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ABSTRACT
A dynamic model of a multiagent system defines a proba-
bility distribution over possible system behaviors over time.
Alternative representations for such models present trade-
offs in expressive power, and accuracy and cost for inferen-
tial tasks of interest. In a history-dependent representation,
behavior at a given time is specified as a probabilistic func-
tion of some portion of system history. Models may be fur-
ther distinguished based on whether they specify individual
or joint behavior. Joint behavior models are more expres-
sive, but in general grow exponentially in number of agents.
Graphical multiagent models (GMMs), introduced by Duong
et al., provide a more compact representation of joint behav-
ior, when agent interactions exhibit some local structure.
We extend GMMs to condition on history, thus supporting
inference about system dynamics. To evaluate this hGMM
representation we study a voting consensus scenario, where
agents on a network attempt to reach a preferred unani-
mous vote through a process of smooth fictitious play. We
induce hGMMs and individual behavior models from exam-
ple traces, showing that the former provide better predic-
tions, given limited history information. These hGMMs also
provide advantages for answering general inference queries
compared to sampling the true generative model.

Categories and Subject Descriptors
I.2.II [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems

General Terms
Experimentation, Algorithms, Performance

Keywords
Multiagent reasoning, graphical multiagent models, agent-
based modeling

1. INTRODUCTION
Multiagent systems research has produced many forms of

models for dynamic multiagent behavior, taking into ac-
count a broad range of factors. Generative models (e.g.,
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based on rules for individual agent behavior) are highly ex-
pressive, offering virtually unlimited capacity for specifying
any dynamic behavior the modeler may conceive. Reason-
ing about the properties of such models (e.g., for predic-
tion based on partial observation), however, is often com-
putationally challenging, requiring in general a prohibitive
amount of sampling of the possible system trajectories. An-
alytic models, in contrast, may facilitate more efficient rea-
soning, but often at the cost of strong limits on the com-
plexity of the agent behavior and environments that can be
represented.

One source of complexity in multiagent modeling is the in-
terdependence of agent behaviors due to interactions among
the agents. Even if the agents are autonomous (i.e., make de-
cisions independently), conditioning their decisions on com-
mon observations (including each others’ actions) induces
correlation of their behaviors over time. Generative models
typically specify agent behavior individually, exploiting the
conditional independence of their actions given system his-
tory. From the modeler’s perspective, however, we are often
interested in properties of system behavior given only an in-
complete view of this history. In this case, agent decisions
are not independent, and we may wish to directly express
joint behavior.

Direct representation of joint behavior may require space
exponential in the number of agents, hence we seek structure
that enables more compact specification. Approaches based
on graphical models achieve this by exploiting conditional in-
dependence among model elements. In the context of agents,
this observation has led to numerous models that exploit
locality of agent interaction, including: multiagent influ-
ence diagrams (MAIDs) [Koller and Milch, 2001], graphical
game models [Kearns et al., 2001], action-graph games [Jiang
et al., 2008], and networks of influence diagrams [Gal and
Pfeffer, 2008]. By mapping graphical games to Markov ran-
dom fields, Daskalakis and Papadimitriou [2006] showed that
statistical inference tools for graphical models can be ap-
plied for game-theoretic computation on graphically struc-
tured multiagent scenarios. The graphical multiagent model
(GMM) framework proposed by Duong et al. [2008] gener-
alizes this approach beyond game-theoretic reasoning by al-
lowing beliefs about agent behavior to be based on a variety
of knowledge sources.

To enable inference about system dynamics, we extend the
static GMM representation to condition on history, yielding
history-dependent graphical multiagent models (hGMMs). By
directly specifying joint behaviors, hGMM can capture cor-
relations in agent actions without full specification of the



state history mediating agent interactions. Moreover, hG-
MMs provide a compact representation for domains with
decomposable structure and consequent computational sav-
ings. Like GMMs, hGMMs accommodate a variety of sources
of knowledge for multiagent modeling, and support general
learning and inference facilities of graphical models.

