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Abstract

The Vickrey-Clarke-Groves (VCG) mechanism offers a general technique for
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an algorithm, which we illustrate using combinatorial auction data. Our sec-
ond result offers a simple sampling technique for amplifying the difficulty of
computing a utility-improving lie. Finally, we offer a simulation-based tech-
nique for obtaining tighter, albeit empirical, bounds on incentives to misre-
port preferences. An important consequence of our analysis is an argument
that using state-of-the-art algorithms for solving combinatorial allocation
problems essentially eliminates agent incentives to lie.
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1. Introduction

Mechanism design provides a useful practical paradigm for competitive
resource allocation when agent preferences are uncertain. Perhaps of greatest
practical significance has been the field of auction theory [9], and, in partic-
ular, the design of combinatorial auctions [2]. In a combinatorial auction,
bidders are allowed to submit bids on all subsets of a given set of items.3

The auctioneer must then solve the winner determination problem (WDP),
computing which subsets of the goods will be allocated to which bidders,
with the objective of maximizing allocative efficiency.

Historically, the focus of mechanism design has been on engineering the
incentives for participants to reveal their preferences truthfully, with compu-
tational aspects largely ignored. To this end, VCG has been advanced as one
of the central schemes [15]. Computer Scientists have observed, however, that
VCG coupled with approximate algorithms for WDP in combinatorial auc-
tions fails to incentivize truthful revelation of preferences in most reasonable
settings [17]. Since WDP is well known to be NP-Hard [12], and even hard
to approximate [18], using VCG in practical combinatorial auction settings
seems hopeless.

We argue that these hardness results may at times be unnecessarily pes-
simistic, and while the worst-case incentives to lie may exist in VCG-based
mechanisms, effective incentives to lie may be negligible if the approximation
algorithms used are very good in practice. Specifically, we present a series
of results, both theoretical and experimental, which allow the designer to
measure—and in some cases address—the severity of the incentive problem
with VCG-based mechanisms. First, we offer general techniques to empir-
ically assess incentive effects of specific algorithms based on average-case
bounds. For example, if an algorithm can solve the allocation problem ex-
actly in almost every instance, there are no incentives to deviate from truth-
fulness in the Bayes-Nash sense. We operationalize this bound in combinato-
rial auctions, illustrating how the use of a simulation-based model of bidder
valuation distribution allows the designer to obtain precise probabilistic con-
fidence bounds on agent incentives to lie. Our results provide some evidence
that, at least in the VCG-based combinatorial auction setting, incentives of
players to lie about their preferences are rather small. Furthermore, we show

3Items could be actual goods for sale, slots on a schedule, locations and times of banner
ads displayed on a website, etc.
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that the designer can use sampling to reduce the likelihood that any player
will compute an improving deviation. Significantly, this is a typical-case, and
not a worst-case result. Finally, we offer a simulation-based technique to
obtain relatively tight, albeit approximate, bounds on incentives of agents to
misreport their preference. We use this approach to offer some qualitative
evidence that the incentives to lie in some combinatorial auction settings
decrease with increasing problem size.

2. Related Work and Motivation

There has been considerable literature attempting to address the incen-
tives to misreport preferences that emerge when approximate allocation algo-
rithms are used together with the VCG price scheme, particularly in the con-
text of combinatorial auctions. Here we give several representative examples.
Sanghvi and Parkes [20] demonstrate that computing an improving devia-
tion in VCG-based combinatorial auctions is NP-Hard, although this worst-
case result is difficult to rely on in practice. Lavi and Swamy [10] present
a truthful (in expectation) mechanism when the approximation algorithm
bounds the integrality gap of LP relaxation, while Lehmann, O’Callaghan,
and Shoham [13] and Mu’alem and Nisan [16] obtain general truthful mech-
anisms for combinatorial auctions when bidders are “single-minded” (i.e.,
each has positive value for exactly one bundle of items). Dobzinski, Nisan,
and Shapira [5] present a framework for designing truthful approximation al-
gorithms, and demonstrate instances with an asymptotically optimal worst-
case bound for the general WDP. Nisan and Ronen [17] develop a mechanism
called second-chance, in which players are not capable of computing a bene-
ficial lie.

The extensive literature addressing the incentive problems of approximate
WDP implicitly suggests that such problems are critical. Field practition-
ers of combinatorial auctions, however, seem to rarely, if ever, have come
up against the worst-case complexity issues [4, 3]. Furthermore, the major-
ity of combinatorial auction problems that have been studied in simulation
can be solved very fast using modern algorithms [14, 18, 19], and, indeed,
the general-purpose CPLEX integer programming tool is usually very effec-
tive [19].

