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This paper investigates problems of disease prevention and epidemic control (DPEC), in which we opti-
mize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets
with the goal of minimizing the expected number of infected individuals after intervention. The spread of
diseases is inherently stochastic due to the uncertainty about disease transmission and human interac-
tion. We use a bipartite graph to represent individuals’ propensities of visiting a set of location, and for-
mulate two integer nonlinear programming models to optimize choices of individuals to vaccinate and
locations to close. Our first model assumes that if a location is closed, its visitors stay in a safe location
and will not visit other locations. Our second model incorporates compensatory behavior by assuming
multiple behavioral groups, always visiting the most preferred locations that remain open. The paper
develops algorithms based on a greedy strategy, dynamic programming, and integer programming, and
compares the computational efficacy and solution quality. We test problem instances derived from daily
behavior patterns of 100 randomly chosen individuals (corresponding to 195 locations) in Portland, Ore-
gon, and provide policy insights regarding the use of the two DPEC models.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we study problems of infectious disease prevention
and epidemic control (DPEC), which have became increasingly chal-
lenging in modern times given convenient means of travel. Mean-
while, disease control is also closely related to defending against
bio-terrorism, where quick and high-quality responsive actions
can significantly alleviate damages [9,11]. For vaccinable diseases
like influenza, vaccination is considered one of the most effective
prevention strategies, and has been usually carried out as a primary
response to new epidemics, including the H1N1 virus in 2009 and
H3N2 virus in 2011 [10]. Closing locations (e.g., schools), on the
other hand, is an effective intervention strategy to control popula-
tion movements and to limit personal contact during epidemics. In
practice, vaccinating individuals and closing locations can be simul-
taneously implemented to react to disease spread, while the two ap-
proaches cost and take effective at very different scales.

Given individual budgets for vaccinating individuals and closing
locations, the goal of this paper is to formulate mathematical opti-
mization models, for identifying which subset of individuals we
should vaccinate and which locations we should close, to minimize
the expected number of infected individuals.
We formulate DPEC problems by using a bipartite graph to
model individuals’ probabilities of visiting different locations. Sup-
pose that disease may spread differently across subgroups of indi-
viduals in an at-risk population. We associate the uncertainty with
disease carriers’ infectious risk, location visiting behavior, and
intervention effects. For each person who may visit a set of loca-
tions, we call the person has a compensatory behavior if he/she
will choose an alternative place if the ones with higher preferences
are closed, versus someone who does not have such a behavior will
give up the visit if the destination location is closed. We consider
two DPEC variants: one with and the other without individuals’
compensatory behavior of visiting locations. We formulate integer
nonlinear programming models for both cases, and develop algo-
rithms based on greedy and dynamic programming (DP) strategies.
We test instances describing behavior of 100 randomly chosen
individuals visiting 195 locations in Portland, Oregon. For disease
control over multiple time periods, we demonstrate the effective-
ness of repeatedly implementing the results of the static DPEC
problem, compared with an approach that dynamically updates
people’s infectious probabilities and resolves the problem at each
time period. We also derive policy insights for disease control
when considering compensatory behavior of visiting locations.

In the literature, related work has been performed in areas of
modeling disease transmission dynamics [14], identifying critical
individuals and predicting disease incidence by patient screening
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[12,15,16], preventing outbreaks by allocating medical resources
[1,2,18], patient treatment [19], and dynamically closing loca-
tions [4,7]. Our paper is of interest to policy makers who must
decide how to allocate fixed budgets to both prevention and
intervention phases as a whole [17, e.g.,], to achieve the best
control effect in terms of minimizing the expected number of in-
fected individuals.

The remainder of the paper is organized as follows. Section 2
describes DPEC and introduces the notation. Section 3 formulates
a basic model, denoted by DPEC-B, which excludes people’s com-
pensatory behavior of visiting locations. We show that the prob-
lem is NP-hard, and develop two alternative approximate
approaches based on greedy and DP for solving DPEC-B. Section 4
considers an extension of DPEC-B (named as DPEC-E) by taking
into account compensatory behavior using utility functions asso-
ciated with subgroups’ visiting preferences and binary variables
for prioritizing visits. We use an exact DP algorithm for optimiz-
ing DPEC-E. In Section 5, we demonstrate the computational re-
sults, and derive policy insights via various types of testings.
Section 6 concludes the paper and suggests future research
directions.
2. Problem statement and notation