We demonstrate the representational power of hGMMs
and value of modeling joint behaviors, by comparison, to
individual behavior models in a voting consensus scenario
studied by Kearns et al. [2009]. To evaluate the models, we
postulate that actual behavior is generated by a smooth fic-
titious play process. Since the generative fictitious play sim-
ulation (our ground truth) is an individual behavior model
where agents update their beliefs and choose their responses
independently given history, the study evaluates the ability
of hGMMs to model behavior in scenarios with limited his-
torical information. We find experimentally that hGMMs
provide better predictions of agent actions than individual
behavior multiagent models, given limited history. Similar
results emerge when game play data are generated by an
asynchronous model where agents may change their actions
at any time, and when inference computations in hGMMs
are approximate. Furthermore, hGMMs outperform gener-
ative models that sample from the true model in answering
queries about the game’s outcomes.

We motivate our study with an overview and discussion of
the voting consensus game in Section 2. Section 3 describes
the general problem of modeling dynamic multiagent behav-
ior. In Section 4, we review the GMM framework and intro-
duce our history-dependent extension. We develop specific
hGMMs and IBMMs for the voting consensus game in Sec-
tion 5, and employ these in an empirical study (Section 6)
designed to evaluate their relative performance in various
settings. We conclude with some observations on these re-
sults and future directions in Section 7.

2. EXAMPLE: THE VOTING CONSENSUS
GAME

We illustrate the problem of representing multiagent be-
havior with a voting consensus scenario introduced and stud-
ied by Kearns et al. [2009]. The situation can be modeled
as a game played on a network. Each agent (player) has
two available actions (vote options), labeled 0 and 1. The
scenario terminates when all agents’ votes agree, or at the
time limit T if no consensus is reached by then. In the
asynchronous version of the scenario, agents may change
their votes at any time, until the termination condition is
reached. We also consider a discrete-time version, where
opportunities to update votes occur at a finite number of
points. Upon termination, each agent i receives an indi-
vidual reward ri(a) > 0 if everyone converges on action a,
and nothing otherwise. The variation in reward functions
by agent reflects differing relative preferences for the avail-
able options. Despite these preference differences, the agents
have a common interest in achieving consensus, as without
a unanimous vote nobody gets a reward.

Another pivotal feature of the voting consensus scenario
is that agents have limited knowledge of the others’ current
votes. Specifically, the agents are connected in a graph struc-
ture, and can observe the votes of only their neighbors in the
graph. In addition, agent i knows only its local graph struc-
ture, namely its neighbors Ni, the degree of each neighbor
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Figure 1: A typical game experiment from a player’s
perspective [Kearns et al., 2009].

k ∈ Ni, and edges between its neighbors.
Figure 1 shows what a player observes during a typical

experiment. We display the game from the perspective of
player I, whose payoffs are $0.75 and $1.25 for 0 and 1 con-
sensus outcomes, respectively. Player I can observe only the
agents to which I is connected in the graph—namely II, III,
and IV, but not V and VI, shown in the dotted portion of
the graph. In particular, the player knows each neighbor’s
degree (the number shown in parenthesis), the connections
among its neighbors, and their current votes of either 0 or 1.

This scenario raises several interesting questions for agent
behavior, including:

• How should agents balance their efforts to promote
their own preferred outcome against the imperative to
achieve some consensus?

• In pursuing their goals, how should they take into ac-
count observed voting patterns of neighbors, and their
partial knowledge of network structure?

Alternatively, rather than ask how agents should behave, we
could pose questions about how agents do behave. We may
be interested, for example, in the behavior of human agents,
or of artificial agents constructed in various ways or induced
by specified learning processes.

Kearns et al. [2009] conducted a series of human-subject
experiments to collect data about how human agents be-
have in 81 different instances of the voting consensus game.
By varying preference assignments and network structure,
they gathered evidence about the effect of these factors on
strategies employed, and the consequent voting results. In
particular, they were interested in developing models that
would predict whether a given scenario would be likely to
converge to consensus, and if so, how fast and on which out-
come. Exploring the problem also led this group to analyze
a family of adaptive strategies, and establish the impossibil-
ity of converging to the preferred outcome in the worst case
[Kearns and Tan, 2008].

3. MODELING DYNAMIC MULTIAGENT BE-
HAVIOR



To formalize the general problem, we consider a scenario
with n agents, behaving over an interval of discrete time pe-
riods, [0, . . . , T ]. At each time period t, agent i ∈ {1, . . . , n}
chooses an action at

i from its domain of available actions, Ai.
These choices may in general depend on i’s knowledge and
observations, as specified by the agent’s strategy, σi. In this
work, we focus on an agent’s observations of past actions by
itself and others, as captured by history Ht up to time t. As
the capacity of agents’ memory is often limited, Ht includes
information only for a fixed horizon h. Consequently, we
write Ht = {(ak

1 , . . . , ak
n) | k ∈ [t − h, t)}. Furthermore, to

allow that an agent may ignore some past actions of oth-
ers, we denote by Ht

i the subset of history relevant to i’s
probabilistic choice of next action: at

i ∼ σi(H
t
i ).

