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Abstract. We introduce an exploration scheme aimed at learning advertiser click-through rates in
sponsored search auctions with minimal effect on advertiser incentives. The scheme preserves both the
current ranking and pricing policies of the search engine and only introduces one set of parameters
which control the rate of exploration. These parameters can be set so as to allow enough exploration
to learn advertiser click-through rates over time, but also eliminate incentives for advertisers to alter
their currently submitted bids. When advertisers have much more information than the search engine,
we show that although this goal is not achievable, incentives to deviate can be made arbitrarily small
by appropriately setting the exploration rate. Given that advertisers do not alter their bids, we bound
revenue loss due to exploration.

1 Introduction

Recent years have seen an explosion of interest in sponsored search auctions, due in large part to the
unique opportunity for targeted advertising and the resulting billions of dollars in revenue. Most sponsored
search auctions display a list of advertisements on the sidebar or other sections of a search engine’s results
page, ranked by some function of advertisers’ revealed willingness-to-pay for every click on their ad. The
advertisers in turn pay the search engine for every click their ad receives. While several pricing schemes have
been circulated in the literature [10], by far the most popular is a generalization of second-price auctions,
under which each advertiser pays the lowest bid that is sufficient to ensure that the ad remain in its current
slot. Typically the number of available slots for advertisements on the first search page is fixed, and thus
only high ranking advertisements are displayed.

An essential part of both designing sponsored search auction mechanisms and bidding in them is the
knowledge of the probability that a given ad is clicked each time it is displayed in a particular slot for a
particular search query or keyword. This probability is known as the click-through rate or CTR of the ad.
Knowledge of these click-through rates helps advertisers determine optimal bidding behavior. CTRs can also
be an integral part of the ad ranking policy. For example, it is common for policies to rank bidders by the
product of their bid and some function of their relevance, a slot-independent measure of CTR. Throughout
the paper, we assume that CTRs do not change over time.

Most of the existing literature on sponsored search auctions treats CTRs as known. When advertisers
first enter the system, however, their CTRs are not yet known either by the search engine or even by the
advertisers themselves, and can only be estimated over time based on the observed clicks. Observations are
inherently limited to slots in which ads appear, and estimates are generally poor for advertisers with low
rank that do not usually appear at all. Furthermore, without the assumption of factorable CTRs, little can
be said about CTRs of an ad in slots in which it has not previously appeared (or has appeared only a small
number of times). Thus there is a need for an exploration policy that periodically perturbs the current slate
of displayed ads, showing some in alternate slots and occasionally displaying those ads that are ranked below
the last slot. Ideally, this exploration policy should not be difficult to incorporate into the current sponsored
search mechanisms. Additionally, if the advertisers’ bids have reached an equilibrium, the exploration policy
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should, when possible, eliminate the incentives for bidders to change their bids, thereby destabilizing the
auction. Such destabilization can result in negative user and advertiser experience, as well as unnecessary
loss in revenue to the search engine, and can make exploration harder to control.

There are, of course, trivial ways of exploring while maintaining equilibrium bids. For example, the search
engine could rank, display, and price the ads as usual with probability α, and rank the ads randomly (say,
choosing uniformly among all possible rankings) with probability 1− α. The problem with this approach is
that in order to maintain equilibrium bids, the search engine must not charge for any clicks received during
exploration, which could clearly lead to a significant loss of revenue.

In this paper, we address the problem of learning the click-through rates for each ad in every slot. Our
primary goal is to maintain an equilibrium bid configuration if the bidders did indeed play according to an
equilibrium prior to exploration, while allowing the search engine to charge for all clicks received during
exploration. When advertisers have significantly more knowledge than the search engine, we provide bounds
on the amount that any advertiser could gain by deviating. This incentive to deviate can be minimized by
reducing exploration, at the cost of slowing down the process of learning the CTRs. Additionally, we bound
the revenue loss that the search engine incurs due to exploration, as compared to maintaining a policy based
on current estimates of CTRs.

A similar problem has been addressed by Pandey and Olston [13] and Gonen and Pavlov [7]. The former
work addresses the learning problem without considering advertiser incentives. The latter addresses both.
Our model differs from existing ones in three primary ways:

1. We avoid imposing a particular ranking policy or introducing a new pricing scheme so that changes to
existing systems are minimal.

2. The data gathered by our approach can be incorporated into general learning algorithms using sample
selection debiasing techniques [8].

3. We avoid the standard but unrealistic assumption that click-through rates can be factored into advertiser-
and slot-specific components.

2 Notation and Definitions

We consider an auction for a particular keyword in which there are N advertisers (alternately called bidders
or players) placing bids. Since our analysis can be repeated for each keyword, the restriction to a single
keyword is without loss of generality. (Indeed, the analysis can even be generalized to incorporate arbitrary
context information, as long as the number of contexts is finite and advertisers may submit separate bids
for each [5]. In Section 9 we generalize some of our results to the continuous context setting.) We assume
that the search engine has K slots with non-negligible CTRs. Throughout the discussion on incentives, we
assume that the CTRs depend only on the ad being displayed and the slot in which it is shown. Thus, we
use cs

i to denote the true CTR of player i in slot s. We assume that for each player i, cs
i > ct

i whenever
1 ≤ s < t ≤ K. For convenience, we define cs

i = 0 for s > K and s < 1. In most of our analysis we deal
explicitly with estimated click-through rates; the search engine estimates are denoted by ĉs

i , whereas the
advertiser i’s estimates are denoted by c̃s

i . Finally, we let vi denote the value of a click to player i. In other
words, vi is the expected amount that player i will gain from a click before considering payments.

For now we assume that prior to the exploration process, advertisers are ranked according to their bid bi

multiplied by a weight wi which is an increasing function of their estimated relevance scores for the particular
keyword. Setting this weight equal to the advertiser’s relevance recovers the standard rank-by-revenue model;
setting it equal to 1 recovers rank-by-bid [11]. Each advertiser pays a price per click equal to the lowest bid
that maintains his current position; thus the price paid by bidder i in rank s is ps

i = ws+1bs+1/wi. Without
loss of generality, assume that advertisers are indexed in the order in which they are ranked when playing
equilibrium, i.e. advertiser i is in slot i in the ranking.

The relevance score of an advertiser, which we denote by ei, can be thought of as an average CTR
over all slots for the given keyword. We might choose to define this relevance as

∑K
s=1 cs

i or alternately as∑K
s=1 cs

i /cs where cs is the “average” CTR that any ad might expect to receive on slot s. Observe that when
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cs
i is factorable into the product eics, both of these relevance scores are proportional to ei. We can fix the

weights for each advertiser prior to (each phase of) exploration and reveal the new estimates of CTRs at the
end of the exploration period only, allowing greater control of exploration.

We assume that prior to exploration the advertisers converge to a symmetric Nash equilibrium, a variant
of Nash equilibrium introduced simultaneously by Varian [15] and Edelman et al. [4]. We slightly alter the
standard definition to take into account CTR estimates as follows.

Definition 1. A symmetric Nash equilibrium (SNE) is an ordering and a set of bids such that for every
player i and for every slot s, c̃i

i

(
vi − pi

i

)
≥ c̃s

i (vi − ps
i ) , where c̃s

i denotes player i’s CTR estimate at slot s.

Existence of at least one symmetric Nash Equilibrium was proved in a slightly different setting than ours by
Börgers et al. [1]. Their proof applies essentially without change to our setting. More details can be found
in Appendix A.

Theorem 1. In the generalized second-price auction where the bidders are ranked by wibi and payments are
pi

i, if the bidder i’s valuations per click are given by vi and CTRs for all bidders are strictly decreasing, there
exists a symmetric Nash equilibrium.4

By assuming that bidders converge to a symmetric Nash equilibrium prior to exploration, we are implicitly
assuming that advertisers are myopic in the sense that they care only about their short term revenue. In
particular, we assume that advertisers do not attempt to bid in such a way as to fool the auctioneer into
setting the parameters of the exploration algorithm more favorably in the future. This assumption is quite
natural if we envision the auctioneer setting the parameters of the exploration algorithm uniformly across
large groups of auctions, as might be done in practice. (See the related comments at the end of Section 3.)

3 An Algorithm for Exploration

We begin by describing a simple algorithm for learning click-through rates. Below (in Section 4) we show
that we can set parameters of this algorithm in such a way as to minimize or entirely eliminate incentives for
advertisers to deviate from a pre-exploration SNE. Our key condition will be that throughout the entire run
of the algorithm the prices which the advertisers pay are fixed to their pre-exploration equilibrium prices.

The algorithm, which we call k-swap (Algorithm 1), starts by ranking ads by the product of bid and
weight as usual, and repeatedly chooses pairs of ads to swap in order to explore. In particular, each time the
given keyword receives an impression (i.e. each time a query is made on the keyword), a swapping distance
k ∈ {1, · · · ,K} is chosen from some distribution (e.g. uniformly at random). The algorithm calculates or
looks up a swapping probability for each pair of slots s and s+k that are a distance k apart. (The method for
choosing these probabilities will be discussed in Section 4.) Finally, the algorithm uses this set of swapping
probabilities to decide which (if any) pair of ads to swap.

We must be careful about how pairs of ads are chosen to be swapped so we can avoid swapping the same
ad more than once on a single query. Let Si denote the event that the ads in slots i and i + k are swapped
and let rk

i = Pr(Si) be the probability that this event occurs. We have

Pr(Si) = Pr(Si|Si−k) Pr(Si−k) + Pr(Si|¬Si−k) Pr(¬Si−k).

To avoid conflicting swaps, we can set Pr(Si|Si−k) = 0, which implies that Pr(Si|¬Si−k) =
Pr(Si)/ Pr(¬Si−k) = rk

i /(1− rk
i−k), which is no greater than one as long as we enforce that rk

i−k + rk
i ≤ 1.