Let F ¼ f1; . . . ;ng be a set of n different locations, and
P ¼ f1; . . . ;mg a set of m individuals. The preferences of visiting
each location are characterized by probabilities pij, for all i 2 P
and j 2 F with

P
j2Fpij ¼ 1;8i 2 P. Person i 2 P has a probability

of being initially infectious, characterized by hi (0 6 hi 6 1), which
accounts for Person i’s diverse backgrounds, such as social connec-
tions, medical history, etc. We also consider locations that are suf-
ficiently local, and therefore the data used in later experiments will
not take into account individuals’ traveling activities from/to loca-
tions outside set F . In our model, chances of an individual becom-
ing infected depend solely on whether there is an infectious
individual at a location he/she visit, and is not sensitive to the
number of infectious individuals in the location. This restriction
is crucial to our ability to obtain a closed-form model of infectious
disease spread, and is most reasonable when a location corre-
sponds to a small area. Assume that a healthy individual i 2 P gets
infected with probability rBV

i before vaccination, and rAV
i after vac-

cination, given that there exists one or more infectious individuals
in a location visited. By default, rBV

i > rAV
i to reflect the effectiveness

of vaccination.
This paper focuses on static DPEC models that take into account

neither disease dynamics nor decision changes over time. We jus-
tify such an assumption by considering cases where policy makers
need to quickly make initial prevention and/or intervention plans
during a sporadic and explosive disease outbreak, using estimated
parameters pij and hi for i 2 P and j 2 F. In addition, decisions such
as closing locations and vaccinating individuals are difficult and
expensive to adjust dynamically. We later compare our static mod-
els with a benchmark dynamic model. Our results demonstrate
solution stability in real-time control and the meaning of solving
static DPEC models.

Define binary variables zi for all i 2 P, and xj for all j 2 F , such
that

zi ¼
1 if Person i is vaccinated;
0 otherwise;

�
and xj ¼

1 if Location j is closed;
0 otherwise:

�

We denote a vaccination decision vector by z ¼ ½zi : 8i 2 P�, and a
decision vector for closing locations by x ¼ ½xj : 8j 2 F�. Considering
that closing locations and vaccinating people are usually at very dif-
ferent cost scales, we use two separate budgets for vaccination and
for closing locations, denoted by Bz and Bx, respectively. Denote
ci > 0 as the cost of vaccinating Person i;8i 2 P, and dj > 0 as the
cost of closing Location j;8j 2 F . Let E½# infected� be the expected
number of infected individuals at all locations. The goal of DPEC is
to minimize E½# infected�, while the costs of vaccination and clos-
ing locations are respectively limited by Bz and Bx. By the linearity
of expectation,

E½# infected� ¼
X
j2F

Ej½# infected�;

where Ej½# infected� represents the expected number of infected
individuals at Location j; 8j 2 F . We assume that a healthy individ-
ual has zero risk of getting infected at any location without the
presence of infectious individuals. Following this,

Ej½# infected� ¼ qj � E½# infected at Location j j
infection exists at Location j�:

where qj represents the probability that infection exists at Location
j. For each location j 2 F , we can compute qj in advance as

qj ¼ 1� Prfno infection at jg ¼ 1�
Y
i2P

ð1� pijhiÞ; ð1aÞ

The last equality in (1a) follows from the assumption that individ-
uals’ visiting probabilities are independent. Moreover, by the inde-
pendence of vaccination,

E½# infected at Location j j infection exists at Location j�

¼
X
i2P

pijð1� hiÞ rAV
i zi þ rBV

i ð1� ziÞ
� �

:

This yields the following objective function for our optimization
problem:

min
X
j2F

qj

X
i2P

pijð1� hiÞ rAV
i zi þ rBV

i ð1� ziÞ
� � !

ð1� xjÞ

Note that this objective is specified in closed form and, moreover, is
linear in each of our decision variables. In contrast, most past epi-
demic models have been rather complex, requiring at times large-
scale simulations to estimate infection spread [3]. The simplicity
of the objective function we obtain is critical to our ability to formu-
late epidemic control as mathematical programs below. Next we
formulate two integer nonlinear programming models for solving
DPEC. The first model assumes no compensatory behavior of visit-
ing locations, and designates individuals to stay home when the
destination locations are closed. In contrast, the second model as-
sumes that each individual visits a location with the highest prefer-
ence among those that are open. In the next two sections, we
formulate the two DPEC models, and discuss a few solution
algorithms.