Let us examine the voting game example illustrated in
Figure 1. Assume that the length of each discrete time pe-
riod is one second, and players have a very short time hori-
zon, h = 1. At time period t = 10, player I’s history H10

I

consists of {(a9
I = 1, a9

II = 0, a9
III = 1, a9

IV = 1)}. One pos-
sible strategy is to vote according to the majority from the
last time period, in which case a10

I = majority(H10
I ) = 1.

3.1 Sources of Multiagent Models
Research in multiagent systems has encompassed many

approaches to modeling agent behavior. Factors based on
social norms, preferences, motives, conventions, authority
structures, beliefs about others, and more have been incor-
porated in multiagent models. Different approaches can be
characterized to some extent based on the factors they em-
phasize, and their underlying assumptions of agent capa-
bilities and tendencies. For example, game-theoretic mod-
els fully specify agents’ beliefs and preferences, and assume
agents act rationally according to these attitudes. Within
this framework, some modelers postulate adaptive learning
processes that can lead agents to adopt game-theoretic so-
lutions [Fudenberg and Levine, 1998]. Others may employ
dynamic models based on reinforcement learning, irrespec-
tive of game-theoretic interests, or adopt behaviors gener-
ated by alternative dynamics, for example based on evolu-
tionary models [Tuyls and Parsons, 2007] or combinations
[Hennes et al., 2009]. Yet other models focus on particular
decision contexts (e.g., social networks, organizations, mar-
kets, teams), and develop behavior rules that are justified
by normative or descriptive theories for those contexts.

Our purpose here is not to survey the full range of mul-
tiagent modeling approaches, much less to comparatively
evaluate them. Rather, we seek a common representational
framework that can accommodate a broad class of behav-
ioral models, and support inference and learning tasks based
on such models. We start from the observation that ulti-
mately any of these models define a system, where stochas-
tic agent strategies induce a probability distribution over
dynamic behaviors of the multiagent system. We draw a
central distinction between representations based on spec-
ifying individual agent behavior, and those based on joint
behavior.

3.2 Individual Behavior Multiagent Models
Models of agent behavior on social networks provide some

of the clearest examples for representing multiagent sce-
narios as stochastic dynamic systems. For example, Gra-
novetter [1978] specifies an agent’s strategy as a threshold

function over the choices of other agents. This model has
been generalized by Kleinberg [2007], and extended to model
the cumulative effect over time of an agent’s neighbors’ ac-
tions on its own behavior. For the voting consensus game
of Section 2, a simple multiplicative model that combines
vote preferences with trends in neighbor actions can provide
an effective probabilistic model of subject behavior [Kearns
et al., 2009, Kearns and Wortman, 2008]. In a study of re-
lated coordination games, ? propose a rule whereby agents
choose the action that maximizes their cumulative reward
over a recent interval, and characterize the convergence to
conventional behavior. Information about other agents’ his-
toric actions has also been shown instrumental in predicting
learned behavior in a simple repeated game [Mookherjee and
Sopher, 1994].

Though varied in complexity and approach, the above
models share one common feature: the behavior of the multi-
agent system is the product of separately specified individual
behaviors. That is, for each agent we specify a probabilistic
strategy σi(H

t
i ) = Pr(at

i | Ht
i ). In such a formulation, agent

interactions are captured by the conditioning of individual
behavior on commonly observed history. The agents’ actions
are probabilistically dependent, but conditionally indepen-
dent given this common history, yielding the joint distribu-
tion

Pr(at | Ht) =
Y

i

σi(H
t
i ). (1)

We refer to a dynamic multiagent model expressible by (1)
as an individual behavior multiagent model (IBMM). IBMMs
provide an intuitive form for expressing collective behavior
as a function of individuals. Their key premise is that the
common observed history is sufficient to capture correlations
in agent behavior. Although this may be a valid assumption
in principle, it is usually infeasible to condition on the entire
history in a practical specification of agent behavior.

