, we need only
to simulate single-player deviations from a. In this case, the number of players
is irrelevant, and the number of strategies can be quite large. The simulation
effort required to bound regret of mixed strategy profiles may be substantially
greater, although here too we need not require samples for the entire game: if mixed
strategies have low support (few pure strategies with strictly positive probability),
only a relatively small submatrix of the game needs to be explored.

7. MAP SYMMETRIC EQUILIBRIUM ESTIMATION

To this point, the techniques for estimating Nash equilibria based on empirical
games have involved using either Nash equilibria of the empirical game or profiles
with low empirical regret. Neither of these techniques, however, takes into account
available distributional information about the game. Intuitively, such information
could be of great value, as we can use it to establish precise bounds on the proba-
bility that each profile is a Nash (or an ε-Nash) equilibrium of the underlying game,
as shown in Section 6. We now attempt to utilize such distributional information in
defining another equilibrium estimator, one which uses a profile most likely to be a
Nash equilibrium of the underlying game, although restrict our analysis to symmet-
ric games and symmetric strategy profiles. While certainly not the only method for
using distributional information in the empirical game to estimate Nash equilibria,
this method has some appealing properties which we demonstrate below. (An alter-
native, closely related method, was suggested by Jordan et al. [2008]. Their method
uses the profile which is most likely to have the smallest ε(r) as the estimate of the
best approximate Nash equilibrium.) We note that the definition of the estimator
and the derivation of its properties require the strong independence assumptions of
Section 6.2.

Assume now, as in much of this paper, that the sets of pure strategies of all
players are finite, that is, |A| < ∞. Furthermore, assume that we have a symmetric
game and are interested in estimating a symmetric Nash equilibrium. Under the
assumption of an improper prior on actual payoffs and Gaussian noise with known
finite variance, we derived above exact probabilistic bounds on ε-Nash equilibria of
symmetric pure and mixed strategy profiles. By setting the ε in these expressions
to 0, the bounds describe the probability that a profile r is a Nash equilibrium.

For a symmetric profile r define

Pn(r) = Pr{ε(r) = 0} =
∫

R

∏
b∈R1\r1

(
1− Φ

[√
n(r)(v̂(r)− u))

σ(r)

])
fv(r)(u)du, (5)

where v(r) is the symmetric payoff function and r1 and R1 are the symmetric
strategy and strategy set of each player. Since every player plays an identical
strategy under a symmetric profile r, we focus our attention on the strategy r1 ∈ R1

from which the symmetric profiles are composed. We now define the maximum a
posteriori (MAP) Nash equilibrium estimator r̂MAP to be

r̂MAP = arg max
r1∈R1

Pn(r1), (6)

where we abuse notation slightly by overloading Pn(r1) to mean Pn(r) with r a
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

symmetric strategy profile in which each player plays a strategy r1. For this ex-
pression to be well-defined, we need to ensure that the maximum actually exists.
If R1 is finite, that is entirely obvious. Let us take a more general case where R1 is
the set of mixed strategies S1. The following lemma takes us most of the way.

Lemma 7.1. Suppose that σ2(a) > 0 for all a ∈ A. Then Pn(s1) is continuous
on s1 ∈ S1.

Since this and other results in this section are rather involved, we relegate the proofs
to the online companion. Based on this result, we can now readily confirm that the
expression for the MAP estimator is well-defined.

Theorem 7.2. Suppose that σ2
i (a) > 0 for all i ∈ I, a ∈ A. Then the maximum

in Equation (6) exists when R1 = S1.

Proof. By Lemma 7.1, Pn(s1) is continuous on S1. Since S1 is a closed and
bounded subset of a R|A1| (being a simplex), it is compact in R|A1|. By Weierstrass
theorem, the maximum exists on S1.

Corollary 7.3. The maximum in Equation 6 exists when R1 is a closed subset
of S1, with the case of finite R1 ⊂ S1 being a (trivial) special case.

Proof. This follows because a closed subset of a compact set is compact.

Thus, while it may well be computationally challenging to obtain the exact estimate
r̂MAP , we may be able to approximate it well by restricting the search, for example,
to the set of pure symmetric strategy profiles.

Having verified that the MAP estimator is well-defined, we demonstrate that the
estimate which it produces for a particular underlying game is almost surely unique
when restricted to the space of pure strategy profiles.