There thus appears to be a gap between theory, which views the incentive
problem of VCG-based mechanisms as severe, and practice, which ignores it
almost entirely. We believe that one important reason for this gap is that
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mechanisms that have been developed to be both truthful and to provide
suitable approximation guarantees tend to be somewhat complicated to im-
plement and difficult to communicate. Frequently, they randomize allocation,
something that is difficult to operationalize because of fairness considerations
(for example, Dobzinsky, Nisan, and Shapira [5] suggest withholding a ran-
dom sample of bidders from consideration, an idea which some bidders may
find disagreeable). Furthermore, worst-case guarantees provided tend to be
so poor as to be of little practical consolation. Another important reason is
that whereas literature to date has been motivated by the desire to prevent
the worst-case performance, state-of-the-art algorithms (e.g., CPLEX) solve
most realistic allocation problems (such as WDP) to optimality, and the
worst case is rarely encountered in practice. Consequently, one may expect
that in reality incentives to misreport preferences are often quite low. While
practitioners appear to grasp this, they have, to date, no principled means
to verify it. Our goal is to offer mechanism designers techniques to quantify
(and, sometimes, to reduce) the incentives of bidders to lie, while capturing
information about the distribution of the performance of their algorithm,
rather than merely its worst-case performance.

A downside to our approach is that it is no longer distribution-free.
Distribution-free mechanism design has clear advantages. First, we rarely
truly know the distribution of agent preferences in practice, and attempts
to glean information about it are likely to be gamed if the stakes are high
enough. We also prefer not to assume that agents have common knowledge
of such information either. Furthermore, economists have long been striving
to reduce the common knowledge requirements in mechanism design [23].
Ultimately, a distribution-free guarantee is certainly most satisfying, as it
relies on minimal assumptions. Many situations, however, to not lend them-
selves easily to simple, natural distribution-free mechanisms. Additionally,
at times information about the distribution is available in some form. For
example, combinatorial auctions are often run in high-stakes settings (such
as wireless spectrum auctions), where there is considerable public informa-
tion about the participants. Furthermore, a test suite has been developed for
combinatorial auctions precisely with the goal of generating realistic prob-
lem instances [14]. Finally, there has already been much experience running
large-scale combinatorial auctions, with state-of-the-art algorithms proving
thus far quite capable [3]. All of this suggests that there may be many auc-
tion settings where much distributional information is available, and which
therefore lend themselves well to the approaches we propose.
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3. Preliminaries

In our setting, each player i ∈ I submits to a central designer his utility
function, as indexed by his type ti ∈ Ti. Let O be the set of outcomes (e.g.,
feasible allocations), I be a set of n players, and let T = T1 × · · · × Tn be
the joint type set. Assume that O and Ti for all i ∈ I are non-empty and
compact. Let F (·) be a probability distribution over joint player types and
let ui(ti, o, pi) be player utility functions where o ∈ O typically depends on
joint player report t and pi is the payment received by the agent (which is
negative when the agent is paying the designer). While we may hope that all
players submit their types honestly, they may choose to lie, submitting some
t′i instead of ti, and these lies could, in general, be a function of true type ti.

We assume that agent utility functions are quasi-linear in payments pi,
that is ui(ti, o, pi) = vi(ti, o) + pi, where vi(ti, o) is the underlying value that
player i with type ti has for outcome o; we assume it to be continuous in
both arguments. A mechanism is a function that chooses an outcome o and
assigns the payments pi for all players i given a joint report of types t ∈ T .
Thus, we use o(t) and pi(t) to indicate such choices as made by some specified
mechanism.

A central aspect of mechanism design is the prediction of agent play for a
given choice of a mechanism. Typically the role of such predictions is played
by equilibrium concepts. We appeal to two such concepts below (defined with
respect to direct revelation mechanisms, that is, mechanisms which attempt
to truthfully elicit player preferences). Under a dominant strategy equilibrium
each player is (weakly) best off reporting his true type no matter what other
players do. Under a Bayes-Nash equilibrium, on the other hand, each player
maximizes his expected utility by reporting his true type ti, assuming that all
other players are honest. Both equilibrium concepts admit natural notions
of approximation: in an ε-dominant strategy equilibrium, a player can gain
no more than ε by deviating, no matter what the opponents do, whereas an
ε-Bayes-Nash equilibrium guarantees that the expected gain to any player
from deviation is at most ε, with expectation taken with respect to the joint
type distribution.

A useful measure of strategic stability is that of game-theoretic regret.
While in general this measure can be defined for any joint strategy profile,
we use it only to gauge the regret of truthful reporting. Hence, we use a
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simpler definition, with ε̃ = EF [ε(t)] = EF [maxi εi(ti)], where

εi(ti) = max
t′i∈Ti

EF [ui(ti, o(t
′
i, t−i), pi(t

′
i, t−i))− ui(ti, o(t), p(t))|ti].

In words, it is the maximum expected benefit any player can obtain from
reporting untruthfully.

A widely studied goal of mechanism design, and one we focus on here, is
that of maximizing social welfare, or the sum of player valuations. Formally,
define social welfare to be

V (t, o) =
∑
i∈I

vi(ti, o),

where o is an outcome and t is a joint type profile. Let o∗ : T → O denote
the welfare optimal (efficient) outcome (allocation) and let

V ∗(t) =
∑
i∈I

vi(ti, o
∗(t)) = max

o∈O

∑
i∈I

vi(ti, o)

be the maximum welfare achieved for a type profile t. Let V ∗ = maxt∈T V ∗(t).
It is well known that optimal allocation can be achieved as a truthful dom-
inant strategy equilibrium by using Groves payments [15], with pi(t) =∑

j 6=i vj(tj, o
∗(t)) + hi(t−i). Here hi is any real-valued function of the types

reported by other players; for simplicity of exposition, we set it to 0.4

Let g : T → O be an algorithm for computing an approximately efficient
allocation.5 We say that g(·) is an α-approximation if V ∗(t) ≤ αVg(t) for
any t ∈ T . Since g may compute only a suboptimal allocation, we let Vg(t)
be welfare at the allocation g(t), that is Vg(t) =

∑
i∈I vi(ti, g(t)). Define

VCG-based payments by pg
i (t) =

∑
j 6=i vj(tj, g(t))+hi(t−i). Hence, the VCG-

based mechanism selects an outcome according to g, and the players receive
payments pg

i (t).