3.3 Joint Behavior Multiagent Models
Without the assumption of conditional independence given

history, we generally need to specify the joint behavior Pr(at |
Ht) of multiple agents directly. This approach quickly be-
comes intractable, as the size of such a specification grows
exponentially in the number of agents. However, if the in-
teractions among agents can be localized (given history),
we may be able to exploit this structure to achieve a more
compact representation of the joint distribution. That is
the role of graphical multiagent models [Duong et al., 2008],
discussed in Section 4.1 below.

3.4 Inference in Multiagent Models
Whether the model is fundamentally specified in terms of

individual or joint behaviors, its value lies in its amenability
to analysis. Analysts may seek, for example, to establish
general properties of a model (e.g., features common to all
runs, or statistically prevalent in the distribution of runs),
identify anomalous behavior, predict future behavior given a
prefix of observations, or explain interesting behavioral phe-
nomena. Many if not all analytical tasks can be decomposed
into basic queries about the probability of some features of
a behavior run, conditional on some given features. For ex-
ample, in the voting game described in Section 2, we may
want to capture a subject’s“stubbornness”by Pr(at

i|Ht
i ), the

probability of that subject’s voting 0 given that her neigh-
bors have been voting 1 in the last 10 time periods. Ob-



serving that after the first half of each experiment run two
subjects i and j appear to coordinate in their actions, for in-
stance, may lead us to compute Pr(at

i, a
t
j |Ht). We may also

be interested in predicting the future votes given past obser-
vations, which prompts us to calculate the joint probability
distribution Pr(at|Ht).

4. HISTORY-DEPENDENT GMMS
We describe graphical multiagent models [Duong et al.,

2008], and extend them to incorporate history for reasoning
about agent behavior in dynamic multiagent scenarios.

4.1 Graphical Multiagent Models
Consider a special case of the aforementioned multiagent

scenarios where the system’s time horizon T is 1. The sys-
tem’s final outcome is a joint action specifying the action
choice of all players. A graphical multiagent model (GMM)
for this scenario is a graphical model, G = (V, E, A, π), with
vertices V = {v1, . . . , vn} corresponding to the agents (we
refer to vi and i interchangeably), and edges (i, j) ∈ E in-
dicating a local interaction between i and j [Duong et al.,
2008]. The graph defines for each agent a neighborhood,
Ni = {j | (i, j) ∈ E} ∪ {i}, including i and its neighbors
N−i = Ni \ {i}. Each neighborhood i is associated with a
potential function πi(aNi) : Πj∈NiAj → R+. Intuitively a
local configuration of actions with a higher potential is more
likely to be part of the global outcome than one with lower
potential.

The size of the GMM description is exponential only in
the size of local neighborhoods rather than in the total num-
ber of players. Each neighborhood corresponds to a clique in
the triangulated graphical model, where additional links are
introduced to form sets of maximally connected subgraphs.
As a result, we can factor the joint distribution into neigh-
borhood potentials [Daskalakis and Papadimitriou, 2006]:

Pr(a) =
Πiπi(aNi)

Z
, (2)

where Z is the normalization term.
GMMs provide a flexible representation framework for

static graphically structured multiagent scenarios that sup-
ports the specification of probability distributions over joint
actions based on game-theoretic models as well as heuris-
tic or other qualitatively different characterizations of agent
behavior [Duong et al., 2008]. For a dynamic multiagent
system, GMMs may represent steady state distributions or
a prediction of final joint outcomes, but since the potential
functions reference a single time step, GMMs as originally
formulated cannot express probabilistic behavior trajecto-
ries over time.

4.2 History-Dependent GMMs
A history-dependent graphical multiagent model is also a

graphical model, hG = (V, E, A, π), with V , E, and A de-
fined just as in the original GMM framework. The essential
extension is in the potential functions, π, which for hGMMs
are a function of history. Specifically, hGMMs capture agent
interactions by conditioning joint agent behavior on an ab-
stracted history of actions Ht. The abstracted history avail-
able to agent i, denoted Ht

Ni
, is the subset of Ht pertaining

to only agents in Ni. Thus, Ht
Ni

is basically an explicit form

of Ht
i defined in Section 3. Each agent i is associated with a

potential function πi(a
t
Ni
| Ht

Ni
), which represents i’s behav-

ior conditioned on history. These potentials may be based
on information from various sources, including agent pay-
offs in corresponding states, historical observations, models
of social network interactions, and so on. The product of
these potentials defines the joint probability distribution of
the system’s actions taken at time t,

Pr(at | Ht) =

Q
i πi(a

t
Ni
| Ht

Ni
)

Z
. (3)

We interpret Ht
Ni

generally as a summary or abstraction of
local history, since finite memory and computational power
often preclude complete retention of historic observations.
Moreover, from the perspective of the system modeler, only
a partial view of the full history may be available. Yet an-
other motivation for abstraction is provided by the need to
limit complexity in order to effectively learn the model from
a limited amount of data. Given an abstracted history rep-
resentation, agent decisions will generally appear correlated,
even if they are independently generated conditional on full
history. In the voting consensus game for instance, at time
period t we could choose to summarize agent i’s full history
by a count of how many times agents in i’s neighborhood
have voted 0 in Ht

Ni
.