3. DPEC with no compensatory behavior

3.1. DPEC-B: formulation and complexity

The first DPEC model, denoted by DPEC-B, assumes that if a
location is closed, individuals who would otherwise visit the
location will choose to stay at home. This serves as the basic
model, and is formulated as an integer nonlinear program as
follows.
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DPEC-B : min
x;z

X
j2F

qj

X
i2P

pijð1� hiÞ rAV
i zi þ rBV

i ð1� ziÞ
� � !

ð1� xjÞ

ð2aÞ
s:t:

X
i2P

cizi 6 Bz ð2bÞX
j2F

djxj 6 Bx ð2cÞ
xj 2 f0;1g 8j 2 F zi 2 f0;1g 8i 2 P: ð2dÞ

Denoting v ij � zixj for all i 2 P and j 2 F , we replace bilinear terms
zixj in (2a), and linearize DPEC-B via a set of linear inequalities
[13]:

v ij 6 zi; v ij 6 xj; v ij P zi þ xj � 1; v ij P 0; ð3Þ

where v ij is enforced to be the product of zi and xj when zi and xj are
both binary. To see this, when either zi or xj is zero, the first two
inequalities will enforce v ij to be zero; otherwise, the third inequal-
ity together with the first two inequalities in (3) will ensure v ij ¼ 1.

Theorem 1. DPEC-B is NP-hard.
Proof. Let DPEC-B be a decision version of DPEC-B described as
follows.

Given Vþ > 0, identify binary z and x, satisfying constraints
(2b), (2c), andX
j2F

qj

X
i2P

pijð1� hiÞ rAV
i zi þ rBV

i ð1� ziÞ
� � !

ð1� xjÞ 6 Vþ: ð4Þ

Verifying the feasibility of a given solution ðz; xÞ to DPEC-B takes a
polynomial number of steps, and thus the problem belongs to NP.
Now consider a general 0–1 Knapsack problem [6, cf.] with a set I
of items to be added to a knapsack with capacity B. For each item
i 2 I, the value and the weight of adding the item are respectively
v i and wi. The goal is to find a subset of items in I, with the total
weight being no more than B and the total value being at least V�.

To design a special instance of DPEC-B, let set F contain all the
items in set I. Designate Bz ¼ 0, Bx ¼ B, and ci ¼ wi; 8i 2 F . Note
that Bz ¼ 0 makes zi ¼ 0; 8i 2 P, and further changes (4) to

X
j2F

qj

X
i2P

pijð1� hiÞrBV
i

 !
ð1� xjÞ 6 Vþ: ð5Þ

With (2c) ensuring the total weight of selected items in I (or equiv-
alently, closed locations in F ) being bounded by B, the Knapsack
problem is equivalent of solving a special DPEC-B with designed
values of qj;pij;hi, and rBV

i ; 8j 2 F ; i 2 P, which satisfy
qj

P
i2Ppijð1� hiÞrBV

i ¼ v j for all j 2 F , and Vþ ¼
P

i2Iv i � V�. (As an
example, one can let rBV

i ¼ 1, hi ¼ 0 for all i 2 P;
P

i2Ppij ¼
1; 8j 2 F , and qj ¼ v j; 8j 2 F .) Due to the NP-completeness of gen-
eral 0–1 Knapsack, we conclude that DPEC-B is also NP-
complete. h

DPEC-B contains knapsack constraints (2b) and (2c), and prod-
ucts of the corresponding 0–1 binary variables in the objective.
The complexity of solving DPEC-B is therefore pseudo-polynomial
similar to general Knapsack problems. Later we develop algorithms
based on similar approaches for solving the Knapsack, by using
greedy and DP strategies. Moreover, often in practice, vaccinating
each person costs almost the same, and cost for shutting down
locations may also be quite similar. Thus, (2b) and (2c) can be fur-
ther simplified to cardinality knapsack constraints respectively
with identical costs for vaccinating an individual and closing one
location. This will save significant computational effort especially
for large-scale problems.
3.2. Algorithms for solving DPEC-B

Assume that vaccination protects individuals from being in-
fected (i.e., rAV

i ¼ 0 for all i 2 P), and people without vaccination
will surely be infected (i.e., rBV

i ¼ 1 8i 2 P) when exposed to infec-
tion. As a result, we simplify the objective (2a) in DPEC-B as

min
X
j2F

X
i2P

kijð1� ziÞð1� xjÞ: ð6Þ

where kij ¼ qjpijð1� hiÞ. Using general values of rAV
i and rBV

i will not
change the complexity of algorithms we develop in this section. In
Remark 1, we demonstrate how to modify our algorithms to com-
pute general DPEC-B, where both rAV

i and rBV
i can be fractional and

rBV
i > rAV

i ; 8i 2 P.
Consider DPEC-B as Formulation (2) with the objective (2a) re-

placed by (6), subject to decision independent constraints (2b) and
(2c). The exact computation requires solving nested DP recursions
and visiting all non-dominated states defined by feasible 0–1 solu-
tion combinations of x and z. The number of states is exponential,
depending on problem parameters Bx and Bz.