4VCG extends the Groves scheme by specifying hi(t−i) to guarantee individual ratio-
nality, that is, that every player obtains positive net value from participation. Since the
subject of our inquiry is the incentive structure, setting hi(t−i) to 0 has no impact on any
of the arguments we make.

5Our results can be extended rather directly to randomized allocation algorithms.
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4. Connecting Approximation and Incentives

We begin our endeavor by exhibiting a simple bound that connects the
approximation quality of an algorithm to the players’ incentives to misreport
preferences (both in the worst-case sense), due to Kothari, et al. [8].

Theorem 1. Suppose that g is an α-approximation algorithm. Then truthful
reporting is an ε-dominant strategy equilibrium for ε = α−1

α
V ∗.

While this bound is intuitive and easy to use in principle, in many inter-
esting settings it is much too crude due to its worst-case nature. For example,
the best known approximation ratio in combinatorial auctions is 2 (specif-
ically, a greedy algorithm is a 2-approximation when player valuations are
submodular [11]). From a practical perspective, the resulting bound of V ∗

2

is hardly encouraging: if the incentives to lie are as high as 50% of welfare,
then we can safely say that honesty would be remarkably altruistic.

Given this state of affairs in combinatorial auctions, one may expect prac-
titioners to worry about incentives. Many real problems, however, are “easy”
in that the optimal or nearly optimal allocation can be found extremely fast
in practice. Thus, while an algorithm may prove very bad in the worst case,
it may be quite effective in a typical case. Our goal now is to incorporate
this “empirical” flavor into the analysis of incentives to lie.

To begin, suppose that, somehow, we have an approximation bound for
g that is a known function of α(t) for all t ∈ T . In the most trivial case, it
could be just a fixed α, reducing the setup to the worst-case analysis above.
Alternatively, we may be able to split the set of type profiles into subsets
T 1, T 2, . . ., and obtain much better uniform bounds on some of these subsets
than the worst case analysis would allow. For example, perhaps we know
that for some large subset of combinatorial auction problems we can compute
exact or nearly exact optimal allocation quickly. In any case, presently we
will see that we need not even construct α(t) for all possible type profiles,
but can obtain probabilistic bounds based on a sample of a finite subset of
these.

Our first key result echoes Theorem 1, although we must weaken the
approximate equilibrium notion to Bayes-Nash.6

6The reason is that a player i is assumed to only know his own type ti, and will thus
only have a distribution over α(t) conditional on ti.
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Theorem 2. Suppose that the algorithm g is an α(t)-approximation. Then
a player i can gain at most εi(ti) when others are playing truthfully, where

εi(ti) = Et−i

[
α(t)− 1

α(t)
V ∗(t)|ti

]
.

The proofs of this and other results are in the appendix.7

Corollary 3. Suppose that the algorithm g is an α(t)-approximation. Then
truthful reporting constitutes an ε-Bayes-Nash equilibrium for

ε = nEt

[
α(t)− 1

α(t)
V ∗(t)

]
.

Proof. Here we measure the expected benefit to deviation using the corre-
sponding game-theoretic regret.

Et[ε(t)] = Et[max
i

εi(ti)] ≤ Et[
∑

i

εi(ti)] =
∑

i

Eti [εi(ti)]

=
∑

i

Et

[
α(t)− 1

α(t)
V ∗(t)

]
= nEt

[
α(t)− 1

α(t)
V ∗(t)

]
.

Corollary 3 gives us a bound on the incentives of any player to lie that
can incorporate full information about the distribution of algorithmic per-
formance α(t) induced by the distribution of instances (player preferences)
F . Our use of the sum bound for the maximum, however, loses considerable
tightness as compared to Theorem 1. Below we investigate, first theoreti-
cally (Section 5) and later empirically (Section 6), the situations in which
our average-case bound has bite.