Suppose we have a game in which every pure strategy profile has been sampled
at least n times. The following theorem states that with probability 1 there are no
two profiles a, a′ ∈ A with the same value of Pn(a).

Theorem 7.4. Let Pn(r) be as defined in Equation 5 and r ∈ R = A, and
suppose that the noise distribution of the payoff samples is absolutely continuous
with respect to Lebesgue measure. Then there are no two profiles a, a′ ∈ S such that
Pn(a) = Pn(a′).

Corollary 7.5. Let P (a) be as defined in Equation 5 and suppose that the noise
distribution of the payoff samples is absolutely continuous with respect to Lebesgue
measure. The estimate âMAP = maxa1∈A1 Pn(a) is almost surely unique.

We now ascertain that the MAP estimator is consistent in a certain sense, when
the maximum is taken over a (sub)set of pure strategies. Before formally stating the
consistency result, we first prove the two lemmas about consistency of the actual
probability of zero-regret for equilibrium and non-equilibrium profiles. Although
these lemmas may be of independent interest, our primary goal is to use them in
proving the consistency of the MAP estimator below.

Lemma 7.6. Suppose that a symmetric strategy profile s is not a Nash equi-
librium and variance of noise for every strategy profile is strictly positive. Then
Pn(s) → 0 a.s.
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Lemma 7.7. Suppose a symmetric strategy profile a is a pure strategy Nash equi-
librium of a generic game (that is, pure strategy payoff matrix has no ties). Then
Pn(a) → 1 a.s.

These lemmas imply the following theorem.

Theorem 7.8. Suppose that the game is generic and âMAP = maxa1∈A1 Pn(a)
is a MAP estimator (6), and suppose that the game has at least one pure strategy
Nash equilibrium profile. Then there is a symmetric pure strategy Nash equilibrium
a∗ such that each player’s strategy is âMAP = a∗1 after a finite number of steps (and
forever after).

Proof. Fix ε > 0. Since Lemma 7.6 guarantees that any profile a which is
not a Nash equilibrium will have Pn(a) ≤ ε after a finite number of steps and
Lemma 7.7 ensures that any Nash equilibrium profile a′ will have Pn(a′) ≥ 1 − ε
after a finite number of steps, we need only set ε < 1/2 to obtain a separation
between equilibrium and non-equilibrium profiles after a finite number of steps.

8. CONCLUSION

Recently, a number of approaches have been introduced to perform analysis of
game-theoretic scenarios via simulation-based models. We contribute to this line
of research by presenting a statistical analysis of game-theoretic solution estimates
obtained using simulations. Specifically, we provide an asymptotic convergence
analysis of Nash equilibria of empirically derived games and present expressions
for probabilistic bounds on the quality of Nash equilibrium approximations given
simulation data. In this vein, we derive very general distribution-free bounds, as
well as bounds which rely on the standard normality assumptions, and extend
our bounds to infinite games via Lipschitz continuity. Finally, we introduce a
new maximum-a-posteriori estimator of Nash equilibria based on game-theoretic
simulation data and show that it is consistent and almost surely unique when
defined over the set of symmetric pure strategy profiles.
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Appendix

A. FORMAL COMPARISON WITH SAA

In the related work section we informally explained the distinction between our
work and sample average approximation. We now make the comparison formally.
The problem in the SAA setup is to approximate

min
r∈R

E[U(r, X)],

where U is some target function of r and X a random variable, with

min
r∈R

1
n

n∑
j=1

U(r, Xj).

In our case, the problem is (essentially) to approximate

min
r∈R

max
i∈I

max
ai∈Ai

E[Ui(ai, r−i, X)− Ui(r, X)]

with

min
r∈R

max
i∈I

max
ai∈Ai

1
n

n∑
j=1

[Ui(ai, r−i, Xj)− Ui(r, Xj)].

B. PROOF OF THEOREM 5.1

First, we need the following straightforward fact, the proof of which we omit:

Claim B.1. Let X be compact and fi(x) continuous on X. Then

|max
x∈X

f1(x)−max
x∈X

f2(x)| ≤ max
x∈X

|f1(x)− f2(x)|.