We first develop an approximate algorithm following a greedy
strategy, which iteratively updates the solution until no improve-
ment can be made to the objective. Denote ðx̂; ẑÞ as a feasible solu-
tion corresponding to a subset F̂ 0 #F and a subset P̂0 #P, such
that

x̂j ¼
0 if j 2 F̂ 0;

1 if j 2 F n F̂ 0;

(
ẑi ¼

0 if i 2 P̂0;

1 if i 2 P n P̂0:

(

That is, sets F̂ 0 and P̂0 respectively keep track of locations that have
not been closed, and people who have not been vaccinated. Now
consider ‘‘switching’’ the values of some entries in ðx̂; ẑÞ, e.g.,
increasing x̂j for some j 2 F̂ 0 or ẑi for some i 2 P̂0 from zero to
one. Note that such changes will decrease the current objective va-
lue, and will also reduce respective remaining budgets in DPEC-B.

We start with ðx̂; ẑÞ ¼ ð0;0Þ, i.e., F̂ 0 ¼ F and P̂0 ¼ P. At each
iteration, we change the value of x̂j for some Location j from 0 to
1, and update F̂ 0 ¼ F̂ 0 n fjg. (Similarly, we change ẑi from 0 to 1
for some Person i, and update P̂0 ¼ P̂0 n fig.) The algorithm follows
a greedy strategy by selecting Location j (or Person i) according to
the ratio of ‘‘objective reduction’’ to ‘‘cost of action’’ described as
follows. Because the objective decreases by

P
i2P̂0 kij at cost dj, for

closing Location j 2 F , we define the value of changing x̂j from 0
to 1, with given P̂0 and F̂ 0 n fjg by

Xðj; P̂0Þ ¼
X
i2P̂0

kij

 !,
dj; 8j 2 F̂ 0: ð7Þ

Similarly, the value of switching ẑi from 0 to 1, with given F̂ 0 and
P̂0 n fig, is defined by

Zði; F̂ 0Þ ¼
X
j2F̂0

kij

0
@

1
A,ci; 8i 2 P̂0: ð8Þ

We recursively close Location j (or vaccinate Person i) by following
a descending order of Xðj; P̂0Þ for all j 2 F̂ 0 (or a descending order of
Zði; F̂ 0Þ for all i 2 P̂0). At the end of each iteration, the new objective
value is given by

V :¼
X
i2P̂0

X
j2F̂0

kij;

corresponding to the current sets F̂ 0 and P̂0. We iterate the forego-
ing procedures until V becomes relatively stable. Algorithm 1 out-
lines critical steps of the greedy algorithm, in which Vpre
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represents an objective value from a previous step. We stop the algo-
rithm when V � Vpre 6 �, where � is positive and sufficiently small.

Algorithm 1. A greedy algorithm for approximating solutions
to DPEC-B.

Input: A DPEC-B instance and a sufficiently small � > 0.
Output: An objective value V�.
1: Compute kij for all i 2 P and j 2 F .

2: Initialize V :¼
P

j2F
P

i2Pkij and P̂0 :¼ P.
3: repeat
4: Let Vpre :¼ V as the best objective from last iteration.

5: Set Kx :¼ Bx; F̂ 0 :¼ F .
6: for j 2 F do
7: Compute Xðj; P̂0Þ :¼

P
i2P̂0 kij

� �
=dj.

8: end for
9: Sort all j in F in a descending order of Xðj; P̂0Þ, denoted

by Lx ¼ fj1; . . . ; jng such that Xðj1; P̂0ÞP � � �P Xðjn; P̂0Þ.
10: for k ¼ 1; . . . ;n do
11: if djk

6 Kx then

12: Update F̂ 0 :¼ F̂ 0 n fjkg;Kx :¼ Kx � djk
.

13: end if
14: end for
15: Set Kz :¼ Bz; P̂0 :¼ P.
16: for i 2 P do

17: Compute Zði; F̂ 0Þ :¼
P

j2F̂ 0 kij

� �
=ci.