For the purposes of this algorithm, all ads with rank K + 1, · · · , N can be thought of as sharing slot
K +1. Thus whenever an ad in slot s ≤ K is chosen to swap with slot K +1, any ad with rank K +1, · · · , N
could be displayed in slot s. We do not discuss how the algorithm might decide which losing ad to display,
but one could imagine giving preference to ads that have not often been displayed in the past.
4 Even though the true valuations of advertisers are private, a symmetric Nash equilibrium is a reasonable prediction

of outcomes in many settings, since it has been shown that certain myopic bidding strategies converge to a symmetric
equilibrium [3, 2] and, furthermore, such convergent strategies are strategically stable [16, 12].
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Algorithm 1 The k-swap algorithm.
Input: rk

i for all 1 ≤ i, k ≤ K
for all queries on the given keyword do

Randomly select a k ∈ {1, · · · , K}
for i = 1 to min{k, K − k + 1} do

Set Si ← 1 with probability rk
i , Si ← 0 otherwise

end for
for i = k + 1 to K − k + 1 do {Note that this statement is null if 2k > K}

if Si−k = 1 then
Set Si ← 0

else
Set Si ← 1 with probability rk

i /(1− rk
i−k), Si ← 0 otherwise

end if
end for
for i = 1 to K − k do

Swap the ads in slots i and i + k if Si = 1
end for
if SK−k+1 = 1 then

Choose an i ∈ {K + 1, · · · , N} to display in slot K − k + 1
end if

end for

One way in which the k-swap algorithm might be combined with the standard generalized second-price
auctions is as follows:

1. Estimate bidder valuations from past data (e.g., using the methods described by Börgers et al. [1]).
2. Calculate the largest swapping probabilities rk

i for all 1 ≤ i, k ≤ K that satisfy the constraint in
Theorem 2 (Section 4), which can be computed in O(K2) time.

3. Rank the bidders by wibi.
4. Compute the generalized second-price auction prices, ps

i , to bidders occupying slots s = 1, . . . ,K based
on the above ranking.

5. Apply the k-swap algorithm to probabilistically permute the advertisers, keeping their prices constant.
6. Display the ads on the search page ranked according to the outcome of k-swap.

However, in practice, it might be more reasonable to use an approach that does not rely on the need to
accurately estimate bidder valuations. To eliminate this need (and simultaneously avoid giving bidders an
incentive to try to fool the auctioneer into choosing more advantageous values for the swapping probabilities),
Steps 1 and 2 can be replaced by a single step that sets the swapping probabilities to values for which the
constraints in Theorem 2 would be satisfied for most “typical” auctions. This is the approach that we
advocate in most practical settings.

4 Maintaining Equilibrium During Pairwise Swapping

In this section, we consider the effect on advertiser incentives of implementing an exploration policy that
occasionally chooses pairs of ads that are k slots apart to swap or moves an undisplayed ad into slot K−k+1
for some fixed value of k. By ensuring that advertisers do not have incentives to deviate from equilibrium
bids for any fixed k, we ensure that the advertisers do not deviate throughout the entire run of k-swap.

We assume that the search engine bases the weights wi on the CTR estimates ĉs
i , and fix the prices

paid by the advertisers through the entire run of k-swap. The updated CTR estimates obtained during
exploration are only reported to advertisers after the algorithm completes. In practice, the algorithm may
need to be run in multiple phases, interleaving exploration with updates of CTR estimates, and allowing
sufficient time for advertisers to reach a new equilibrium after each phase.
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Our assumptions raise a conceptual question: if the advertisers care about the real CTRs, how can we
maintain incentives given only estimates? We posit that often advertisers do not know the CTRs any better
than the search engine and formulate their own optimization problem (at least approximately) in terms of
the estimates provided by the search engine; that is, we assume that c̃s

i = ĉs
i ∀i, s. We consider the case in

which advertisers have additional information about their CTRs and provide bounds on their incentives to
deviate as a result of exploration in Section 6.

Since all analysis in this section is for a fixed value of k, we drop the superscript and use ri in place of
rk
i to denote the probability that ads i and i + k are swapped. These probabilities can be represented as

multiples of r1, i.e. ri = αir1. Then, if αi are set exogenously (for example, αi = 1 for all 1 ≤ i ≤ K), k-swap
has only one tunable parameter, r1, for a fixed value of k. For convenience of notation, we define αi = 0 for
all i < 1 and i > K−k+1. In order to allow exploration of CTRs of all bidders, we let rK−k+1 designate the
total probability that any losing bidder is swapped into slot K − k + 1. Let qs denote the probability that
a losing bidder with rank K + 1 ≤ s ≤ N is displayed conditional on some losing ad being displayed; thus,
the probability that a particular losing bidder s gets selected is qsrK−k+1. We have that

∑N
s=K+1 qs = 1.

Finally, define qmax = maxK+1≤s≤N qs.
Once we add exploration, the effective estimate of CTR for advertiser i in slot s is no longer ĉs

i . Rather,
now with some probability rs−k the ad in slot s is moved to slot s− k, and with some probability rs the ad
is moved to slot s + k. Then the new effective estimate of CTR of player i for rank s is

ĉ
′s
i = (1− rs−k − rs)ĉs

i + rs−k ĉs−k
i + rsĉ

s+k
i .

(Recall that rs = 0 and ĉs
i = 0 for s < 1 and s > K−k +1. We can replace CTR with effective CTR because

the prices paid by all advertisers remain fixed for the duration of exploration.)
Let Di,s = αs(ĉs

i − ĉs+k
i )−αs−k(ĉs−k

i − ĉs
i ). Observe that r1Di,s is the marginal CTR loss of advertiser i

in slot s when exploration is allowed. We now define the quantities Ji,j and Zi which are used in Theorem 2:

Ji,j = (vi − pi
i)Di,i − (vi − pj

i )Di,j (1)
Zi = (vi − pi

i)Di,i + αK−k+1qmaxĉK−k+1
i vi. (2)

To get some intuition about what these mean, note that r1Ji,j is the difference between the marginal
loss in expected payoff due to exploration that the advertiser i receives in slot j and the marginal loss in
expected payoff due to exploration in slot i. Similarly, r1Zi is the difference between the marginal loss in
payoff due to exploration that the advertiser i receives by switching to rank above K + 1 (and thereby not
occupying any slot) and the marginal loss due to exploration in slot i.

The following result gives the conditions under which exploration does not incentivize advertisers to
change their bids and characterizes the settings in which this is not possible.

Theorem 2. Assume that each advertiser i ∈ {1, · · · ,K} strictly prefers his current slot to all others in
equilibrium, i.e. the condition (vi − pi

i)ĉ
i
i > (vi − pj

i )ĉ
j
i holds for all 1 ≤ i, j ≤ K, i 6= j whenever Ji,j > 0

and vi − pi
i > 0 ∀i whenever Zi > 0. Then for generic valuations and relevances there exists an r1 > 0 such

that no advertiser has incentive to deviate from the pre-exploration SNE bids once exploration is added. In
particular, any r1 satisfying the following set of conditions is sufficient:

r1 ≤ min

{
min

2≤i≤K

1
αi + αi−k

, min
1≤i≤K;Zi>0

1
Zi

(vi − pi
i)ĉ

i
i,

min
1≤i,j≤K;i 6=j;Ji,j>0

1
Ji,j

(
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

) }
.

Before moving on, let us examine the three terms inside the min in this bound. The first term simply
enforces that for each ad, the sum of the probability that the ad is swapped to higher slot and the probability
that the ad is swapped to a lower slot is no more than 1. The second term ensures that no ad that is
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displayed at equilibrium has incentive to provide a lower bid and no longer be displayed after swapping
is introduced. The final term guarantees that no ad prefers to switch to another slot when swapping is
introduced. Intuitively, if these conditions are satisfied, then the advertisers will remain in equilibrium when
swapping is introduced.

The proof of Theorem 2, which can be found in Appendix B, is broken into three cases. First it is necessary
to show that if the conditions in the theorem statement hold, advertisers 1, · · · ,K have no incentive to alter
their bids in order to switch to other ranks within 1, · · · ,K. Next we must show that these advertisers have
no incentives to alter their bids in order to move to slots lower than K. Finally, we show that advertisers
ranked below slot K before exploration have no incentive to deviate.

To get some intuition about how the theorem can be applied and about the magnitude of r1, consider
the following example.

Example 1. Suppose that there are 3 advertisers bidding on 2 slots. Let ĉ1
i = 0.2 and ĉ2

i = 0.1 for all players
i ∈ {1, 2, 3}; all players thus have the same weights no matter how the weights are defined. Let v1 = 10,
v2 = 5, and v3 = 2. Suppose that prior to exploration each advertiser bids his value per click and pays the
next highest bid. One can easily verify that this configuration constitutes a symmetric Nash equilibrium in
which player 1 gets slot 1 and player 2 gets slot 2.

Let us fix α2 = 1, so r1 = r2. Now we can determine the setting of r1 that allows us to swap neighboring
ads (k = 1) without introducing incentives to deviate during exploration. Applying the first constraint, we
find the condition that r1 ≤ 0.5 must hold. This is clearly necessary; ad 2 cannot be swapped up and down
each with probability more than 0.5.

By the second constraint, since Z1 = 1.5 and Z2 = 0.5, we must have that r1 ≤ 0.6. Finally, since
J1,2 = 0.5, we get the condition that r1 ≤ 0.4. Combining the effects of these constraints, we see that we
can set both swapping probabilities as high as 0.4 without giving any of the advertisers incentive to deviate
during exploration.