Proof of Theorem 5.1. By the Strong Law of Large Numbers, ûi,n(a) →
ui(a) a.s. for all i ∈ I, a ∈ A. That is, Pr{limn→∞ ûi,n(a) = ui(a)} = 1, or,
equivalently [Keener 2004], for any α > 0 and δ > 0, there is M(i, a) > 0 such that

Pr

{
sup

n≥M(i,a)

|ûi,n(a)− ui(a)| < δ

2|A|

}
≥ 1− α.

By taking M = maxi∈I maxa∈A M(i, a),1 we have

Pr
{

max
i∈I

max
a∈A

sup
n≥M

|ûi,n(a)− ui(a)| < δ

2|A|

}
≥ 1− α.

1Note that since A is finite, M is finite.
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Thus, by the claim, for any n ≥ M ,

sup
n≥M

|ε̂n(s)− ε(s)| ≤

max
i∈I,ai∈Ai

sup
n≥M

|ûi,n(ai, s−i)− ui(ai, s−i)|+ max
i∈I

sup
n≥M

|ûi,n(s)− ui(s)| ≤

max
i,ai

∑
b∈A−i

sup
n≥M

|ûi,n(ai, b)− ui(ai, b)|s−i(b) + max
i

∑
b∈A

sup
n≥M

|ûi,n(b)− ui(b)|s(b) ≤

max
i,ai

∑
b∈A−i

sup
n≥M

|ûi,n(ai, b)− ui(ai, b)|+ max
i

∑
b∈A

sup
n≥M

|ûi,n(b)− ui(b)| <

max
i∈I

max
ai∈Ai

∑
b∈A−i

(
δ

2|A|

)
+ max

i∈I

∑
b∈A

(
δ

2|A|

)
≤ δ

with probability at least 1 − α. Note that since s−i(a) and s(a) are bounded
between 0 and 1, we were able to drop them from the expressions above to obtain
a bound that will be valid independent of the particular choice of s. Furthermore,
since the above result can be obtained for an arbitrary α > 0 and δ > 0, we have
Pr{limn→∞ ε̂n(s) = ε(s)} = 1 uniformly on S.

C. PROOF OF THEOREM 5.3

We first note that the function ε(s) is continuous in a finite game.

Lemma C.1. Let S be a mixed strategy set defined on a finite game. Then ε :
S → R is continuous.

We prove the result using uniform continuity of ui(s) and preservation of continuity
under maximum. We omit the simple proofs of the claims below.

Claim C.2. A function f : Rk → R defined by f(t) =
∑k

i=1 ziti, where zi are
constants in R, is uniformly continuous in t.

Claim C.3. Let f(a, b) be uniformly continuous in b ∈ B for every a ∈ A, with
|A| < ∞. Then V (b) = maxa∈A f(a, b) is uniformly continuous in b.

Proof of Lemma C.1. Now, recall that ε(s) = maxi[maxai∈Ai ui(ai, s−i) −
ui(s)]. By the claims C.2 and C.3, maxai∈Ai ui(ai, s−i) is uniformly continuous in
s−i and ui(s) is uniformly continuous in s. Since the difference of two uniformly
continuous functions is uniformly continuous, and since this continuity is preserved
under maximum by our second claim, we have the desired result.

Define BS(x, δ) to be an open ball in S ⊂ [0, 1]k with center x ∈ S and radius δ.
Let

Nδ =
⋃

x∈N
BS(x, δ),

that is, the union of open balls of radius δ with centers at Nash equilibria of Γ.

Claim C.4. ε̄ = mins∈S\Nδ
ε(s) exists and ε̄ > 0.

Proof. Since Nδ is an open subset of compact S, it follows that S \ Nδ is
compact. As we had also proved in Lemma C.1 that ε(s) is continuous, existence
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follows from the Weierstrass theorem. That ε̄ > 0 is clear since ε(s) = 0 if and only
if s is a Nash equilibrium of Γ.

Proof of Theorem 5.3. Now, by Theorem 5.1 and Claim C.4, for any α > 0
there is M such that

Pr{ sup
n≥M

sup
s∈S

|ε̂n(s)− ε(s)| < ε̄} ≥ 1− α.