18: end for
19: Sort all i in P in a descending order of Zði; F̂ 0Þ, denoted

by Lz ¼ fi1; . . . ; img, such that
Zði1; F̂ 0ÞP � � �P Zðim; F̂ 0Þ.

20: for k ¼ 1; . . . ;m do
21: if cik 6 Kz then

22: Update P̂0 :¼ P̂0 n fikg;Kz :¼ Kz � cik .
23: end if
24: end for
25: Compute V :¼

P
i2P̂0

P
j2F̂ 0 kij.

26: until Vpre � V 6 �V� ¼ V .
Example 1. Consider a DPEC-B example where P ¼ f1;2g,
F ¼ f1;2g, k11 ¼ 1, k12 ¼ 0:6, k21 ¼ 0:4, k22 ¼ 0:7, c1 ¼ c2 ¼ 1,
d1 ¼ d2 ¼ 1, Bz ¼ 1, Bx ¼ 1. We demonstrate Algorithm 1 for
� ¼ 10�6 as follows. Initially, both P̂0 and F̂ 0 are f1;2g. In the first
iteration, we compute Xðj; P̂0Þ for all j 2 F , yielding Xð1; f1;2gÞ ¼ 1:4
and Xð2; f1;2gÞ ¼ 1:3. Exclude j ¼ 1 from F̂ 0, and update F̂ 0 ¼ f2g.
Compute Zði; F̂ 0Þ for all i 2 P, yielding Zð1; f2gÞ ¼ 0:6 and
Zð2; f2gÞ ¼ 0:7. As a result, update set P̂0 ¼ f1g, and the objective
value V ¼ 0:6. We pass P̂0 ¼ f1g to the next iteration, which sets F̂ 0

back to f1;2g. By computing and ordering Xðj; f1gÞ for all j 2 F , we
have F̂ 0 ¼ f2g because Xð1; f1gÞ > Xð2; f1gÞ. Therefore, we end with
the same solutions and objective value. We terminate the algorithm
and return V� ¼ 0:6.
Theorem 2. Algorithm 1 converges in a finite number of steps.
Proof. We show the result by contradiction. Let Vk denote the
value of V obtained at the end of iteration k (k P 1 and integer).
Suppose that Algorithm 1 does not converge. We then have an infi-
nite sequence fV1; . . . ;Vk; . . .g in which Vk < �ðk� 1Þ�þ V1 for any
k. As k goes to infinity, Vk ! �1. Because any feasible objective
value of DPEC-B must be bounded below by 0. This is a
contradiction. h
Optimality gap. Algorithm 1 might terminate at a solution
whose objective value is significantly higher than the optimal
objective value. In Example 1, if we enumerate all feasible solu-
tions x and z, the optimal objective value is 0:4. However, the gree-
dy algorithm returns a suboptimal solution with an objective gap
being

0:6� 0:4
0:4

� 100% ¼ 50%

To show that such a gap can sometimes be arbitrarily large, we arti-
ficially design an example as follows. Consider P ¼ f1;2g,
F ¼ f1;2g, ci ¼ 1 for all i 2 P, dj ¼ 1 for all j 2 F , and Bx ¼ 1 and
Bz=1. The parameters kij satisfy

k11 P k12; k22 P k12; k11 þ k21 P k12 þ k22; k12 > k21: ð9Þ

Given solutions ~x ¼ ð~x1; ~x2Þ ¼ ð1;0Þ, and ~z ¼ ð~z1;~z2Þ ¼ ð0;1Þ, let
Vð~z; ~xÞ be the corresponding objective value in (6), i.e., k12. Accord-
ing the first three conditions in (9),

Vð~z; ~xÞ 6 Vð~z; xÞ for any feasible x to DPEC-B;
and Vð~z; ~xÞ 6 Vðz; ~xÞ for any feasible z to DPEC-B:

Hence, Algorithm 1 will always arrive at solution ð~z; ~xÞ by following
the greedy strategy, and return V� ¼ Vð~z; ~xÞ ¼ k12. However, due to
the last condition in (9), V� ¼ k21 is a better objective value, corre-
sponding to solutions z�1 ¼ 1, z�2 ¼ 0, x�1 ¼ 0, x�2 ¼ 1. The gap between
the two objectives is 100ðk12 � k21Þ=k21%, which can be arbitrarily
large if k12 � k21.