7While the proof of Theorem 2 is similar to that for the uniform bound (Theorem 1),
note that we must be careful about the nature of information available to players (see the
previous footnote). We also require the application of the following corollary to actually
arrive at the incentive bound.
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5. Illustration of the Non-Uniform Incentive Bound

To illustrate an application of the non-uniform bound on the incentives
to lie (i.e., Corollary 3), suppose that the space of joint types T can be
partitioned into “easy” and “hard” type profiles, that is, T = T ∪T . Let α =
supt∈T α(t) and α = supt∈T α(t) and assume that α ≤ α. For example, T can
be the set of combinatorial auction problem instances for which solutions are
relatively easy to compute given state-of-the-art optimization tools (perhaps
very good approximations, i.e., small α, can be obtained very fast for these
instances). T , on the other hand, can be the set of those instances for which
the worst-case performance of an algorithm is realized. Then,

Et

[
α(t)− 1

α(t)
V ∗(t)

]
=

∫
T

α(t)− 1

α(t)
V ∗(t)dF (t) +

∫
T

α(t)− 1

α(t)
V ∗(t)dF (t)

≤ α− 1

α

∫
T

V ∗(t)dF (t) +
α− 1

α

∫
T

V ∗(t)dF (t)

=
α− 1

α
Et[V

∗(t)]− α− 1

α

∫
T

V ∗(t)dF (t)

+
α− 1

α

∫
T

V ∗(t)dF (t)

≤ α− 1

α
Et∼F |T [V ∗(t)] +

(
1

α
− 1

α

)
V ∗

T
F (T ),

Note that since
(

1
α
− 1

α

)
V ∗ is just a constant, as the probability measure

of “hard” instances becomes small, the incentives for players to deviate ap-
proach α−1

α
Et∼F |T [V ∗(t)]. Hence the following corollary.

Corollary 4. Suppose that F (T ) = 0. Then truthful reporting constitutes
an ε-Bayes-Nash equilibrium for ε = nα−1

α
Et∼F |T [V ∗(t)].

In the special case when α = 1 (that is, easy instances can be solved
exactly in a relatively short time) as is the case in many combinatorial auction
settings, and when F (T ) = 0, that is, when the probability of drawing a
hard problem is 0, truthful reporting is a Bayes-Nash equilibrium. Hence the
following direct corollary.

Corollary 5. Suppose that α = 1 and F (T ) = 0. Then the strategy si(ti) =
ti—that is, truthfully reporting actual preferences—is a Bayes-Nash equilib-
rium under the allocation algorithm g.
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Proof. Et[ε(t)] = nEt

[
α(t)−1

α(t)
V ∗(t)

]
= nα−1

α
Et[V

∗(t)] = 0.

Corollaries 4 and 5 are mainly conceptual observations. In practice, we
can rarely know that, for example, F (T ) = 0. Nevertheless, as we demon-
strate below, we can obtain practical probabilistic bounds based on Corol-
lary 3.

6. Applying the Non-Uniform Incentive Bound

A key question that stems from the above analysis is how a mechanism
designer would determine an incentive bound for his algorithm in practice.
We would not, for example, want to require the designer to obtain a non-
trivial α(t) for every t ∈ T . Rather, we offer the following empirical approach:

1. Obtain or construct a simulator that allows one to sample joint player
types t ∈ T according to F ;

2. Collect a set of K joint type samples t1, . . . , tK ;
3. For each tk, compute Vg(t

k) and V ∗(tk) (or an upper bound V
∗
(tk)

on V ∗(tk), which could be obtained, for example, using LP relaxation
instead of solving the mixed integer program for this instance);

4. Compute α(tk) = V ∗(tk)
Vg(tk)

, let Ẑ(tk) = α(tk)−1
α(tk)

V ∗(tk), and define Ẑ =
1
K

∑K
k=1 Ẑ(tk);

5. Compute a probabilistic bound based on Ẑ.

The first step requires a designer to either obtain or construct a simulator.
This seems rather demanding, but may be necessary to do for a high-stakes
problem anyway. Moreover, in the case of combinatorial auctions, a state-of-
the-art simulator to generate realistic problem instances is already publicly
available [14].

For the last step, we have a few options. A most general option would be
to use a distribution-free bound (e.g., Hoeffding inequality), but these tend
to be very loose. Instead, we assume that Ẑ is Normally distributed (an
assumption that is justified by the Central Limit Theorem when K is large;
Central Limit Theorem applies here since Ẑ(tk) are i.i.d. and our assumptions
of continuity of vi(·) and compactness of T imply that the variance of Ẑ(tk)
is finite). Suppose we use s2(Ẑ(tk))/K (where s2(·) is the sample variance)
as an estimate of the variance of Ẑ. Then,

Et

[
α(t)− 1

α(t)
V ∗(t)

]
≤ Ẑ + zδ

√
s2(Ẑ(tk))

K
(1)
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with probability at least 1− δ, where zδ is the value of Normal distribution
at 1− δ.

6.1. Example: Combinatorial Auctions

To illustrate the techniques introduced above, we now offer an incentive
analysis of combinatorial auctions based on auction instances (in our nota-
tion, tk) generated by CATS [14]. Since the absolute values of the bounds
are not very meaningful, we give them as fractions of V ∗. While V ∗ is
actually unknown, note that Ẑ/V ∗ ≤ Ẑ/ maxk V ∗(tk), so below we report
Ẑ ′ = Ẑ/ maxk V ∗(tk). Additionally, CATS generates a set of bids, but does
not specify the number of players (which could therefore be arbitrary). Con-
sequently, we ultimately report bounds as multiples of nV ∗.