Consequently, for any δ > 0,

Pr{ sup
n≥M

hD(Nn,Nδ) = 0} = Pr{∀n ≥ M Nn ⊂ Nδ} ≥

Pr{ sup
n≥M

sup
s∈Nn

ε(s) < ε̄} ≥ Pr{ sup
n≥M

sup
s∈S

|ε̂n(s)− ε(s)| < ε̄} ≥ 1− α.

Since this holds for an arbitrary α > 0 and δ > 0 and since hD(Nδ,N ) = δ, the
desired result follows.

D. PROOF OF THEOREM 6.1

The first lemma provides a (deterministic) bound on ε(r), where r is some strategy
profile in the set of joint strategies, given that we have a bound on the quality of
the payoff function approximation for every point in the domain.

Lemma D.1. Let ui(r) be the underlying payoff function of player i and ûi(r)
be an approximation of ui(r) for each i ∈ I. Suppose that |ui(r) − ûi(r)| ≤ δ for
strategy profiles r and ∀(ai, r−i) : i ∈ I, ai ∈ Ai. Then |ε(r)− ε̂(r)| ≤ 2δ.

Proof. We use Claim B.1 to provide a bound on |ε(r)− ε̂(r)|:

|ε(r)− ε̂(r)| = |max
i∈I

max
ai∈Ai

[û(ai, r−i)− û(r)]−max
i∈I

max
ai∈Ai

[ui(ai, r−i)− ui(r)]| ≤

max
i∈I

max
ai∈Ai

|[û(ai, r−i)− û(r)]− [ui(ai, r−i)− ui(r)]| =

max
i∈I

max
ai∈Ai

|[û(ai, r−i)− ui(ai, r−i)] + [ui(r)− û(r)]| ≤

max
i∈I

max
ai∈Ai

|û(ai, r−i)− ui(ai, r−i)|+ |û(r)− ui(r)|.

The result now follows from the assumption that |ui(r) − ûi(r)| ≤ δ for strategy
profiles r and ∀(ai, r−i) : ai ∈ Ai.

The next step is to show that if a bound on approximate utilities holds pointwise
on some strategy space R ⊂ S, we can establish a bound on regrets.

Lemma D.2. Suppose Pr{|ui(r)− ûi(r)| ≥ γ} ≤ δ ∀ i ∈ I, r ∈ R. Then

Pr{|ε(r)− ε̂(r)| ≥ 2γ} ≤ m(K + 1)δ,

where K = maxi∈I |Ai|. Note that the bound is uniform since it does not depend
on the specific profile r ∈ R.

Proof. Let ε̂n(r) denote the empirical regret with respect to the empirical game
with at least n payoff samples taken for every strategy profile, and let εi(r) denote
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the player i’s contribution to regret (that is, the benefit player i can gain by devi-
ating from r.

Pr{|ε̂n(r)− ε(r)| ≥ 2γ} = Pr{|max
i∈I

ε̂i,n(r)−max
i∈I

εi(r)| ≥ 2γ}

≤ Pr{max
i∈I

|ε̂i,n(r)− εi(r)| ≥ 2γ}

≤ Pr{∃i ∈ I : |ε̂i,n(r)− εi(r)| ≥ 2γ}

≤
∑
i∈I

Pr{|ε̂i,n(r)− εi(r)| ≥ 2γ}

≤
∑
i∈I

Pr{∃r′i ∈ ri ∪Ai : |ûi,n(r′i, r−i)− ui(r′i, r−i)| ≥ γ}

≤
∑
i∈I

( ∑
ai∈Ai

Pr{|ûi,n(ai, r−i)− ui(ai, r−i)| ≥ γ}

)
+
∑
i∈I

Pr{|ûi,n(r)− ui(r)| ≥ γ}

≤
∑
i∈I

(K + 1)δ ≤ m(K + 1)δ,

where line 5 above follows from Lemma D.1.

Next, we use the bound on the greatest difference between approximate and actual
payoffs on A to produce the desired bound for payoff approximation of any mixed
strategy profile.

Lemma D.3. Suppose that for a subset A ⊂ A

Pr
{

max
a∈A

|ui(a)− ûi(a)| ≥ γ

}
≥ δ

for all i ∈ I. Then

Pr{|ui(s)− ûi(s)| ≥ γ} ≤ δ ∀i ∈ I, s ∈ S.

Proof.