The complexity of computing the normalization factor Z
in Equation (3) is exponential in the number of agents, and
thus renders exact inference and learning in large undirected
graphical models intractable. To handle large network sce-
narios, we have adopted the belief propagation method for
approximately computing Z [Broadway et al., 2000]. Belief
propagation is exact in tree-graph models, and has shown
acceptably good results with reasonable runtime in sparse
cyclic graphical models. This property makes belief propa-
gation a viable approximation inference method for hGMMs,
at least for scenarios involving sparsely connected networks
of many small-size neighborhoods. Our implementation of
hGMMs employs the package libDAI [Mooij, 2008] for com-
puting Z using the belief propagation algorithm.

4.3 Model Learning and Evaluation
Here we address the problem of learning the parameters of

an hGMM hG given the underlying graphical structure and
data in the form of a set of joint actions for m time steps,
X = (a0, . . . , am). For ease of exposition, let θ denote the
set of all the parameters that define the hGMM’s potential
functions (we make θ explicit for the voting consensus game
in the next section). We are interested in selecting an θ that
maximizes the log likelihood of X,

LhG(X; θ) =

m−hX
k=0

ln(Pr hG(ak+h|(ak, . . . , ak+h−1)); θ)).

We use gradient ascent to update the parameters: θ ← θ +
λ∇θ, where the gradient is

∇θ =
∂LhG(X; θ)

∂θ
,

and λ is the learning rate, stopping when the gradient is
below some threshold. We employ this same technique to
learn the parameters of IBMMs (B) as well.

We evaluate the learned dynamic multiagent models by
their ability to predict future outcomes, as represented by
a testing set Y in the same format as the training set X
Given two models M1 and M2, we compute the ratio of



their corresponding log-likelihood measures for the testing

data set Y : RM1/M2(Y ) =
LM1 (Y )

LM2 (Y )
. In this study, we are

particularly interested in the ratio RhG/B . Note that since
log likelihood is negative (we exclude certain predictions),
RhG/B < 1 indicates that the hGMM is better than the
IBMM at predicting Y , and vice versa if the ratio exceeds
one.

5. MODELING VOTING CONSENSUS GAMES
We present parameterized hGMMs and IBMMs designed

specifically to capture agent behavior in a version of the
voting consensus game [Kearns et al., 2009]. We start by
assuming that agents play synchronously, and introduce a
second, asynchronous scenario in Section 6.

5.1 Parameters of hGMMs and IBMMs
First, we consider how to summarize a history Ht

Ni
of

length h relevant to agent i. Let indicator I(ai, ak) = 1
if ai = ak and 0 otherwise. We define f(ai, H

t
Ni

) as the

frequency of action ai being chosen by other agents in Ht
Ni

,

f(ai, H
t
Ni

) =

P
k∈Ni−{i}

Pt−1
ρ=t−h I(ai, a

ρ
k) + 1

h|Ni − {i}|
.

The frequency function f captures the degree to which ai is
similar to past choices by i’s neighbors in Ht

Ni
. Its joint ana-

log reflects the historical frequency of a local configuration
aNi ,

f(aNi , H
t
Ni

) =

Pt−1
ρ=t−h I(aNi , a

ρ
Ni

) + 1

h
.

We add 1 in both definitions above to ensure that the cor-
responding term does not vanish when the action ai or the
configuration aNi , respectively, do not appear in Ht

Ni
. To

simplify exposition, we henceforth drop the time superscript
t and the neighborhood subscript Ni from Ht

Ni
, taking these

modifiers of history H as understood.
In formulating the hGMM potential function, we attempt

to capture the impact of past collective choices of i’s neigh-
borhood, and i’s relative preference for each action, as re-
flected in the reward ri(ai). We encode other factors bearing
on choice of action ai by a parameter αi,ai .