The data set we used is composed of (a) a set of samples with 1000 bids
on 144 goods (1K − 144), (b) a set with 1000 bids on 256 goods (1K − 256),
(c) a set with 2000 bids on 64 goods (2K − 64), and (d) a set with varying
problem sizes (varsize). Each set contains 5000 samples, 500 for each of
10 different distributions. The data include the result obtained by CPLEX
which ran to optimality, the results obtained by CASS [6] after about 7500
seconds for 1K − 144 and 1K − 256, or 44000 seconds for the other datasets,
and, for the dataset 1K − 256, the result obtained by the Gonen-Lehmann
(GL) algorithm [7].8

We computed the bound on the incentives of agents to lie for each dataset,
as well as for the union set. For each one we include the data for all CATS
distributions except “arbitrary”. For g(t) we used the following combination:
we used the result returned by CPLEX for a sampled profile tk if it was
obtained in at most S seconds; otherwise the result returned by CASS was
used. We varied the time limit S between 500 and 60000 seconds (about 16.6
hours). The longer time limits are reasonable for high volume auctions in
which a lot of money is at stake.9

In Figure 1 (left), we show the resulting bound for each dataset as a
function of the time limit, which allows us to quantify the tradeoff between
the amount of time given to the algorithm and regret (incentives for players

8A small fraction of the problems for which CPLEX reported an optimal result are not
in fact optimal, because the results by CASS and GL are higher. On these problems we
use the maximum value of the three algorithms as the “true” optimum.

9Since the data are relatively old, our bounds are likely excessively pessimistic.
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Figure 1: Upper bound on regret, as a fraction of nV ∗, left : for several data set sizes, and
right : for the union of all data.

to lie).10 The bounds are computed as explained above, with confidence level
1− δ = 0.95. The chart for the dataset of 1K−144 is omitted because the Ẑ
is zero (all instances were quickly solved to optimality). In this case, we can
obtain an upper bound of 0.0006 on the proportion of suboptimally solved
instances (giving a regret bound of 0.0006nV ∗) with 0.95 confidence using
the Clopper-Pearson bound [1].

The results for the union data set are shown in Figure 1, right. Observe
that for all our results, with the possible exception of 2K − 64, the bound
on incentives to lie is quite low, far lower than V ∗

2
suggested by the uniform

(worst-case) analysis. Thus, if the number of players is not too large, there
do not appear to be significant incentives for bidders to lie.11

7. Computing a Better Response

Our average-case analysis of incentives to deviate assumes that mecha-
nism participants have unlimited computational power. However, if we find
the allocation problem fundamentally hard to solve for the designer, it is
likely that it is no less difficult for players to profitably deviate. Indeed,
Sanghvi and Parkes [20] show that computing a better response is NP-Hard

10The raw data for the plots in Figure 1 is available publicly at
http://vorobeychik.com/downloads.html.

11When the number of players is very large, the incentives to lie tend to become negligible
as the market becomes close to competitive, since each bidder is then unlikely to influence
the outcome.
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for a combinatorial allocation problem under certain assumptions on g. This
worst-case result, however, is unsatisfying in our setting, since as long as
the players can often (that is, on many actual problem instances) compute a
better response, they will try to do so. Insofar as we can bound their gains
tightly, this would not be a concern. But for the case that our bounds leave
enough room for gains, we wish to have a general purpose technique to make
deviations relatively challenging to compute.

In this section we suggest a very simple sampling technique which allows
us to amplify complexity of the deviation problem on average, under some
assumptions on the algorithmic capabilities of the mechanism participants.

Our first result reflects an assumption that the designer can construct
a belief (prior) distribution over the algorithms which would be used (inde-
pendently) by each player. Our results below are then with respect to the
randomized “pseudo-algorithm” induced by this distribution. In its simplest
form, it may be that the problem is well-enough understood that state-of-
the-art algorithms for computing improving deviations are readily available,
so both the designer and the players would simply utilize the best of these.
Under this assumption, consider the following sampling algorithm:

1. For each player i, draw L samples t′i from the belief distribution over
the players’ algorithms (we can think of these as sample deviations);
let T ′

i = {ti, t′1i , . . . , t′Li }, where ti is the actual reported type of i;

2. Define g′i(t) ∈ arg maxo=g(t′i,t−i)|t′i∈T ′
i

∑
j∈I vj(tj, g(t′i, t−i)) for each i;

3. Define g′(t) ∈ arg maxo=g′i(t)|i∈I

∑
j∈I vj(tj, gi(t)).

Observe that this enhanced algorithm can only improve social welfare.

Theorem 6. Given g′(t) as the allocation mechanism, the probability (with
respect to the belief distribution) that some player can compute an improving
deviation is at most n

L+1
.12

A direct consequence of Theorem 6 is that incentives of any player to
lie can be made arbitrarily small as long as there is some non-zero cost to
performing better-response computations.13

12This result is only meaningful when n < L + 1. However, note that L is under the
designer’s control. We assume that it is cheap for the designer to take such samples; see
the next footnote.

13We are ignoring the cost of such computation to the designer. Our assumption is that
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While the assumption that algorithmic capabilities of players are pre-
dictable is often reasonable, we may wish to make a stronger statement.
For example, perhaps sampling deviations using some very simple heuris-
tic (e.g., uniform random search), while entirely different from what players
may in fact do, nevertheless makes profitable deviations increasingly difficult
for them to compute. As the following theorem suggests, the above result
does, indeed, generalize (in a somewhat weaker form) to a very large class of
sampling distributions and player deviation algorithms.