Pr{|ui(s)− ûi(s)| ≥ γ} =
= Pr{|ui(s)− û(s)| ≥ γ| sup

a∈A
|ui(a)− ûi(a)| < γ}

× Pr{sup
a∈A

|ui(a)− ûi(a)| < γ}

+ Pr{|ui(s)− ûi(s)| ≥ γ|∃a ∈ A : |ui(a)− ûi(a)| ≥ γ}
× Pr{∃a ∈ A : |ui(a)− ûi(a)| ≥ γ}.

By the condition of the lemma, Pr{∃a ∈ A : |ui(a) − ûi(a)| ≥ γ} ≤ δ, and,
thus, the second part of the sum is bounded by δ. Furthermore, observe that if
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supa∈A |ui(a)− ûi(a)| < γ

|ui(s)− ûi(s)| = |
∑
a∈A

(ui(a)− ûi(a))s(a)| = |
∑
a∈A

(ui(a)− ûi(a))s(a)|

≤
∑
a∈A

s(a)|ui(a)− ûi(a)| <
∑
a∈A

s(a)γ = γ,

where the last step follows since s is a probability distribution over A. Consequently,
Pr{|ui(s) − û(s)| ≥ γ| supa∈A |ui(a) − ûi(a)| < γ} = 0 and the desired result
follows.

To complete the proof of the theorem in question, simply combine the results of
Lemma D.2 and Lemma D.3.
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ONLINE COMPANION: PROOFS FOR SECTION 7

Proof of Lemma 7.1

First, we prove the following claim.

Claim D.4. Let s be a symmetric mixed strategy profile. Then Pr{W (b, sm−1) ≤
d} is continuous in s.

Proof. Fix s ∈ S and note recall that

Pr{W (b, sm−1) ≤ d} = 1− Φ

∑c∈Am−1
v̂(b, c)sm−1(c)− d√∑

c∈Am−1

σ2(b,c)s2
m−1(c)

n(b,c)

 .

Now, since Φ(·) is a continuous function, and both the numerator and the denom-
inator inside are continuous in s and s′, and, furthermore, since the denominator
is strictly positive for any valid mixed strategy profile s ∈ S, the expression inside
the absolute value sign is continuous.

Proof of Lemma 7.1. We now use this result to prove the lemma. First, we
note that the continuity of the density function in the expression for Pn(r1) can be
established in essentially the same way as the continuity of Pr{W (b, sm−1) ≤ d},
with the lone substantial exception that we in that case rely on the continuity of
the normal density function rather than the normal distribution function. The re-
maining argument proceeds identically. Furthermore, the fact that a finite product
of continuous functions is continuous produces an integrand (trivially integrable)
which is continuous in s.

Proof of Theorem 7.4

First we state a few basic general facts about continuous functions that are strictly
increasing. Since these results are rather straightforward mathematical facts, we
omit the proofs.

Claim D.5. Let f : R → R be a continuous strictly increasing function. Then
set B ⊂ R is open if and only if f(B) is open. Furthermore B is non-empty if and
only if f(B).

Claim D.6. Let f : R → R be a continuous strictly increasing function and
B ⊂ R be a set such that λ(f(B)) > 0, where λ is the Lebesgue measure on R.
Then λ(B) > 0. Defining ν = λ ◦ f , this implies that ν << λ.

Our next step is to show that the function which comprises a portion of P (a) is
strictly increasing (its continuity is clear). From this and the above claims we will
show the desired result. Let

K(u) =
∏

b∈A1

1− Φ

∑c∈Am−1
v̂(b, c)sm−1(c)− u√∑

c∈Am−1

σ2(b,c)s2
m−1(c)

n(b,c)


and note that K(u) is strictly increasing in u since Φ is a standard normal distribu-
tion and is strictly decreasing in u. Let f(u, µ) be a normal density function with
a fixed variance and mean µ.
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Claim D.7. The function h(µ) =
∫

R K(u)f(u, µ)du is strictly increasing in µ.

Proof. Let µ > µ′ and let g(u) = f(u, µ)− f(u, µ′). Then∫
R
[K(u)f(u, µ)−K(u)f(u, mµ′)]du =

∫
R

K(u)[f(u, µ)− f(u, µ′)]du =

=
∫ µ′

−∞
K(u)g(u)du +

∫ µ

µ′
K(u)g(u)du +

∫ ∞
µ

K(u)g(u)du.