Suppose we wished to increase the swapping probabilities to 0.4 + ε for some small positive ε to allow
slightly more exploration. Then the new effective click-through rate for advertiser 1 at the top rank during
exploration would be ĉ1

1(0.6 − ε) + ĉ2
1(0.4 + ε) = 0.16 − 0.1ε, while his effective click-through rate in the

second rank would be ĉ1
1(0.4 + ε) + ĉ2

1(0.2 − 2ε) = 0.1. Thus the expected payoff to advertiser 1 in rank 1
is (10 − 5)(0.16 − 0.1ε) = 0.8 − 0.5ε, while his expected payoff in rank 2 is (10 − 2)(0.1) = 0.8, giving him
incentive to deviate from his pre-exploration equilibrium bid. ut

As the example suggests, the bounds in Theorem 2 are close to tight. In fact, the bounds can be made
tight simply by replacing qmax with the conditional probability with which ad i would be selected if it were
not in one of the top K ranks.

5 Learning Bounds

In this section, we bound the error of our estimated click-through rates for each advertiser in each slot after
Q queries have been made on the given keyword. Let ni,s denote the number of times we have observed
advertiser i in slot s, and let zi,s,j be the indicator random variable which is 1 if ad i is clicked the jth time
it appears in slot s, and 0 otherwise. Finally, let πk

i,s be the probability that ad i is displayed at slot s when
we are swapping ads that are k slots apart, as discussed in Section 4.

To simplify the presentation of results, we assume that the swapping distance k is drawn uniformly at
random from {1, · · · ,K} for each query, but the extension to arbitrary distributions is straight-forward.

Theorem 3. Suppose the k-swap algorithm has been run for Q queries with a fixed set of broadcasted CTR
estimates. Let ĉs

i be our new estimate of CTR, defined as ĉs
i = (1/ni,s)

∑ni,s

j=1 zi,s,j for all advertisers i and
slots s such that ni,s ≥ 1. Then for any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all i
and s for which we have made at least one observation:

|ĉs
i − cs

i | ≤

√
ln(2KN/δ)

2ni,s
.
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Furthermore, with probability at least 1 − δ, for all i and s, we have that ni,s ≥ max{(Q/K)
∑K

k=1 πk
i,s −√

Q ln(2KN/δ)/2, 0}.

Proof. Let x1, · · · , xn be independent random variables, with xz = 1 if a click is observed the zth time
that ad i is displayed in slot s, and xz = 0 otherwise. Clearly E[(1/n)

∑n
i=1 xi] = cs

i . Thus we can apply
Hoeffding’s inequality [9] to these random variables to bound the error of our estimation of the click-through
rate of ad i in slot s given that we have observed the ad in this slot ni,s times. Specifically, for any δ′ ∈ (0, 1),
with probability 1− δ′,

|ĉs
i − cs

i | ≤

√
ln(2/δ′)
2ni,s

.

We can apply Hoeffding’s inequality once again to bound the deviation of ni,s from its expectation. We
find that with probably 1− δ′,

|ni,s − E[ni,s]| ≤
√

Q ln(2/δ′)/2 .

Setting δ = δ′/(NK) and applying the union bound completes the proof. ut

Thus as the number of queries Q grows, our estimates of the CTR vectors for each advertiser converge
to the true CTR vectors.

6 Bounds on the Incentives of “Omniscient” Advertisers

If players have much more information about the actual click-through rates than the search engine, it is
unlikely that we can entirely eliminate incentives of advertisers to change their bids during exploration.
However, if we can bound the error in our estimates of the click-through rates, we can also bound how much
advertisers can gain by deviating. When incentives to deviate are small, we may reasonably expect advertisers
to maintain their equilibrium bids, since computing the new optimal bids can be costly. The search engine
may further dull benefits from deviation by charging a small fee to advertisers when they change their bids.

From this point on, we assume that the error in search engine estimates of the CTRs is uniformly bounded
by ε; that is, |cs

i − ĉs
i | ≤ ε for every i and s.

Assume that rk
1 were set such that the bidders have no incentive to change their bids if they use ĉs

i as
their CTR estimates. We now establish how much incentive they have to deviate if they know their actual
CTR cs

i , that is, c̃s
i = cs

i ; we call such advertisers “omniscient”.

Theorem 4. The most that any omniscient advertiser can gain by deviating in expectation per impression
is max1≤i≤K 2ε(vi − pK

i ).

Proof. For all i and s,∣∣∣c′si − ĉ
′s
i

∣∣∣ = ∣∣(1− rs−k − rs)(cs
i − ĉs

i ) + rs−k(cs−k
i − ĉs−k

i ) + rs(cs+k
i − ĉs+k

i )
∣∣

≤ (1− rs−k − rs)ε + rs−kε + rsε = ε,

and so c
′i
i ≥ ĉ

′i
i − ε. Now consider a player i deviating to slot (or rank) j:

c
′i
i (vi − pi

i) ≥ ĉ
′i
i (vi − pi

i)− ε(vi − pi
i)

≥ ĉ
′j
i (vi − pj

i )− ε(vi − pi
i) ≥ c

′j
i (vi − pj

i )− ε(vi − pi
i)− ε(vi − pj

i )

≥ c
′j
i (vi − pj

i )− 2ε(vi − pK
i ).

The theorem statement follows. ut
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This bound has the intuitive property that as our CTR estimates improve, the bound on incentives
to deviate from equilibrium bids improves as well. (Note that given rk

1 the actual payoffs to deviation are
not affected as we learn unless we also publicize the learned information.) It is also intuitive, however,
that incentives diminish if the exploration probabilities fall. This motivates the following alternate bound
which shows that we can make the incentives to deviate arbitrarily small even for omniscient advertisers by
appropriately setting rk

1 .

Theorem 5. The most that any omniscient advertiser can gain by deviating in expectation per impression
is

max
1≤i,j,k≤K

{
rk
1

(
αi(ĉi

i − ĉi+k
i ) + αj−k(ĉj−k

i − ĉj
i ) + 2ε(αi + αj−k)

) (
vi − pK

i

)}
.

Proof. Consider incentives for some player i for deviating to slot j and let

µ = r1(αi(ĉi
i − ĉi+k

i ) + αj−k(ĉj−k
i − ĉj

i ) + 2ε(αi + αj−k))(vi − pK
i ).

Then,

[(1− ri−k − ri)ci
i + ri−kci−k

i + ric
i+k
i ](vi − pi

i) + µ

≥ [(1− ri−k − ri)ci
i + ri−kci−k

i + ric
i+k
i ](vi − pi

i) + ri(ci
i − ci+k

i )(vi − pK
i )

+rj−k(cj−k
i − cj

i )(vi − pK
i )

≥ [(1− ri−k − ri)ci
i(vi − pi

i) + ri−kci−k
i (vi − pi

i) + ric
i
i(vi − pi

i) + rj−k(cj−k
i − cj

i )(vi − pj
i )

= ci
i(vi − pi

i) + ri−k(ci−k
i − ci

i)(vi − pi
i) + rj−k(cj−k

i − cj
i )(vi − pj

i )

≥ cj
i (vi − pj

i ) + rj−k(cj−k
i − cj

i )(vi − pj
i )

≥ cj
i (vi − pj

i ) + rj−k(cj−k
i − cj

i )(vi − pj
i )− rj(c

j
i − cj+k

i )(vi − pj
i )

= [(1− rj−k − rj)c
j
i + rj−kcj−k

i + rjc
j+k
i ](vi − pj

i ),

where the inequalities follow from the assumption that ci
i(vi − pi

i) ≥ cj
i (vi − pj

i ) and the fact that ps
i ≥ pK

i

for any slot s. ut

7 Bounds on Revenue Loss Due to Exploration

We now assume that the advertisers play according to the symmetric Nash equilibrium that was played prior
to exploration and, as in the previous section, assume that the errors of the search engine’s estimates of
CTRs are uniformly bounded by ε with high probability. Given these assumptions, the theorem that follows
bounds the loss in revenue due entirely to exploration.

Theorem 6. The maximum expected loss to the search engine revenue per impression due to exploration is
bounded by

max
1≤k≤K

{
rk
1

K∑
i=2

pi
i

(
αi(ĉi

i − ĉi+k
i )− αi−k(ĉi−k

i − ĉi
i) + 2ε

)}
.
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Proof. Fix the swapping constant k. For any player i, the change in revenue can be bounded as

K∑
i=1

ci
ip

i
i −

K∑
i=1

c
′i
i pi

i =
K∑

i=1

pi
i(c

i
i − c

′i
i ) =

K∑
i=1

pi
i(c

i
i − (1− ri−k − ri)ci

i − ri−kci−k
i − ric

i+k
i )

=
K∑

i=1

pi
i((ri−k + ri)ci

i − ri−kci−k
i − ric

i+k
i )

=
K∑

i=1

pi
i(ri(ci

i − ci+k
i )− ri−k(ci−k

i − ci
i))

≤
K∑

i=1

pi
i(ri(ĉi

i − ĉi+k
i )− ri−k(ĉi−k

i − ĉi
i) + 2ε)

= r1

K∑
i=1

pi
i

(
αi(ĉi

i − ĉi+k
i )− αi−k(ĉi−k

i − ĉi
i) + 2ε

)
.

The inequality in the penultimate step above follows by the bound on the error in CTRs, as well as by the
fact that ri + ri−k ≤ 1. Summing over all players and taking the max over all swapping distances yields the
bound. ut

8 Special Cases

In this section we study the problem of exploration while maintaining a pre-exploration symmetric Nash
equilibrium in two special cases. In both cases, it is only necessary to swap adjacent pairs of ads in order to
learn reasonable estimates of advertiser CTRs.

8.1 Factorable Click-Through Rates

The first special case we consider is the commonly studied setting where cs
i = eics; that is, CTRs are

factored into a product of advertiser relevance and slot-specific factors. To simplify presentation, we assume
cs is known and ei is to be learned for all advertisers, since there are far more data for estimating cs than ei.