Formally, let G(u) be the distribution function of player utilities induced
by the designer ’s search process (e.g., uniform sampling from the type space),
whereas H(u) is the distribution function of player i’s utilities induced by
the player’s search.

Theorem 7. Let U1 = {u|G(u) = 1} and suppose that H(U1) = 0. Then
limL→∞

∫
R G(u)LdH(u) = 0.

The interpretation is that as long as the players do not have a positive
probability of reaching a utility that is better than any that the designer can
possibly attain, the designer can use random sampling to effectively eliminate
incentives to lie. In essence, in order to gain from lying the players need to
know significantly more about the problem than the designer.

8. Simulation-Based Analysis of Incentives to Lie

The theoretical bounds above are in an important sense rather crude.
Specifically, recall that we arrived at Corollary 3 by bounding Et[maxi εi(ti)]
with

∑
i Eti [εi(ti)]. That the sum can be a very loose upper bound is easy

to see with a simple illustration. Consider a collection of i.i.d. random vari-
ables distributed uniformly on a unit interval. Clearly, the expectation of the
maximum of these cannot exceed 1. On the other hand, if we have n such
variables, the sum of expectations gives us an upper bound of n/2, or a factor
of O(n) larger than the quantity it bounds! While the incentives to lie may
often be small enough for the loose upper bound of Corollary 3 to nevertheless
give meaningful results, a negative conclusion based on it need not imply that
all hope is lost. Rather, we present in this section a simulation-based scheme

the designer’s computational capacity far surpasses that of any agent. This assumption is
not needed for the next result, since there the designer can use a very low-cost algorithm,
such as uniform random search.
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that bounds more tightly, albeit approximately, the incentives of agents to lie
for any given approximation algorithm combined with a VCG-based scheme.
A further benefit of a fully simulation-based approach is that it allows us to
combine very naturally the upper bound on regret with a prior distribution
on the algorithms that agents may use to compute a utility-improving lie.
We illustrate our simulation-based technique in the context of combinatorial
auctions using a greedy approximation algorithm [11]. Since the greedy algo-
rithm, while highly effective when valuation distribution is submodular, can
be quite poor when complementarities are significant, we should not draw
conclusions based on absolute regret values presented; rather, we offer some
qualitative insights that are suggestive of a broader pattern.

Consider the following algorithm for simulation-based regret approxima-
tion.

1. Generate M random type profile t according to F ;

2. For each sampled type profile t, generate L random deviations t′i for
each player i, drawn according to a randomized distribution G;14

3. Compute approximate regret for each player i,

ε̂i(ti) = max
l=1,...,L

ui(t
′l
i , g(t))− ui(ti, g(t));

4. Compute approximate regret ε̂(t) = maxi ε̂i;

5. Compute average regret ε̂ = 1
M

ε̂(tm).

For the results reported below, we chose M to be 40-100 and let L = 100.15

The results that we report are actually (approximate) upper bounds on the
incentives to deviate because (a) we consider maximum gain for every type
profile sampled, rather than for each player given the distribution of other
player types, and (b) we report the fraction of utility relative to the greedy,
rather than optimal, allocation (i.e., we report ε̂/ maxm=1,...,M Vg(t

m)).
Our first set of simulations considers two kinds of valuations: randomly

generated submodular valuations and valuations in which marginal values

14These could be drawn, for example, uniformly randomly, or using a prior distribution
over player algorithms. In our experiments, we drew deviations according to the marginal
distribution Fi of i’s types.

15100 randomly chosen deviations appears sufficiently large that increasing it does not
have a significant impact on our results. The code and results of this analysis can be
downloaded from http://vorobeychik.com/downloads.html.
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of items are generated uniformly randomly on the unit interval. We present
these results in Figure 2, where we separately vary the number of players and
items in the auction. As we can observe, in spite of the rather weak worst-
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Figure 2: Average game-theoretic regret when greedy algorithm is used to approximate
WDP of a combinatorial auction with submodular valuations. Left : as a function of the
number of players; the number of items is fixed at 20. Right : as a function of the number
of items; the number of players is fixed at 5.

case guarantees on the performance of the greedy algorithm in the case of
submodular valuations, the average regret tends to be low. Additionally,
regret tends to decrease with increasing complexity of the allocation prob-
lem. In order to assess the robustness of the latter phenomenon to different
distributions of valuations, we use the CATS tool [14].
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Figure 3: Average game-theoretic regret in combinatorial auctions with submodular and
random valuations. Left : as a function of the number of players; the number of bids is 20.
Right : as a function of the number of submitted bids; the number of players is 15.
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The results for several CATS distributions are shown in Figure 3.16 While
incentives to lie can be relatively large, in all but one case the incentives to
deviate from truthful reporting decrease with increasing problem complexity,
suggesting that this observation is rather robust.