The potential function for agent i is given by

πi(aNi |H) = exp
“
βiri(aNi)f(aNi , H) + αi,ai

”
, (4)

where for all i and c ∈ Ai, 0 ≤ αi,c, βi ≤ 1, and βi +P
c αi,c = 1. The term ri(aNi) is the expected reward for

agent i given its neighborhood’s play aNi . If we adopted
the strict definition of reward from the game description,
ri(aNi) would be non-zero only when all actions in aNi are
the same. To model the network contagion phenomenon, we

use a modification ri(aNi) = γ
P

k∈Ni
(1−I(ai,ak))

r(ai), where
ri(ai) is the reward i receives if everyone in the network
plays ai, and γ ∈ (0, 1]. Observe that ri(aNi) as we define
it is increasing in the number of i’s neighbors playing ai,
reflecting the positive influence of neighbor choices on i.

In order to conduct a fair comparison between hGMMs
and IBMMs for this problem domain, we seek to preserve as
many features from the hGMM as possible in constructing
an IBMM for the voting consensus game. We thus define

the probabilistic IBMM strategy as follows:

Pr(ai|H) =
1

Zi
exp

“
βiri(ai)f(ai, H) + αi,ai

”
. (5)

As above, for all i and c, 0 ≤ αc,i, βi ≤ 1, and βi +
P

c αc,i =
1. Zi is the normalization factor over all ai ∈ Ai (this nor-
malization sums only over the actions of a single agent, thus
is easy to compute).

5.2 Data from Fictitious Play Simulation
Given a voting consensus game with an underlying graph-

ical structure, we generate data using a smooth fictitious
play process [Camerer and Ho, 1999]. For purposes of our
model evaluation, we treat this generated data as the actual
multiagent system behavior. In fictitious play, each agent i
maintains probabilistic beliefs about its neighbors’ actions,
based on the observed frequency of historic behavior. Let
bij(aj) be i’s belief that j chooses action aj . At the begin-
ning of a simulated game, each agent starts with uniform
beliefs: bij(aj) = 1

|Aj |
. Agents update their beliefs as fol-

lows. If at time t, j executed action a′j , then for all aj , and
every neighbor i of j,

bij(aj)←
bij(aj)t + I(aj , a

′
j)

t + 1
.

Whereas in classic fictitious play agents respond optimally
to their beliefs, in the smooth version agents select actions
probabilistically in proportion to the expected reward com-
puted with respect to these beliefs. We adopt an exist-
ing multiplicative model for this game [Kearns et al., 2009],
which weighs the probability that an agent takes action ai in
proportion to the product of its reward ri(ai) and the proba-
bility that all neighbors play the same action,

Q
j∈Ni

bij(ai).
Thus, in each round the simulation samples each agent i’s
action according to the probability distribution

Pr(ai) ∝ ri(ai)
Y

j∈Ni

bij(ai). (6)

The simulation terminates when all players reach a consen-
sus or the allotted time runs out. This fictitious play sim-
ulation is itself a generative individual behavior multiagent
model, as each agent chooses its action independently from
others conditional on the commonly seen history. However,
unlike the IBMM introduced in Section 5.1, which only em-
ploys a limited history of length h, this simulation model
incorporates the full-length history in modeling and conse-
quently generating agent actions.

6. EMPIRICAL STUDY
We empirically evaluate the predictive power of hGMMs

and IBMMs in our version of the voting consensus game
given limited history, as described in Section 5.1, on simu-
lated play data generated by a smooth fictitious play process,
introduced in Section 5.2.

6.1 Experiment Settings
We consider voting consensus games with 10 players. A

game instance specifies player payoffs sampled uniformly
randomly from [0, 1], as well as a graphical structure of
agent interactions where the maximum degree of the result-
ing graph is controlled to be d. Each experiment will provide
results averaged over 20 game instances. We generate a data
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Figure 2: hGMMs outperform IBMMs in predicting
game plays across scenarios of different values of γ

set of 20 game runs for each game instance by simulating in-
dependent runs of the smooth fictitious play process defined
in Section 5.2. Each simulation run lasts until either ev-
eryone agrees on one of the two voting options or the time
limit T (which we set at 50) is reached. We use d = 6 and
γ = 0.9, introduced in Section 5.1, in our simulations unless
otherwise specified.