Maintaining Equilibrium Under these assumptions, using k-swap may seem strange; after all, we can
learn ei for all advertisers i ≤ K just as well by leaving them in their current slots! The only problem
to be addressed then is to learn CTRs of losing bidders. Consequently, if we truly believe that CTRs are
factorable, we need only do adjacent-ad swapping (k = 1) and can set r1 = · · · = rK−1 = 0 and only allow
rK > 0. In this case, we need not worry about deviations by advertisers in slots 1, . . . ,K − 1 to alternative
slots 1, . . . ,K − 1, since the effective CTRs for these deviations are unchanged. Additionally, no advertiser
wants to deviate to slot K, since the CTR in this slot is strictly lower than it was before exploration, and no
advertiser ranked K + 1, . . . , N wants a higher slot, since their effective CTRs increase. Thus we need only
consider the incentives of the advertiser in slot K. It is not difficult to verify that the condition under which
exploration does not affect advertiser K’s incentives is

rK ≤ min
{

min
1≤j≤K−1

cK

(
vK − pK

K

)
− cj

(
vK − pj

K

)
cK(vK − pK

K)
,

vK − pK
K

vK(qmax + 1)− pK
K

}
,

and we can find an rK > 0 when cK(vK − pK
K) > cj(vK − pj

K) for j < K.
There is, however, another possible scenario in which exploration might be useful under the factorable

CTR assumption. Suppose that we initially posit the factorable CTR model, but want to verify whether this
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is really the case. To do so, we can use adjacent-ad swapping to form multiple estimates of ei using data from
multiple adjacent slots. By comparing these estimates, we can vet our current model while also improving
our CTR estimates for losing bidders.

Since CTR is factorable, our analysis need only consider the effective slot-specific CTRs, which we assume
are known, c′s = (1− rs−1 − rs)cs + rs−1cs−1 + rscs+1. For all i, let

αi =
i∏

j=2

cj−1 − cj

cj − cj+1
.

By setting the swapping probabilities in this manner, the effective CTRs in slots 2, · · · ,K−1 are unchanged
when exploration is added. We can now simplify the bounds and characterization of Theorem 2. In particular,
the precondition of the theorem and the second bound on r1 need only to hold for i = 1. Furthermore, it
can be shown that in the factorable setting, the precondition (v1 − p1

1)c1 > (v1 − pj
1)cj always holds in the

minimum revenue SNE [15] for generic valuations and relevances (see Appendix C for a formal statement
and proof). Putting everything together, we can prove the following result in the factorable setting.

Theorem 7. Consider the setting in which CTRs are factorable into the product of advertiser relevance and
a slot-specific CTR factor. Let ri be defined as in Equation 5 for all i ∈ {2, · · · ,K}. Assume that advertiser
1 strictly prefers his current slot to all others in equilibrium, i.e. the condition

(
v1 − p1

1

)
c1 >

(
v1 − pj

1

)
cj

holds for all 2 ≤ j ≤ K whenever J1,j > 0. Then for generic valuations and relevances there exists an r1 > 0
such that no advertiser has an incentive to deviate from the pre-exploration SNE bids once exploration is
added. Any r1 for which the following conditions hold is sufficient:

r1 ≤ min

{
min

2≤i≤K

1
αi + αi−1

, min
1≤i≤K;Zi>0

1
Zi

(vi − pi
i)c

i
i

min
2≤j≤K;J1,j>0

1
J1,j

((v1 − p1
1)c1 − (v1 − pj

1)cj).

}
where

J1,j =
(
v1 − p1

1

)
(c1 − c2) +

(
v1 − pj

1

)
(αj−1(cj−1 − cj)− αj(cj − cj+1))

and Zi is defined according to Equation 2.

The proof of Theorem 7 is provided in Appendix D.

Learning Bounds As in the general setting, it is possible to derive learning bounds that show that as the
number of observed queries grow, our estimates of the advertiser CTR vectors grow arbitrarily close to the
true CTRs with high probability.

As before, let ni,s denote the number of times we have observed advertiser i in slot s at the current fixed
CTR estimates, and let zi,s,j be a random binary variable indicating whether or not the ad i was clicked on
the jth time it appeared in slot s.

Theorem 8. Suppose that CTRs can be factored into advertiser-dependent and slot-dependent components.
In other words, for all i and s, cs

i = eics where cs is known. Suppose we have observed ni,s instances of ad i
at slot s with a fixed set of broadcasted CTR estimates. Let ĉs

i be our new estimate of CTR, defined as

ĉs
i =

cs

csini,si

ni,si∑
j=1

zi,si,j

for all advertisers i and slots s, where si = argmaxs cs
√

ni,s. Then for any δ ∈ (0, 1), with probability 1− δ,
for all i and s,

|ĉs
i − cs

i | ≤
cs

csi

√
ln(2N/δ)

2ni,si

.
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Proof. For each advertiser i, we base our estimate of click-through rate on data from the slot si maximizing
cs
√

ns. Let

ĉsi
i =

1
ni,si

ni,si∑
j=1

zi,si,j

be the estimate of click-through rate in this slot. By Hoeffding’s inequality, for any δ′ ∈ (0, 1), with probability
1− δ′,

|ĉsi
i − csi

i | ≤

√
ln(2/δ′)
2ni,si

.

Since for any s, cs
i = cs−i

i (cs/csi) and ĉs
i = ĉs−i

i (cs/csi), we thus have for all s

|ĉs
i − cs

i | ≤
cs

csi

√
ln(2/δ′)
2ni,si

.

We want this claim to hold for all N advertisers. Setting δ′ = δ/N and applying the union bound
completes the proof. ut

8.2 Click-through Rates with Constant Slot Ratios

Next we consider adjacent-ad swapping (k = 1) for the case in which for each player i, the click-through rates
have constant ratios for adjacent slots. That is, for all i and all 1 ≤ s ≤ K−1, we assume that cs+1

i /cs
i = γi ≤ 1

where γi is advertiser-dependent and unknown. Let γ̂i denote the search engine estimate of γi and suppose
as before that advertisers use these as their own estimates. Let αj = 1 for every j ∈ {2, . . . ,K − 1}, so
r1 = r2 = · · · = rK−1. Additionally, let αK = min{(γ̂i − 1)2/qmax, 1}.

Maintaining Equilibrium As in the previous section, we can considerably simplify the bounds and char-
acterization of Theorem 2 in this special case. In particular, the first and second bounds on r1 must hold,
but the third bound on r1 and the precondition need only to hold for i = 1 and i = K.

Theorem 9. Suppose that CTRs are of the form cs
i = ei(γ̂i)s−1 for all i and s. Assume that advertisers

i = 1, · · · ,K strictly prefer their current slots to all others in equilibrium, i.e. the following condition holds
for i = 1,K and all j ∈ {1, · · · ,K}, j 6= i whenever Ji,j > 0:

(vi − pi
i)ĉ

i
i > (vi − pj

i )ĉ
j
i .

Furthermore, assume that for all i such that Zi > 0, vi − pi
i > 0. Then for generic valuations and relevances

there exists r1 > 0 such that no advertiser has an incentive to deviate from the pre-exploration symmetric
Nash equilibrium bids once exploration is added. Any r1 satisfying the following set of conditions is sufficient:

r1 ≤ min

{
1
2
, min

i=1,K;Zi>0

ĉ1
i

Zi
(vi − pi

i)(γ̂i)i−1,

min
i=1,K;1≤j≤K;Ji,j>0

ĉ1
i

Ji,j

(
(vi − pi

i)(γ̂i)i−1 − (vi − pj
i )(γ̂i)j−1

) }

Appendix E contains the proof of this theorem.
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Learning Bounds for Ad-Dependent Constant Slot Ratios We can also prove analogous learning
bounds in this setting and show that it is only necessary to explore via adjacent-ad swapping in order to
obtain CTR estimates for all advertisers at all slots. Again, let ni,s denote the number of times we have
observed advertiser i in slot s at the current fixed CTR estimates, and let zi,s,j be a random variable
indicating whether or not the ad i was clicked on the jth time it appeared in slot s.

Theorem 10. Suppose that CTRs are of the form cs
i = ei(γi)s−1 for all i and s, where γi is unknown

and ei = c1
i . Suppose we have observed ni,s instances of ad i at slot s with a fixed set of broadcasted CTR

estimates. Let ĉs
i be our new estimate of CTR, defined as:

ĉs
i =

(γ̂i)s−si

ni,si

ni,si∑
j=1

zi,si,j

where

γ̂i =
(1/ni,si+1)

∑ni,si+1

j=1 zi,si+1,j

(1/ni,si)
∑ni,si

j=1 zi,si,j

.

Then for any δ ∈ (0, 1), with probability 1− δ, for all advertisers i and slots s,

|ĉs
i − cs

i | ≤
(
s(s + 1) + s2

i + 1
)√ ln(4N/δ)

ni
+

(s(s + 1) + s2
i ) ln(4N/δ)

ĉsi
i ni

,

where ni = min{ni,si
, ni,si+1}.

The proof is somewhat more involved than the proofs of the analogous Theorems 3 and 8, and appears
in Appendix F.

9 Dealing with Continuous Context Information

A keyword entered by a user is just one of many characteristics of the broad context in which advertisements
are displayed. In general, the CTR of an ad could depend heavily on other contextual information, such as
the searcher’s gender or location or the time of day [6, 14]. Our approach is directly applicable in settings in
which the user may submit separate bids for each context [5]. However, it is not clear whether these results
apply in general when the context contains features with very large or even continuous domains, or when
bids cannot be conditioned on context. Since the presence of such features is quite common, we now briefly
explain how parts of our analysis can be generalized to this setting.