9. Conclusion

We presented a series of results that allow construction of average-case
bounds on agent incentives to lie about their preferences for VCG-based
mechanisms. Conceptually, this deviates from the more traditional worst-
case analysis which often fails to provide meaningful bounds. Practically,
we introduce a simple method for assessing incentive properties of specific
approximation algorithms, and even heuristics that lack formal approxima-
tion guarantees, in the context of economic resource allocation problems.
We illustrate the resulting empirical incentive analysis for a specific approx-
imation algorithm in the context of several combinatorial auction problems.
Our results here suggest that using state-of-the-art algorithms for solving
combinatorial allocation problems essentially eliminates agent incentives to
misreport their preferences. In addition, we show that even if incentives to
lie about true player types are significant, the designer can use sampling to
make it unlikely that any player will compute a utility-improving lie. This
provides a typical-case complement to an already known worst-case hardness
result. Our final contribution is a fully simulation-based method for approxi-
mating tighter bounds on incentives of agents to misreport their preferences.
As an illustration of the power of this method, we demonstrate that incen-
tives to lie decrease with increasing problem size when the designer uses a
greedy approximation algorithm.
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Appendix A. Welfare Properties of VCG-based Mechanisms

It is generally assumed that incentives to lie are undesirable, in part
because they result in greater uncertainty about outcomes. However, such
incentives would pose a substantially lesser problem if they are aligned with
social utility. Note that under VCG-based payments any unilateral deviation
that improves player i’s utility is also welfare improving. Specifically, observe
that

ui(ti, g(t′i, t−i), pi(t
′
i, t−i)) =

∑
j

vj(tj, g(t′i, t−i)) > ui(ti, g(t), pi(ti, t−i))

=
∑

j

vj(tj, g(t)).
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However, group deviations may in general lead to welfare loss. A key ques-
tion, then, is whether there necessarily exists a welfare improving Bayes-Nash
equilibrium strategy profile. We now show that the answer is, in general, neg-
ative.

Example 1. Consider the following combinatorial auction setting. We have
two players (1 and 2) and two items (1 and 2). As is standard, assume that
v1(∅) = v2(∅) = 0 and consider the following value functions:

v1({1, 2}) = 10, v1({1}) = v1({2}) = 4

v2({1, 2}) = 5, v2({1}) = v2({2}) = 2.

Define v′1 and v′2 to be:

v′1({1, 2}) = 2, v′1({1}) = v′1({2}) = 0

v′2({1, 2}) = 2, v′2({1}) = v′2({2}) = 0

and suppose that the algorithm g allocates the items as follows:

• g(v1, v2) assigns good 1 to player 1 and good 2 to player 2 (for a total
welfare of 6)

• g(v′1, v2) assigns both goods to player 1 (to yield the optimal welfare of
10)

• g(v′1, v
′
2) assigns both goods to player 2 (to yield total welfare of 5)

• g(v′′1 , v
′
2) assigns both goods to player 2 for any v′′1

• g(v′1, v
′′
2) assigns both goods to player 1 for all v′′2 except v′′2 = v′2.

• g(v′′1 , v
′′
2) assigns both goods to player 2 for all v′′1 and v′′2 , with the ex-

ception of the cases outlined above.

Now, for the computation of player utilities below, ignore the hi payment term
as it does not affect the players’ incentives. Observe that in this example,
(v1, v2) is not an equilibrium, since the utility to each players is 6, whereas
player 1 could obtain 10 by deviating to v′1, which would yield the utility of
2 for the second player. Furthermore, (v′1, v2) is not an equilibrium either,
since player 2 could now gain by deviating to v′2, obtaining the utility of 5,
which would give player 1 the utility of 2. The profile (v′1, v

′
2) is, however, an
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equilibrium, and yields lower welfare than the truthful profile. Additionally,
any pure or mixed strategy profile with support on v′′1 and v′′2 that are not the
special cases described above will yield the same welfare as (v′1, v

′
2).

To see that no mixed strategy equilibrium with any support will do the
job, note that we can only increase welfare by having player 2 play v2 as a
part of the support. Without loss of generality, let’s look at the restricted
game with player 1 choosing between actions v1 and v′1 and player 2 choosing
between v2 and v′2. Suppose that player 2 plays v2 with probability α and v′2
with probability 1−α. Then the utility of player 1 from playing v1 is 4α + 2,
while his utility from playing v′1 is 8α + 2, and the two are only equal when
α = 0, that is, when player 2 always selects v′2. In this case, all profiles yield
welfare of 5. �

We now formally state the negative result demonstrated by the above
example.

Proposition 8. Let P be a combinatorial allocation problem. Then there
exists an allocation algorithm g and player valuation functions vi with vi(∅) =
0 for all players i such that every Bayes-Nash equilibrium yields strictly lower
welfare than the strategy profile in which all players report their valuations
truthfully.

For the purposes of the above example, we had to construct a rather
bizarre outcome function g(t). An open question is whether some typical
approximation algorithms have properties which do ensure that at least one
equilibrium (or, ideally, all equilibria) is (are) welfare improving as compared
to truthful reporting.
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Appendix B. Proofs

Appendix B.1. Proof of Theorem 2

Let t∗i = arg maxti ui(ti, t−i). The most that the player can gain from
deviating to t∗i is

Et−i

[∑
j

vj(tj, g(t∗i , t−i)) −
∑

j

vj(tj, g(t))|ti

]

≤ Et−i

[∑
j

vj(tj, o
∗(t∗i , t−i))−

∑
j

vj(tj, g(t))|ti

]

≤ Et−i

[∑
j

vj(tj, o
∗(t∗i , t−i))−

1

α(t)

∑
j

vj(tj, o
∗(t))|ti

]

≤ Et−i

[∑
j

vj(tj, o
∗(t))− 1

α(t)

∑
j

vj(tj, o
∗(t))|ti

]

≤ Et−i

[
α(t)− 1

α(t)
V ∗(t)|ti

]
.