Since K(u) is strictly increasing in u,∫ µ

µ′
K(u)g(u)du >

∫ µ

µ′
K(µ′)g(u)du = K(µ′)

∫ µ

µ′
g(u)du = 0,

where the last equality follows because the two normal distributions involved have
identical variance:∫ µ

µ′
g(u)du = (F (µ, µ)− F (µ′, µ))− (F (µ, µ′)− F (µ, µ))

= Pr
µ
{µ′ ≤ u ≤ µ} − Pr

µ′
{µ′ ≤ u ≤ µ} = 0,

where F (·, µ) is the cdf of Normal with mean µ. Similarly,∫ µ′

−∞
K(u)g(u)du +

∫ ∞
µ

K(u)g(u)du >

∫ ∞
µ

K(u)g(u)du−
∫ ∞

µ

K(u)g(u)du = 0.

To get the inequality above, note that since Normal is symmetric and K(u) is
strictly increasing, ∫ µ′

−∞
K(u)g(u)du > −

∫ ∞
µ

K(u)g(u)du.

It then follows that ∫
R
[K(u)f(u, m)−K(u)f(u, m′)]du > 0

and, thus,
∫

R K(u)f(u, µ)du is strictly increasing in µ.

Having all the pieces at our disposal, we now proceed to prove the result towards
which we have been building.

Proof of Theorem 7.4. Let µ = v̂(a) be distributed according to F for each
player. Without loss of generality, keep the payoffs for all deviations constant.
(Since we show that even when these are constant the measure of the result-
ing set will be zero, this will certainly continue to hold for the product mea-
sure since all payoffs are assumed to be independently sampled.) Defining h(µ) =∫

R K(u)f(u, µ)du, we showed above that it is strictly increasing, and its continuity
is immediate from definition. Since for any c ∈ R, λ(c) = 0, defining ν = λ ◦ h, we
have that ν(c) = 0 by Claim D.6.

Now, the probability that some two fixed pure strategy profiles a, a′ yield Pn(a) =
Pn(a′) is (by conditioning on the value of a′) Ec∼G(P (a′))[F (Pn(a) = Pn(a′))|Pn(a′) =
c] = Ec∼G(Pn(a′))[F (Pn(a) = c)], where G is the probability distribution on Pn(a′)
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induced by the prior distribution. Since F (Pn(a) = c) = 0 as argued above for
any c ∈ R, the resulting expectation and, therefore, the prior probability, that
Pn(a) = Pn(a′) is zero. And, finally, if the probability is zero for any two fixed
a, a′, then it is zero for any finite set of these.

Proof of Lemma 7.6

For simplicity, we assume (without loss of generality) that every strategy profile
has the same variance σ2. Additionally (also without loss of generality), we assume
that s does not correspond to some pure strategy profile—that is, at least two
pure strategy profiles a, a′ are played with positive probability under s. Let fn(u)
be the density function of the normal distribution N(v̂(s), σ2(s)), where v̂(s) =∑

a∈A v̂(a)s(a) and σ2(s) = (σ2/n)
∑

a∈A s(a)2.
The idea of the proof is that SLLN (strong law of large numbers) implies conver-

gence of payoffs for every mixed strategy profile. In particular, this will be the case
for s and a deviation (b, sm−1) of an arbitrary player which strictly improves his ac-
tual payoff (which must exist since s is not a Nash equilibrium). Since n can also be
large enough to make the variance of the posterior Normal distribution arbitrarily
small, and, thus, the posterior probability that ε(s) = 0 arbitrarily small.

Formally, the goal is to show that for any ε > 0, α > 0, there is N ≥ 1 such that
Pr{supn≥N Pn(s) < ε} ≥ 1−α. Let b ∈ A1 be a profile which yield a strictly higher
payoff to i than s1 when others play sm−1. Let ∆ = v(b, sm−1) − v(s) > 0. Fix
ε > 0 and α > 0. Define δ = ∆

4 > 0. Now, by SLLN, there is N1 large enough such
that both supn≥N1

|v̂n(s) − v(s)| < δ and supn≥N1
|v̂n(b, sm−1) − v(b, sm−1)| < δ

with probability at least 1− α.
Since the variance of the posterior Normal distribution of v(s) is σ2

n , we can find
N2 large enough so that for any function G(u) ≤ 1, for δ defined as above, and for
any fixed γ > 0,

sup
n≥N2

∫
R

G(u)fn(u)du ≤ sup
n≥N2

∫ v̂n(s)+δ

v̂n(s)−δ

G(u)fn(u)du + γ.