For the remainder of the discussion, we will focus on the scenario in which the subspace of contextual
features is continuous, and assume that advertisers are not able to condition their bids on context. We denote
the specific realized context by x and let X be the set of all possible contexts that can arise. We assume that
the only effect that a particular context x has is on the click-through rates and, consequently, make these
functions of context for all slots and players. Thus, cs

i (x) now denotes the click-through rate of player i in
slot s when context is realized to x. As before, we assume that for each player i for each x, cs

i (x) > ct
i(x)

whenever 1 ≤ s < t ≤ K, and define cs
i (x) = 0 for s > K. For the moment, we do not commit to any specific

ranking policy that the search engine will follow, but note rather that the effect of the ranking policy will be
localized to the expected CTRs and prices that the bidders will actually face. Given the particular ranking
of advertisers, an advertiser i will pay some price, ps

i (x) for appearing in (or switching to) slot s, and the
expected price (with respect to the distribution over context) of bidder i induced by the ranking policy is
denoted by pi(x, b).

Let b denote the entire profile of advertiser bids and b−i the profile of bids of all players other than i.
The expected utility of the advertiser i can then be written as

Ui(b) = Ex∼D[ui(x, b)] = Ex∼D[ci(x, b)(vi − pi(x, b))]
= viEx∼D[ci(x, b)]− Ex∼D[ci(x, b)pi(x, b)],
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where D is the distribution of context, ci(x, b) is the CTR of player i under context x given the ranking
induced by wi(x) and the configuration of all bids b, and, similarly, pi(x, b) is the price per click paid by i
under x given bids b and the induced ranking.

To guide exploration in the setting with context, we introduce the exploration function, r1(x), which is
the probability that the bidder in slot 1 will be swapped down, analogous to the scheme we proposed above.
To guide the exploration parameters of the remaining slots, we can use the fixed multipliers αs exactly in the
same manner as we have done until now: that is, we let rs(x) = αsr1(x). Thus, we have only one parameter
to control throughout exploration, albeit this “parameter” can now be a function of context. As before, we
use c

′s
i (x) to denote the effective CTR during exploration, which can be expressed as

c
′s
i (x) = (1− rs−k(x)− rs(x))cs

i (x) + rs−k(x)cs−k
i + rs(x)cs+k

i .

It is easy to see that context changes nothing in terms of maintaining equilibria during exploration: our
scheme above can be applied directly.5 What it complicates is the analysis of bounds on the incentives to
deviate of omniscient advertisers as well as the analysis of revenue loss due to exploration. We now address
these questions to a limited degree.

9.1 Bound on Incentives of “Omniscient” Advertisers

First, we present a bound on the incentives that advertisers may have to deviate if they know their CTRs
exactly. Fix b−i (e.g., to equilibrium b∗−i) and suppose that the bidders were in equilibrium before exploration.

Theorem 11. Suppose |Ex∼D[ĉs
i (x)] − Ex∼D[cs

i (x)]| ≤ ε for all i, s. Furthermore, suppose that there is
p̄ < ∞ such that Ex∼D[pi(x, b)] ≤ p̄ for all bi ∈ R and the players are omniscient. Then any player will gain
at most 4r̄ᾱ(viEx∼D[ĉ1

i (x)] + p̄ + ε) by deviating from a pre-exploration equilibrium, where r̄ = supx∈X r1(x)
and ᾱ = maxs αs.

The proof of this theorem can be found in Appendix G. To gain some intuition about the bound, note that
viEx∼D[ĉ1

i (x)] is the expected value that advertiser would get by appearing in the first slot, providing the
strongest incentive for advertisers to deviate. The other reason for advertisers to deviate is to reduce the
payments; hence, the payment upper bound, p̄, in the expression. Finally, the more accurate the advertisers’
information about CTRs (as quantified by ε in the expression), the less effective our scheme of maintaining
equilibria will be.

As we can see, the conditions in Theorem 11 are very strong. A natural question then arises: Are there
reasonable settings in which the bound would be of value? In the next section, we demonstrate that under
relatively mild assumptions, the key condition that Ex∼D[pi(x, b)] ≤ p̄ is satisfied in generalized second-price
auctions under the ranking rules of the kind we considered throughout this paper.

Weighted Ranking Rules in Generalized Second-Price Auctions Suppose that for any context x ∈ X
the bidders are ranked by the product of their weight, wi(x), and bid bi. If the bidder i is ranked in slot s,
then the generalized second-price auction rules will charge the price of

pi(x, b) =
bs−1ws−1(x)

wi(x)
.

We are interested in determining whether the expectation of pi(x, b) is finite for every bidder. That there
is indeed such an upper bound should be rather intuitive: as long as pi(x, b) attains a maximum on the
context domain X, this maximum can serve as the desired upper bound. A set of sufficient conditions for
the existence of this upper bound is the subject of the following theorem.

Theorem 12. Suppose that the following conditions are satisfied:
5 One qualification that must be added is that it is as yet unknown whether an equilibrium of a generalized second-

price auction always exists in the continuous context setting if bids cannot be conditioned on context.
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1. wi(x) are continuous on X for every advertiser i,

2. wi(x) > 0 for all x ∈ X and for every i,

3. X is compact.

Furthermore, suppose that b−i is fixed. Then there exists p̄ < ∞ such that Ex[pi(x, b)] ≤ p̄ for all bi and for
every advertiser i.

Proof. To begin, observe that

pi(x, b) =
bs−1ws−1(x)

wi(x)
≤ maxt6=i btwt(x)

wi(x)
≤ max

t6=i
bt

maxt6=i wt(x)
wi(x)

.

Consequently,

Ex[pi(x, b)] ≤ max
t6=i

bt

[
maxt6=i wt(x)

wi(x)

]
.

Since wt(x) is continuous for all t, so is wmax(x) = maxt6=i wt(x). Furthermore, since wi(x) > 0 for all
x ∈ X, the ratio wratio(x) = wmax(x)/wi(x) is also continuous on X. Now, since X is compact and wratio(x)
is continuous on X, there exists W = maxx∈X wratio(x) < ∞ by the Weierstrass theorem. Thus, we can
bound the expected payment of bidder i:

Ex[pi(x, b)] ≤ max
t6=i

btEx[W ] = W max
t6=i

bt.

By setting p̄ = W maxt6=i bt and observing that it does not depend on bi, we obtain the desired result. ut

9.2 Bound on Expected Revenue Loss Due to Exploration

A final question we address in the continuous context setting is the bound on how much revenue will be lost by
the search engine while the exploration is taking place. For this bound, we assume as above that the bidders
maintain their equilibrium bids b∗ during exploration. If not, revenue loss can be quite unpredictable, since
it is unclear in what ways the bidders will change their bids once out of equilibrium (and a new equilibrium
adjustment process, even if convergent, may be quite long).

Recall that N is the total number of advertisers bidding on the keyword.

Theorem 13. Suppose that the players maintain their equilibrium bids b∗ during exploration. Then revenue
loss due to exploration is bounded by

2r̄ᾱ

N∑
i=1

Ex∼D[pi(x, b∗)] ,

where r̄ = maxx∈X r1(x) and ᾱ = maxs αs.

14



Proof. Let φ(s)(x, b∗) denote the player that receives slot s when context is x and let us partition the context
space as X = Xs

1 ∪ · · · ∪Xs
N , where Xs

i is the set of realizations of x such that advertiser i gets slot s. Then

∆Rev =
K∑

s=1

Ex

[
ps

φ(s)(x,b∗)(x)(cs
φ(s)(x,b∗)(x)− c

′s
φ(s)(x,b∗)(x))

]
=

K∑
s=1

Ex

[
ps

φ(s)(x,b∗)(x)rs(x)(cs
φ(s)(x,b∗)(x)− cs+k

φ(s)(x,b∗)(x))

−rs−k(x)(cs−k
φ(s)(x,b∗)(x)− cs

φ(s)(x,b∗)(x))
]

≤
K∑

s=1

Ex

[
ps

φ(s)(x,b∗)(x)(rs(x)cs
φ(s)(x,b∗)(x) + rs−k(x)cs

φ(s)(x,b∗)(x))
]

≤ 2r̄ᾱ

K∑
s=1

Ex

[
ps

φ(s)(x,b∗)(x)cs
φ(s)(x,b∗)(x)

]
≤ 2r̄ᾱ

K∑
s=1

Ex

[
ps

φ(s)(x,b∗)(x)
]

= 2r̄ᾱ

K∑
s=1

N∑
i=1

∫
Xs

i

ps
i (x)dF (x) = 2r̄ᾱ

N∑
i=1

K∑
s=1

∫
Xs

i

ps
i (x)dF (x)

= 2r̄ᾱ

N∑
i=1

Ex[pi(x, b∗)].

The third line above yields an upper bound by simply removing the negative terms from the expression. The
fourth uses the fact that r̄ᾱ is the upper bound on the exploration probability. The fifth step uses the fact
that CTR is just a probability of a click and is therefore at most one. ut

10 Conclusion

We introduced an exploration scheme that allows search engines to learn click-through rates for advertise-
ments. We showed how, when possible, to set the exploration parameters in order to eliminate the incentives
for advertisers to deviate from a pre-exploration symmetric Nash equilibrium. In situations in which we
cannot entirely eliminate incentives to change bids, we can make the gain for changing bids small enough to
ensure that bid manipulation is hardly worth advertisers’ efforts. Finally, we derived a bound on worst-case
expected per-impression revenue loss due to exploration. Since this loss is zero in the limit of no exploration,
we can set exploration parameters in order to make it arbitrarily small, while still ensuring that we eventually
learn click-through rates.

The analysis in this paper leaves open a number of interesting questions. For example, we do not address
methods of setting the k-swap parameters in order to optimize various trade-offs between revenue loss and
information gain. Additionally, the analysis of the continuous-context setting presented in Section 9 is far
from complete. As it is becoming more and more clear that contextual information can significantly effect
click-through rate, a complete analysis of exploration in this setting would be of great value.

Acknowledgments

The authors are grateful to Yiling Chen and Alexander Strehl for insightful comments on early drafts of this
paper, and to David Pennock for useful discussions.

15



References

1. Tilman Börgers, Ingemar Cox, Martin Pesendorfer, and Vaclav Petricek. Equilibrium bids in auctions of sponsored
links: theory and evidence. Technical report, University of Michigan, 2007.