Our study includes both synchronous and asynchronous
game scenarios. In the synchronous scenario, which is the
one we explore most extensively, agents update their be-
liefs and choose a response simultaneously in every round.
The asynchronous version of the game, on the hand, allows
agents to change their votes at any time. Our generative
model described in Section 5.2 assumes a synchronous up-
date model. In order to mimic asynchrony in voting deci-
sions, we allow agents to have different update rates, with
agent i updating his vote every ti time periods. In the simu-
lations we let ti = i for each agent i (that is, agent 1 updates
his vote every period, agent 2 every other period, and so
on). While we actually use a discrete model of asynchrony,
we would like to test the effect of discretization that would
be forced upon us (given that our models only work with
synchronous scenarios) if agents in fact made their decisions
continuously. To do this, we create a coarser discretization
of time, combining a number of rounds into one by the use
of the summarization interval, that is, a window of length v
that combines all decisions v rounds at a time. Under this
transformation, all actions that occur during the same epoch
(that is, v “actual” time steps) are grouped to be effectively
simultaneous.

For each game instance, we train the models using 10
game runs, and compare their performances in predicting
the remaining 10 game runs by the ratio RhG/B defined in
Section 4.3. Recall that all results present averages over the
20 game instances and that R < 1 indicates that hGMMs
performed better than IBMMs.

6.2 Results
In our first set of experiments we evaluate the performance

of hGMMs (as compared to IBMMs) as functions of the his-
tory horizon length for values of γ ∈ [0, 1]. We display results
for a representative selection, γ ∈ {0.1, 0.6, 0.9, 1.0}. The re-
sults in Figure 2 show that in general hGMMs outperform
IBMMs in predicting agent behavior for shorter history hori-
zons. Their performances appear to converge as the history
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Figure 3: hGMMs provide better predictions than
IBMMs across scenarios of different maximum node
degrees d

horizon increases. Since agents condition their actions on the
complete history in the generative fictitious play simulation,
a history of limited horizon renders agent actions correlated
from the modeler’s perspective. As a result, hGMMs, which
directly model joint behavior, are more effective due to cap-
turing action correlations induced by truncated history, even
though the generative model is in fact an IBMM.

Figure 2 also demonstrates that for shorter history lengths,
the performance of hGMMs peaks when γ is around 0.6,
while longer history yields a higher“optimal”value of γ. The
reason for this phenomenon is that action correlations are
less prominent when history horizon increases, and, conse-
quently, models closer to the generative IBMM—in this case,
those with higher γ (equating the different reward terms
ri(aNi) and ri(ai) in Equations 4 and 6)—perform better.

As the density of the underlying graphical structure and
the correlations of agent behavior are intuitively related, we
consider the effects of varying the maximum degree of gen-
erated graphs d. The results in Figure 3 for d = 3 and d = 6
suggest that hGMMs are better on sparser graphical struc-
tures. The intuition behind this is that action configurations
in smaller neighborhoods tend to repeat more often and,
consequently, increase the contribution of the f(aNi , HNi)
term in the hGMM potentials, enhancing their power in cap-
turing joint behavior.1

A natural alternative to either hGMM or IBMM is ficti-
tious play sampling, which effectively mimics how one would
use a generative fictitious play model to predict future plays.
Specifically, fictitious play sampling computes the probabil-
ity of an action profile a given history H as the empirical
distribution of a in training data conditional on H. Our
experimental results in Figure 4 show that hGMMs consis-
tently outperforms fictitious play sampling, and this advan-
tage is smallest at h = 1 and greatest at h = 4. Intuitively,
shorter history horizons imply more that more data from the
training data set can be used in the fictitious play sampling
model to compute Pr{a|H} as there are more instances of
the specific history H for shorter H, leading to more accu-
rate predictions, even relative to hGMMs. The main illus-
trative point of this experiment set is that direct sampling

1Of course, there is no correlation to be found when d = 0
and, thus, the difference between hGMM and IBMM is likely
to be small for very sparse graphs.
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Figure 4: hGMMs provide better predictions than
fictitious play sampling
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Figure 5: The effects of training data availability
on the performance of hGMMs in comparison with
untrained hGMMs.

from a fictitious play model is not only more computation-
ally expensive but also less powerful in predicting outcomes
than an hGMM capable of effectively extracting information
about agent behavior from the same data set.