Appendix B.2. Proof of Theorem 6

To prove this theorem, we first need the following lemma.

Lemma 9. Let ti be the type of player i and t′i 6= ti be his deviation, and
suppose that t′i is sampled from Ti uniformly randomly. Then for any q ≥ 0

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥ q} = Pr{

∑
i

vi(ti, g(t′i, t−i)) ≥ q}.

Proof. Observe, first, that for any q, z and any t′i 6= ti,

Pr{vi(ti, g(t′i, t−i)) ≥ q|vi(t
′
i, g(t′i, t−i)) ≥ z}

= Pr{vi(ti, g(t′i, t−i)) ≥ q},

since the value function itself is fixed. Consequently, letting

V−i(t
′
i) =

∑
j 6=i

vj(tj, g(t′i, t−i),
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we get

Pr{vi(ti, g(t′i, t−i)) + V−i(t
′
i) ≥ q|vi(t

′
i, g(t′i, t−i)) + V−i(t

′
i) ≥ z)

= EV−i(t′i)=w[Pr{vi(ti, g(t′i, t−i)) ≥ q − w|vi(t
′
i, g(t′i, t−i)) ≥ z − w}]

= EV−i(t′i)=w[Pr{vi(ti, g(t′i, t−i)) ≥ q − w}]
= Pr{vi(ti, g(t′i, t−i)) + V−i(t

′
i) ≥ q}.

Now, observe that, given the definition of g′(),

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥ q}

= Pr{
∑

i

vi(ti, g(t∗i , t−i)) ≥ q|vi(t
′
i, g(t∗i , t−i)) + V−i(t

∗
i ) ≥ z},

and, consequently,

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥ q} = Pr{

∑
i

vi(ti, g(t∗i , t−i)) ≥ q}.

But, since both t′i and t∗i are drawn uniformly randomly,

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥ q} = Pr{

∑
i

vi(ti, g(t′i, t−i)) ≥ q}.

We are now ready to prove the theorem. First, consider a select player i.

Pr{ui(ti, g
′(t′i, t−i), pi(t

′
i, t−i)) > ui(ti, g

′(t), p(t))}
≤ Pr{ui(ti, g

′(t′i, t−i), pi(t
′
i, t−i)) ≥ ui(ti, g

′(t), p(t))}

= Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥

∑
i

vi(ti, g
′(t))}.

First, consider the quantity Pr{
∑

i vi(ti, g
′(t′i, t−i)) ≥ q} for some fixed q. By

Lemma 9,

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥ q} = Pr{

∑
i

vi(ti, g(t′i, t−i)) ≥ q}.
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Hence,

Pr{
∑

i

vi(ti, g
′(t′i, t−i)) ≥

∑
i

vi(ti, g
′(t))}

= Pr{
∑

i

vi(ti, g(t′i, t−i)) ≥
∑

i

vi(ti, g
′(t))}.

Let V ′(t) =
∑

i vi(ti, g(t′i, t−i)). By conditioning, we have

Pr{
∑

i

vi(ti, g(t′i, t−i)) ≥
∑

i

vi(ti, g
′(t))}

= EV ′(t)[Pr{
∑

i

vi(ti, g
′(t)) ≤ z|V ′(t) = z}]

≤ EV ′(t)[Pr{ max
t′′i ∈Ti\ti

∑
i

vi(ti, g(t′′i , t−i)) ≤ z|V ′(t) = z}]

= EV ′(t)[Pr{
∑

i

vi(ti, g(t′′i , t−i)) ≤ z|V ′(t) = z}L].

Letting F (z) be the distribution over t′i (it is identical for t′′i by construction),
we have

EV ′(t)[Pr{
∑

i

vi(ti, g(t′′i , t−i)) ≤ z|V ′(t) = z}L]

=

∫
R

F (z)LdF (z) =
1

L + 1
.

To conclude the proof, we only need to apply the union bound to obtain n
L+1

as the upper bound over all the players.

Appendix B.3. Proof of Theorem 7

First, observe that by the Dominated Convergence Theorem,

lim
L→∞

∫
R

G(u)LdH(u) =

∫
R

lim
L→∞

G(u)LdH(u),

since both G(u) and H(u) are probability densities. Now,∫
R

lim
L→∞

G(u)LdH(u) =

∫
U1

lim
L→∞

G(u)LdH(u)

+

∫
U1

lim
L→∞

G(u)LdH(u)

=

∫
U1

lim
L→∞

G(u)LdH(u).
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Since for every u ∈ U1, limL→∞ G(u)L = 0,∫
R

lim
L→∞

G(u)LdH(u) =

∫
U1

lim
L→∞

G(u)LdH(u) = 0.
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