2. Tian-Ming Bu, Xiaotie Deng, and Qi Qi. Forward looking Nash equilibrium for keyword auction. Information
Processing Letters, 105(2):41–46, 2008.

3. Matthew Cary, Aparna Das, Ben Edelman, Ioannis Giotis, Kurtis Heimerl, Anna R. Karlin, Claire Mathieu, and
Michael Schwarz. Greedy bidding strategies for keyword auctions. In Eighth ACM Conference on Electronic
Commerce, 2007.

4. Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized second
price auction: Selling billions of dollars worth of keywords. American Economic Review, 9(1):242–259, March
2007.

5. Eyal Even-Dar, Michael Kearns, and Jennifer Wortman. Sponsored search with contexts. In the 3rd International
Workshop on Internet and Network Economics, 2007.

6. Arpita Ghosh, Hamid Nazerzadeh, and Mukund Sundararajan. Computing optimal bundles for sponsored search.
In the 3rd International Workshop on Internet and Network Economics, 2007.

7. Rica Gonen and Elan Pavlov. An incentive-compatible multi-armed bandit mechanism. In the 26th Annual ACM
Symposium on Principles of Distributed Computing, 2007.

8. James Heckman. Sample selection bias as a specification error. Econometrica, 47:153–161, 1979.

9. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

10. Sebastien Lahaie. An analysis of alternative slot auction designs for sponsored search. In ACM Conference on
Electronic Commerce, 2006.

11. Sebastien Lahaie and David M. Pennock. Revenue analysis of a family of ranking rules for keyword auctions. In
ACM Conference on Electronic Commerce, 2007.

12. Li Liang and Qi Qi. Cooperative or vindictive: Bidding strategies in sponsored search auction. In the 3rd
International Workshop on Internet and Network Economics, 2007.

13. Sandeep Pandey and Christopher Olston. Handling advertisements of unknown quality in search advertising. In
Advances in Neural Information and Processing Systems 19, pages 1065–1072, 2007.

14. David Parkes and Tuomas Sandholm. Optimize-and-dispatch architecture for expressive ad auctions. Paper
presented at the First Workshop on Sponsored Search Auctions, Vancouver, Canada, June, 2005.

15. Hal Varian. Position auctions. International Journal of Industrial Organization, 25(6):1163–1178, 2007.

16. Yevgeniy Vorobeychik and Daniel Reeves. Equilibrium analysis of dynamic bidding in sponsored search auctions.
International Journal of Electronic Business, 6(2):172–193, 2008.

17. Jennifer Wortman, Yevgeniy Vorobeychik, Lihong Li, and John Langford. Maintaining equilibria during explo-
ration in sponsored search auctions. In the 3rd International Workshop on Internet and Network Economics,
2007.

Appendix

A Proof of Theorem 1

Define modified valuations of all bidders to be v′i = wivi and the corresponding bids of all players to be
b′i = wibi. With these modified bids and valuations, there is a symmetric Nash equilibrium in the resulting
sponsored search auction game, which, by definition, has the property that

c̃i
i(v

′
i − p′i) ≥ c̃s

i (v
′
i − p′s) ∀s 6= i,

where p′s = b′s+1. To reverse our initial transformation, divide both sides by wi to obtain

c̃i
i(vi − pi

i) ≥ c̃s
i (vi − ps

i ) ∀s 6= i,

which is the definition of SNE in our context.
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B Proof of Theorem 2

In order to prove Theorem 2, we must make sure that when the conditions stated in the theorem hold,
no advertiser is happier changing his bid and moving to a different position in the ranking. We break this
proof into multiple parts, summarized by the following series of lemmas. Combining the pieces yields a set
of conditions that show that no advertiser has incentive to deviate when exploration is added.

The first condition,

r1 ≤ min
2≤i≤K

1
αi + αi−k

,

ensures that ri + ri−k ≤ 1 for all i. The other two conditions are the subject of Lemmas 1 and 2 below.

Incentives of 1, · · · , K to Switch to Alternate Ranks in 1, · · · , K

We first verify that players i ∈ {1, · · · ,K} do not want to switch to alternate ranks j ∈ {1, · · · ,K}. The
following lemma gives conditions to guarantee this. Recall that we define c0

1 = 0 and α0 = 0.

Lemma 1. Assume that the condition

(vi − pi
i)ĉ

i
i > (vi − pj

i )ĉ
j
i ,

holds for every i, j ∈ {1, · · · ,K} in equilibrium. Suppose that prior to exploration advertisers’ bids are in a
symmetric Nash equilibrium. Then there is r1 > 0 such that players in slots 1, · · · ,K do not wish to switch
to other slots in 1, · · · ,K as long as

r1 ≤ min
1≤i,j≤K;Ji,j>0

1
Ji,j

(
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

)
where Ji,j is as defined in Equation 1.

Proof. To ensure that players in slots 1, · · · ,K do not have incentive to switch to other slots within this
range, we need the condition(

(1− ri−k − ri)ĉi
i + ri−k ĉi−k

i + riĉ
i+k
i

)
(vi − pi

i)

≥
(
(1− rj−k − rj)ĉ

j
i + rj−k ĉj−k

i + rj ĉ
j+k
i

)
(vi − pj

i )

to be satisfied for any i, j ∈ {1, · · · ,K}. Using the definition ri = αir1 and rearranging terms, we obtain the
equivalent condition

r1Ji,j ≤ (vi − pi
i)ĉ

i
i − (vi − pj

i )ĉ
j
i . (3)

Under our assumption, the right hand side of Equation 3 is always strictly positive. When Ji,j ≤ 0, any
r1 ∈ [0, 1] satisfies the condition we need. When Ji,j > 0, we need to guarantee

r1 ≤
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

Ji,j
.

Therefore, we must have for all i, j ∈ {1, · · · ,K} such that Ji,j > 0

r1 ≤
1

Ji,j

(
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

)
.

ut
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Incentive of Players 1, . . . , K to Move to Ranks K + 1, . . . , N

The previous lemma showed that the K highest ranked advertisers do not have incentive to deviate to
another rank between 1 and K when exploration is added under certain conditions. We now consider the
conditions that guarantee that these advertisers do not want to move to a rank greater than K.

Lemma 2. If the players are in a symmetric Nash equilibrium with vi > pi
i whenever Zi > 0 before explo-

ration and if

r1 ≤ min
1≤i≤K;Zi>0

1
Zi

(
ĉi
i(vi − pi

i)
)

where Zi is defined as in Equation 2, then the K highest ranking advertisers have no incentive to switch to
any slot below K for generic valuations and relevances. Furthermore, it is always possible to set r1 in such
a way such that the above holds and r1 > 0.

Proof. We show that any player i ∈ {1, · · · ,K} has no incentive to deviate to any slot j ∈ {K + 1, · · · , N}.
For any j ∈ {K + 1, · · · , N}, in order to guarantee that player i does not want to switch to slot j, the
following condition must hold:(

(1− ri−k − ri)ĉi
i + ri−k ĉi−k

i + riĉ
i+k
i

)
(vi − pi

i) ≥ rKqj ĉ
K−k+1
i vi.

As we require that this condition hold simultaneously for all j, it becomes equivalent to

r1Zi ≤ ĉi
i(vi − pi

i) (4)

Since vi − pi
i > 0, the right hand side of Equation 4 is strictly positive. When Zi ≤ 0, the constraint is

satisfied trivially. Thus we need only that when Zi > 0,

r1 ≤
1
Zi

(
ĉi
i(vi − pi

i)
)

ut

Incentives of Players K + 1, . . . , N to Move to Slots 1, . . . , K

Lemma 3. No advertiser in slots K + 1, · · · , N prefers to deviate and move to any slot in 1, · · · ,K when
exploration is added.

Proof. Since the set of advertisers K + 1, · · · , N received no clicks in the pre-exploration symmetric Nash
equilibrium, we know that it must be the case that for all i and j such that K + 1 ≤ i ≤ N and 1 ≤ j ≤ K,

vi − pj
i ≤ 0.

In other words, these advertisers have a value per click that is lower than the equilibrium price per click of
any slot between 1 and K. When exploration is added, the CTRs of these slots might change, but the price
is still higher than these advertisers’ values. Thus the advertisers still are not interested in these slots when
exploration is added. ut

Note that we have not addressed the incentives for players K + 1, · · · , N to deviate to other ranks K + 1
or higher. This case will depend on the way in which the distribution qi is chosen. There are many possible
choices for which players K + 1, · · · , N will not have incentive to swap ranks among themselves.
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C Proof of Player 1’s Strict Preference at SNE

The following theorem is briefly mentioned in Section 8.1. Here we state the result formally and provide a
very simple proof.

Theorem 14. Suppose that the players are playing a minimum symmetric Nash equilibrium. Then for
generic valuations and relevances (v1 − p1

1)c1 > (v1 − pj
1)cj .

Proof.

c1w2b2 − cjwj+1bj+1 =
K∑

t=1

(ct − ct+1)wt+1vt+1 −
K∑

t=j

(ct − ct+1)wt+1vt+1

=
j−1∑
t=1

(ct − ct+1)wt+1vt+1

≤ w2v2

j−1∑
t=1

(ct − ct+1) = w2v2(c1 − cj).

For generic valuations and relevances, w2v2(c1−cs) < w1v1(c1−cs) and, consequently, c1w2b2−cjwj+1bj+1 <
w1v1c1 − w1v1cj for every 2 ≤ j ≤ K. Rewriting, we get c1(w1v1 − w2b2) > cj(w1v1 − wj+1bj+1) and we
recover the desired strict inequality. ut

D Proof of Theorem 7

To begin, note that by defining αi to be

αi =
i∏

j=2

(
cj−1 − cj

cj − cj+1

)
,

we obtain the following recursive expression for ri:

ri = ri−1

(
ci−1 − ci

ci − ck+1

)
(5)

for all i ∈ {2, · · · ,K}. This setting of probabilities is convenient because the CTRs of an ad in slots 2, · · · ,K
do not change when exploration is added if bids do not change, as shown in the following useful lemma.