In order to assess the added value of training hGMM
model parameters we compare trained and untrained hG-
MMs, where parameter values in the untrained models were
chosen uniformly randomly. Specifically, we used untrained
hGMMs (training data set size of 0) as a baseline, and varied
the size of the training data in the set {2, 5, 10, 30}. The cor-
responding likelihood ratio of trained to untrained hGMMs
evaluated on test data are displayed in Figure 5. In essence,
the outcomes confirm that our default size for the training
data set (10 game runs) is sufficient for learning hGMMs.
Analogous results were also obtained for IBMMs.

Our next set of experiments evaluates the impact of asyn-
chrony in agent behavior on the relative efficacy of hGMMs
and IBMMs. Specifically, we consider two summarization
intervals v, with v = 2 and v = 4, with the results shown
in Figure 6. We observe that hGMMs are more powerful in
modeling correlations with longer summarization intervals
v. This is further reinforced by observing that the advan-
tage of hGMM over IBMM for both summarization window
sizes here is greater than we observed in the synchronous
environment (which would roughly correspond to v = 1, al-
though all agents also make their decisions simultaneously
in that model). To understand this phenomenon note that
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Figure 6: hGMMs provides better predictions than
IBMMs in asynchronous scenarios with different
summarization intervals v

actions that occur in different periods that are collapsed to
fall in the same summarization window v in an asynchronous
scenario are treated as simultaneous actions in both models,
even though earlier actions may well cause the later ones.
As v increases, more cause-effect action pairs are grouped
in the same rounds in the transformed (synchronized) data,
yielding greater action correlations that are unmodeled in
IBMMs. Since asynchrony in multiagent systems is more
a rule than an exception, our results suggest that hGMMs
may be especially efficacious in practice.

A real concern present in using hGMMs in realistic set-
tings is the scalability of our techniques when the number
of players is large. While all the problems that we con-
sider here are small enough to enable exact learning, large
games would require us to use approximation. We now pro-
ceed to verify that approximation is feasible in our setting
and the advantage of hGMMs over IBMMs does not dissi-
pate when learning is approximate rather than exact. Fig-
ure 7 illustrates the performance of hGMMs that use both
exact and approximate inference: in fact, approximate hG-
MMs actually outperform hGMMs that use exact inference.
Our intuition for this surprising result is that action pro-
files with sufficiently small values of potentials are likely to
be dropped from the approximate computation of Z. As
a result, the approximate hGMMs become more “focused”
in explaining and predicting more frequent outcomes, while
getting “punished” more when a less frequent outcome oc-
curs. More significantly, approximate hGMMs outperform
IBMMs in predicting the game’s sequential outcomes, allow-
ing our techniques to scale to realistic scenarios.

7. CONCLUSIONS
History-dependent graphical multiagent models support

efficient and effective inference about system dynamics given
abstract representations of history that may induce action
correlations from the modeler’s perspective. In particular,
hGMMs provide a compact and flexible representation frame-
work for scenarios of decomposable structure, while enabling
direct reasoning about joint behaviors. We illustrated the
representational and inferential capabilities of hGMMs by
empirically showing that they outperform individual behav-
ior multiagent models and fictitious play sampling models
in predicting data and answering inference queries. In ad-
dition, approximate inference does not lessen the predictive
power of hGMMs, and thus offers promise for the application
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Figure 7: hGMMs show greater predictive power
than IBMMs when employing generalized belief
propagation approximation.

of hGMMs in large networks.
We seek to apply our hGMM framework in modeling agent

behavior in various dynamic multiagent scenarios. A follow-
up study will focus on analyzing voting behavior from data
of the voting consensus experiments conducted by Kearns
et al. [2009]. Another potential application problem for hG-
MMs is to model bidding strategies and outcomes in ad auc-
tions for sponsored search. In particular, we are interested
in understanding the competitions among advertisers spe-
cialized in different products in the context of the Trading
Agent Competition Ad Auction game [Jordan and Wellman,
2009]. Besides, these two scenarios will provide opportuni-
ties for us to examine the capability of hGMMs in capturing
dynamic behavior across different graphical structures and
different payoff assignments.

Another research direction is to apply dynamic Bayesian
network concepts in developing a dynamic graphical mul-
tiagent model framework based on the history-dependent
GMM that supports not only forward inference but also
backward inference that enables reasoning about unobserv-
able past outcomes. Finally, we might employ techniques for
learning underlying graphical structures of multiagent sce-
narios [Duong et al., 2009] in developing learning methods
for not only hGMM parameters, but also the graph topology
itself.
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