Therefore, we have that

sup
n≥N2

Pr
n
{ε(s) = 0} = sup

n≥N2

∫ v̂n(s)+δ

v̂n(s)−δ

[
1− Φ(

√
n

σ
(v̂n(b, sm−1)− u))

]
fn(u)du + γ

≤ sup
n≥N2

∫ v̂n(s)+δ

v̂n(s)−δ

[
1− Φ(

√
n

σ
(v̂n(b, sm−1)− v̂n(s)− δ))

]
fn(u)du + γ

≤ sup
n≥N2

[
1− Φ(

√
n

σ
(v̂n(b, sm−1)− v̂n(s)− δ))

]
(1− γ) + γ.

Then, for N3 = max{N1, N2}, v̂n(b, sm−1)− v̂n(s) ≥ 2δ and, consequently,

sup
n≥N3

Pr
n
{ε(s) = 0} ≤ sup

n≥N3

[
1− Φ(

√
n

σ
δ)
]

(1− γ) + γ.

Since δ and σ are fixed and strictly positive, we can find N4 large enough so that
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Φ(·) is arbitrarily close to 1. In particular, we can ensure that

1− Φ(
√

n

σ
δ) ≤ γ.

Letting N = max{N3, N4} and combining gives us

sup
n≥N

Pn(s) ≤ γ(1− γ) + γ ≤ 2γ

with probability at least 1− α. Setting γ = ε/2 yields the desired result.

Proof of Lemma 7.7

For simplicity (and as above), we assume (without loss of generality) that every
player and profile has the same variance σ2. Let fn(u) be the density function of
the normal distribution N(v̂(a), σ2/n).

Fix α > 0 and ε > 0. Our goal is to show that there is a finite N such that
supn≥N Pn(a) ≥ 1−ε with probability at least 1−α . Define ∆ = minb∈A1\a1 v(a)−
v(b, am−1). Set δ = ∆/4 < 0 for the analysis below. By SLLN, there is N1 < ∞ such
that supn≥N1

|v̂n(a)− v(a)| ≤ δ, as well as supn≥N1
|v̂n(b, am−1)− v(b, am−1)| ≤ δ

for every b ∈ A1 \ a1 simultaneously with probability at least 1−α. Now, since for
any function G(u), ∫

R
G(u)fn(u)du ≥

∫ v̂n(a)+δ

v̂n(a)−δ

G(u)fn(u)du,

we have that

sup
n≥N1

Pr
n

(ε(a) = 0) ≥ sup
n≥N1

∫
R

∏
b∈A1\a1

[
1− Φ(

√
n

σ
(v̂n(b, am−1)− u))

]
fn(u)du

≥ sup
n≥N1

∫
R

∏
b∈A1\a1

[
1− Φ(

√
n

σ
(v̂n(b, am−1)− v̂n(a) + δ))

]
fn(u)du

= sup
n≥N1

(1− γ)
∏

b∈A1\a1

[
1− Φ(

√
n

σ
(v̂n(b, am−1)− v̂n(a) + δ))

]
.

Since v̂n(b, am−1)− v̂n(a) ≤ −2δ for all b ∈ A1 \ a1 simultaneously, we obtain that

sup
n≥N1

Pr
n

(ε(a) = 0) ≥ sup
n≥N1

(1− γ)
∏

b∈A1\a1

[
1− Φ(−

√
n

σ
δ))
]

≥ sup
n≥N1

(1− γ)
[
1− Φ(−

√
n

σ
δ))
]|A1|−1

.

Since σ > 0 and δ > 0 are both fixed, we can find N2 large enough so that

Φ(−
√

n

σ
δ)) ≤ γ,

and by allowing N = max{N1, N2} we have supn≥N Pn(a) ≥ (1 − γ)|A1| with

probability at least 1 − α. By choosing γ = 1 − (1 − ε)
1

|A1| , we obtain the desired
result.
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