Lemma 4. When ri are computed recursively by Equation 5, then c′i = ci for all i ∈ {2, · · · ,K}.

Proof. For any i ∈ {2, · · · ,K},

c′i = (1− ri−1 − ri)ci + ri−1ci−1 + rici+1

= ci + ri−1(ci−1 − ci)− ri(ci − ci+1)

= ci + ri−1(ci−1 − ci)− ri−1

(
ci−1 − ci

ci − ci+1

)
(ci − ci+1) = ci.

ut

The next lemma provides a simple and intuitive result for generic valuations and relevances.

Lemma 5. In a symmetric Nash equilibrium with wivi ≥ wi+1vi+1, wivi > wi+1bi+1 for 1 ≤ i ≤ K for
generic valuations and relevances.
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Proof. Suppose wivi ≤ wi+1bi+1 for some i ∈ {1, 2, · · · ,K}. For j > 1, the following upper bound on wjbj

holds in a symmetric Nash equilibrium (a simple extension of Varian [15, 11]):

wjbj ≤ wj−1vj−1(1− βj) + wj+1bj+1βj (6)

where βj = cj/cj−1 < 1. From the above bound with j = i + 1 and the assumption that wivi ≤ wi+1bi+1, it
follows that

wivi ≤ wivi(1− βi+1) + wi+2bi+2βi+1

and, therefore wivi ≤ wi+2bi+2. Applying the bound in Equation 6 again with j = i + 2, we see that

wi+2bi+2 ≤ wi+1vi+1(1− βi+2) + wi+3bi+3βi+2 .

When CTRs are factorable, wivi ≥ wi+1vi+1 [1, 4, 15]. Since for generic values and relevances, wi+1vi+1 <
wivi, we have wiviβi+2 < wi+3bi+3βi+2 and, consequently, wivi < wi+3bi+3 ≤ wi+1bi+1. Thus, wivi <
wi+1bi+1 and

vi −
wi+1bi+1

wi
< 0 .

But this is a contradiction, since player i would then want to switch to slot K +1, whereas we assumed that
all bidders were in a Nash equilibrium. ut
Thus, vi > pi

i for all players i when CTRs are factorable.
Given Lemma 4, note that if none of the bidders in slots 2, · · · , N wanted to move up to slot 1 in

equilibrium before exploration, they have even less incentive to do so once exploration is added since the
effective CTR for slot 1 is now lower and the effective CTR of their own slots is the same by our definition
of αi. Furthermore, none of the bidders in slots 2, · · · , N want to switch to alternate slots in 2, · · · ,K since
the effective CTRs are now the same for all of these slots and do not depend on the bidder’s identity due
to the factorization assumption. Consequently, we need only examine whether or not the top bidder wants
to move down, or whether any bidder might like to move into a slot below K. The analysis of these cases is
directly analogous to the analysis in the proof of Theorem 2, and the sufficient conditions on r1 are derived
in the same manner.

E Proof of Theorem 9

This proof is very similar to the proofs of Theorem 2 and 7. In fact, the incentives for player 1 and players
K, K + 1, · · · , N can be analyzed exactly as in the proof of Theorem 2, and the conditions on r1 follow from
this analysis as before. Thus here we focus only on the incentives of players 2, · · · ,K − 1.

Incentives of Players 2, . . . , K − 1 to Move to Slots 1, . . . , K

Lemma 6. In the constant ratio setting, when ri = r1 for i ∈ 2, · · · ,K, players 2, . . . ,K − 1 do not have
incentive to deviate to other slots 1, . . . ,K during adjacent-ad swapping exploration for any r1.

Proof. To ensure that players in slots 2, · · · ,K − 1 do not have incentive to switch to other slots within this
range, we need the condition(

(1− ri−1 − ri)ĉi
i + ri−1ĉ

i−1
i + riĉ

i+1
i

)
(vi − pi

i)

≥
(
(1− rj−1 − rj)ĉ

j
i + rj−1ĉ

j−1
i + rj ĉ

j+1
i

)
(vi − pj

i )

to be satisfied for any i, j ∈ {1, · · · ,K}. Setting ri = r1 for all i and plugging in ĉs−1
i = ĉs

i /γ̂i and ĉs+1
i = ĉs

i γ̂i,
we get

(1− rs−1 − rs)ĉs
i + rs−1ĉ

s−1
i + rsĉ

s+1
i = ĉs

i +
(

γ̂i − 2 +
1
γ̂i

)
r1ĉ

s
i

=
(

1 +
r1(γ̂i − 1)2

γ̂i

)
ĉs
i
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for every player i and for all s = 2, . . . ,K − 1. Thus, the condition that needs to be satisfied is

ĉi
i

(
1 +

r1(γ̂i − 1)2

γ̂i

)
(vi − pi

i) ≥ ĉj
i

(
1 +

r1(γ̂i − 1)2

γ̂i

)
(vi − pj

i )

which is equivalent to the symmetric equilibrium condition before exploration and thus holds by assumption.
For deviation to slot 1, note that

1 +
r1(γ̂i − 1)2

γ̂i
≥ 1,

and thus ĉ
′i
i ≥ ĉi

i for every i = 2, . . . ,K−1, whereas ĉ
′1
1 ≤ ĉ1

1. Consequently, if deviations to 1 were unprofitable
prior to exploration, they are certainly still unprofitable with exploration. Finally, for deviations to slot K,
note that the effective CTR for slot K is ĉK

i (1 + r1(γ̂i − 2)) ≤ ĉK
i (1 + r1(γ̂i + 1/γ̂i − 2)). Thus,

ĉi
i

(
1 +

r1(γ̂i − 1)2

γ̂i

)
(vi − pi

i) ≥ ĉK
i

(
1 +

r1(γ̂i − 1)2

γ̂i

)
(vi − pj

i )

≥ ĉK
i (1 + r1(γ̂i − 2)) (vi − pj

i ) .

ut

Incentives of Players 2, . . . , K − 1 to Move to Ranks K + 1, . . . , N

Lemma 7. In the constant ratio setting, when ri = r1 for i ∈ 2, · · · ,K, players in slots 2, . . . ,K − 1 have
no incentive to move to ranks K + 1, . . . , N during adjacent-ad swapping exploration for any r1.

Proof. Since αK = min{ (γ̂i−1)2

qmax
, 1}, we have that αKqmax ≤ (γ̂i − 1)2 or (γ̂i−1)2

γ̂i
≥ αKqmax( 1

γ̂i
)K−i.

In order to eliminate incentives to deviate to slots K + 1, . . . , N , we need to satisfy(
1 +

r1(γ̂i − 1)2

γ̂i

)
(vi − pi

i) ≥ r1αKqmax(
1
γ̂i

)K−ivi,

or, alternatively,

(vi − pi
i) ≥ r1

(
vi

(
αKqmax

(
1
γ̂i

)K−i

− (γ̂i − 1)2

γ̂i

)
− pi

i(γ̂i − 1)2

γ̂i

)
.

But since (γ̂i − 1)2/γ̂i ≥ αKqmax(1/γ̂i)K−i, we know that αKqmax(1/γ̂i)K−i − (γ̂i − 1)2/γ̂i ≤ 0, and the
right-hand side is at most 0. Since the left-hand side is at least 0 (otherwise our assumption of equilibrium
prior to exploration does not hold), any r1 satisfies the condition. ut

F Proof of Theorem 10

The proof is divided into a sequence of lemmas. The first one, stated below, follows from a direct application
of Hoeffding’s inequality and the union bound. Recall that si is a chosen slot to explore for ad i.

Lemma 8. For each i, with probability at least 1− δ, we have

|ĉsi
i − csi

i | ≤ ∆i,
∣∣ĉsi+1

i − csi+1
i

∣∣ ≤ ∆i, (7)

where

∆i = max

{√
ln(4/δ)
2ni,si

,

√
ln(4/δ)
2ni,si+1

}
.
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Lemma 9. If Equation 7 holds, then for each i we have

|γ̂s
i − γs

i | ≤
s(s + 1)∆i

ĉsi
i

.

Proof. First we can see that for any i,

|γ̂i − γi| =
∣∣∣∣ ĉsi+1

i

ĉsi
i

− csi+1
i

csi
i

∣∣∣∣ =
∣∣ĉsi+1

i csi
i − ĉsi

i csi+1
i

∣∣
ĉsi
i csi

i

=

∣∣(ĉsi+1
i − csi+1

i )csi
i − (ĉsi

i − csi
i )csi+1

i

∣∣
ĉsi
i csi

i

≤
∣∣ĉsi+1

i − csi+1
i

∣∣ csi
i + |ĉsi

i − csi
i | c

si+1
i

ĉsi
i csi

i

≤ ∆i(csi
i + csi+1

i )
ĉsi
i csi

i

≤ 2∆i

ĉsi
i

.

Now, by Taylor’s theorem, we have

(γ̂i)s = (γi)s + s(γ̂i − γi)
(
(γ̂i)s−1 − (γi)s−1

)
+

1
2
s(s− 1)(γ̂i − γi)2(γ̃)s−2,

for some γ̃ between γi and γ̂i. Since
∣∣(γ̂i)s−1 − (γi)s−1

∣∣ ≤ 1 and 0 ≤ γi, γ̂i, γ̃ ≤ 1,6 we have

|(γ̂i)s − (γi)s| =
∣∣∣∣s(γ̂i − γi)

(
(γ̂i)s−1 − (γi)s−1

)
+

1
2
s(s− 1)(γ̂i − γi)2(γ̃)s−2

∣∣∣∣
≤ |γ̂i − γi|

(
s +

s(s− 1)
2

)
≤ s(s + 1) |γ̂i − γi|

2
≤ s(s + 1)∆i

ĉsi
i

.

ut

With these lemmas, we can prove Theorem 10. For each i and s,

|ĉs
i − cs

i | =
∣∣(γ̂i)s−si ĉsi

i − (γi)s−sicsi
i

∣∣
=
∣∣((γ̂i)s−si − (γi)s−si

)
ĉsi
i + (γi)s−si (ĉsi

i − csi
i )
∣∣

≤
∣∣(γ̂i)s−si − (γi)s−si

∣∣ ĉsi
i + (γi)s−si |ĉsi

i − csi
i |

≤
(
(s− si)2 + (s− si)

)
∆i + (γi)s−si∆i

≤ ∆i

(
s2 + s + s2

i + (γi)s−si
)
.

By the previous lemma,

(γi)s−si ≤ (γ̂i)s−si +
((s− si)2 + (s− si))∆i

ĉsi
i

≤ (γ̂i)s−si +
s2 + s + s2

i ∆i

ĉsi
i

,

and we obtain

|ĉs
i − cs

i | ≤ ∆i

(
s2 + s + s2

i + (γ̂i)s−si +
(s2 + s + s2

i )∆i

ĉsi
i

)
.

A simple application of the union bound results in Theorem 10 immediately.

6 If γ̂i happens to be greater than 1 (which is possible), then we can safely set it to 1. This change can only make
the estimate more accurate, since we know γi ∈ (0, 1].
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G Proof of Theorem 11

Theorem 11 can be obtained by applying Lemma 12 below followed by Lemma 11.

Lemma 10. Let Y be some subset of a Euclidean space and let f : Y → R and g : Y → R be two functions.
Then, assuming all the maxima below exist,

|max
y∈Y

f(y)−max
y∈Y

g(y)| ≤ max
y∈Y

|f(y)− g(y)|.

Proof. Observe that

|max
y∈Y

f(y)−max
y∈Y

g(y)| =
{

maxy f(y)−maxy g(y) if maxy f(y) ≥ maxy g(y),
maxy g(y)−maxy f(y) if maxy g(y) ≥ maxy f(y).

In the first case,
max
y∈Y

f(y)−max
y∈Y

g(y) ≤ max
y∈Y

(f(y)− g(y)) ≤ max
y∈Y

|f(y)− g(y)|.

Similarly, in the second case,

max
y∈Y

g(y)−max
y∈Y

f(y) ≤ max
y∈Y

(g(y)− f(y)) ≤ max
y∈Y

|g(y)− f(y)| = max
y∈Y

|f(y)− g(y)|.

ut

Lemma 11. Let Y be some subset of a Euclidean space and let f : Y → R and g : Y → R be two functions
such that ‖f − g‖∞ ≤ γ. Suppose that argmaxy∈Y f(y) and argmaxy∈Y g(y) exist. Then

|g(argmax
y∈Y

g(y))− g(argmax
y∈Y

f(y))| ≤ 2γ .

Proof. ∣∣∣∣g(argmax
y∈Y

g(y))− g(argmax
y∈Y

f(y))
∣∣∣∣

=
∣∣∣∣g(argmax

y∈Y
g(y))− f(argmax

y∈Y
f(y)) + f(argmax

y∈Y
f(y))− g(argmax

y∈Y
f(y))

∣∣∣∣
≤
∣∣∣∣f(argmax

y∈Y
f(y))− g(argmax

y∈Y
f(y))

∣∣∣∣+ ∣∣∣∣g(argmax
y∈Y

g(y))− f(argmax
y∈Y

f(y))
∣∣∣∣

≤ γ + |g(argmax
y∈Y

g(y))− f(argmax
y∈Y

f(y))|

≤ γ + max
y∈Y

|g(y)− f(y)| (8)

≤ γ + ‖f − g‖∞ ≤ 2γ,

where Equation 8 follows from Lemma 10. ut

Fix b−i (e.g., to equilibrium b∗−i). To simplify notation, we remove b−i from expressions below and leave
only the response of bidder i, bi.

Now, recall that x denotes context and X the space of all possible context realizations. During exploration,
the prices pi(x, bi) will remain as before; thus, only the effective click-through rates will change. We let c′i(x, bi)
be the effective CTR of player i during exploration and let Ĉs

i = Ex∼D[ĉs
i (x)] and Cs

i = Ex∼D[cs
i (x)]. Let

r̄ = maxx∈X r1(x) and ᾱ = maxs αs. Finally, let c̄ = supx,a,s,bi
cs
i (x, bi) ≤ 1, since CTR is just the probability

of a click and therefore cannot exceed 1. We define the expected utility of a player i during exploration as

U ′
i(b) = Ex∼D[c′i(x, bi)(vi − pi(x, bi))] (9)
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Lemma 12. Suppose for player i, |Ĉs
i − Cs

i | ≤ ε for all s and suppose that there is p̄ < ∞ such that
E[pi(x, bi)] ≤ p̄ for all bi ∈ R. Then ‖Ui − U ′

i‖∞ ≤ 2r̄ᾱ(viĈ
1
i + p̄ + ε) uniformly on bi ∈ R.

Proof. We will demonstrate the uniform bound by bounding the greatest utility loss and gain at any point
b ∈ R. Take advertiser i, some b ∈ R and let X = X1 ∪ · · · ∪XK be a partition of X into subsets such that
for all x ∈ Xs player i gets slot s. Then

Ex[ci(x, bi)pi(x, bi)] =
K∑

s=1

∫
Xs

cs
i (x)ps

i (x)dF (x)

and

Ex[c′i(x, bi)pi(x, bi)] =
K∑

s=1

∫
Xs

c
′s
i (x)ps

i (x)dF (x)

=
K∑

s=1

∫
Xs

(
([1− rs−k(x)− rs(x)]cs

i (x)

+rs−k(x)cs−k
i (x) + rs(x)cs+k

i (x))ps
i (x)

)
dF (x)

= Ex[ci(x, bi)pi(x, bi)] +
K∑

s=1

∫
Xs

(
rs−k(x)(cs−k

i (x)− cs
i (x))ps

i (x)
)
dF (x)

−
K∑

s=1

∫
Xs

(
rs(x)(cs

i (x)− cs+k
i (x))ps

i (x)
)
dF (x)

≤ Ex[ci(x, bi)pi(x, bi)] + r̄ᾱ

K∑
s=1

∫
Xs

cs−k
i (x)ps

i (x)dF (x)

≤ Ex[ci(x, bi)pi(x, bi)] + r̄ᾱE[pi(x, bi)]
≤ Ex[ci(x, bi)pi(x, bi)] + r̄ᾱp̄

≤ Ex[ci(x, bi)pi(x, bi)] + 2r̄ᾱp̄.

Alternatively,

Ex[c′i(x, bi)pi(x, bi)] =
K∑

s=1

∫
Xs

c
′s
i (x)ps

i (x)dF (x)

=
K∑

s=1

∫
Xs

(
([1− rs−k(x)− rs(x)]cs

i (x)

+rs−k(x)cs−k
i (x, bi) + rs(x)cs+k

i (x))pi(x)
)
dF (x)

= Ex[ci(x, bi)pi(x, bi)] +
K∑

s=1

∫
Xs

(
rs−k(x)(cs−k

i (x)− cs
i (x, bi))ps

i (x)
)
dF (x)

−
K∑

s=1

∫
Xs

(
rs(x)(cs

i (x)− cs+k
i (x))ps

i (x)
)
dF (x)

≥ Ex[ci(x, bi)pi(x, bi)]− 2r̄ᾱ

K∑
s=1

∫
Xs

cs
i (x)ps

i (x)dF (x)

≥ Ex[ci(x, bi)pi(x, bi)]− 2r̄ᾱp̄.
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Similarly,
viEx[ci(x, bi)]− 2r̄ᾱE[c1

i (x)] ≤ viEx[c′i(x, bi)] ≤ viEx[ci(x, bi)] + 2r̄ᾱE[c1
i (x)].

Consequently,

Ui(b)− U ′
i(b) ≥ viEx[ci(x, bi)]− Ex[ci(x, bi)pi(x, bi)]− viEx[ci(x, bi)]− 2r̄ᾱc̄ + Ex[ci(x, bi)pi(x, bi)]− 2r̄ᾱc̄p̄

≥ −2r̄ᾱ(viE[c1
i (x)] + p̄)

and

Ui(b)− U ′
i(b) ≤ viEx[ci(x, bi)]− Ex[ci(x, bi)pi(x, bi)]− viEx[ci(x, bi)] + 2r̄ᾱc̄ + Ex[ci(x, bi)pi(x, bi)] + 2r̄ᾱc̄p̄

≤ 2r̄ᾱc̄(viE[c1
i (x)] + p̄).

Thus,
|Ui(b)− U ′

i(b)| ≤ 2r̄ᾱ(viE[c1
i (x)] + p̄) ≤ 2r̄ᾱ(viE[ĉ1

i (x)] + p̄ + ε)

Since this bound is independent of bi, it is uniform on bi ∈ R. ut

By Lemma 12, then, we have that

‖Ui − U ′
i‖∞ ≤ 2r̄ᾱ(viĈ

1
i + p̄ + ε).

We have assumed that the players’ bids are in equilibrium prior to exploration. Consequently, the bid bi of
advertiser i prior to exploration maximizes Ui. Let us denote by b′i the bid which accrues to i the maximum
utility under the new effective CTR. Then, the maximum benefit that i gains from deviating under the new
CTR is |U ′

i(b
′
i)− U ′

i(bi)|. By Lemma 11, we double the bound of Lemma 12 to make it the upper bound on
the maximal benefit to deviation for player i, keeping the bids of other advertisers constant:

|U ′
i(b

′
i)− U ′

i(bi)| ≤ 4r̄ᾱ(viĈ
1
i + p̄ + ε).

This yields the desired result.

25