Complexity of Algorithm 1. Values of V obtained from adjacent
iterations k and kþ 1 in Algorithm 1 must follow Vk � Vkþ1 > �,
while values of Vk in all iterations k are bounded from below by
zero. Therefore, the number of iterations taken by the algorithm
is bounded by 1þ bV1=�c. The number of steps at each iteration
is Oðmþ nÞ, leading to an overall complexity Oððmþ nÞ=�Þ.

Alternatively, one can use a hybrid approach to approximately
solve DPEC-B by integrating the greedy criteria with DP recursions
with respect to the two different sets of decisions. We consider two
possible schemes for implementing the hybrid approach:

	 Scheme 1: Greedily close locations and subsequently vaccinate
individuals via a DP algorithm.
	 Scheme 2: Greedily vaccinate individuals and subsequently

close locations via a DP algorithm.

In Appendix A, we demonstrate the algorithmic steps by following
Scheme 1. For Scheme 2, Similar procedures can be performed,
which we omit in this paper but only provide the complexity result.
Remark 1. Both Algorithms 1 and 2 are for special DPEC-B where
rBV

i ¼ 1 and rAV
i ¼ 0. (That is, at a location with the presence of

infectious individuals, chances for people with and without
vaccination to be infected are 0 and 100%, respectively.) We
modify our algorithms as follows to make them applicable for
solving general DPEC-B with 0 6 rAV

i < rBV
i 6 1.

Now the objective of a general DPEC-B takes the form

min
X
j2F

X
i2P

kij rBV
i � ðrBV

i � rAV
i Þzi

� �
ð1� xjÞ;

with coefficients of z variables determined by general rBV
i and rAV

i ,
rather than 0 and 1 in (6). The values of changing entries in x and
in z in Algorithm 1 respectively change to

Xðj; P̂0Þ ¼
X
i2P̂0

kijrBV
i þ

X
i2PnP̂0

kijrAV
i

0
@

1
A,dj; and Zði; F̂ 0Þ

¼ ðrBV
i � rAV

i Þ
X
j2F̂0

kij

0
@

1
A,ci:
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This also applies to the greedy steps in Algorithm 2 (see Appendix
A), such that the value of closing Location j changes to
Xðj;PÞ ¼

P
i2PkijrBV

i

� �
=dj; 8j 2 F . As a result, we revise the DP recur-

sions in Algorithm 2 by

fiðkÞ ¼ min
zi2f0;1g: cizi6k

X
j2FnF̂1 kij rBV

i � ðrBV
i � rAV

i Þzi
� �

þ fiþ1ðk� ciziÞ
n o

;

for all i 2 P and k ¼ 0; . . . ; Bz. The complexities of both Algorithms 1
and 2 are not affected by these changes.
Group 1 Group 2 Group 3 Group 4 Group 5
113 14 66 30 14
10 80 113 58 58
52 102 55 158 169
61 73 181 168 46

111 143 148 185 65

G1 G2 G3 G4 G5
113 14 66 30 14
10 80 113 58 58
52 102 55 158 169
61 73 181 168 46

111 143 148 185 65

Fig. 1. Examples of preference lists and frontier locations.
4. DPEC with compensatory behavior

The previous DPEC-B model is based on the assumption that if a
location is closed, individuals who otherwise visit the location will
stay at home and do not visit any other locations. Such an assump-
tion may not be effective when travel restrictions issued by the
government are not severe, or when closed locations have other
alternatives providing similar service.

In this section, we consider a DPEC problem variant, named
DPEC-E, in which subgroups of individuals have visiting prefer-
ences and will visit alternative locations if the ones that are more
preferred are closed. We formulate the problem as an integer pro-
gram, which defines additional specially ordered set of type one
(SOS1) variables for determining locations visited by each individ-
ual after intervention. This section also develops an exact DP-based
algorithm for optimizing DPEC-E.

4.1. An integer programming model for DPEC-E

We model individuals’ probabilities of visiting each location via
utility functions representing the visiting preferences and the sta-
tus of the location (open or close). The population now contains
multiple groups of rational individuals, who will visit locations
with the highest utilities among those that are open. Denote the
set of behavioral groups by H ¼ f1; . . . ;wg with w
 n. For people
in each group h 2 H, a distinct utility uh

j is assigned for visiting
Location j; j 2 F . Every person i is associated with a probability
vector f i to characterize his/her likelihood of belonging to each
group, where f i ¼ ½fi;h : h 2 H�.

To calculate the probability of Person i visiting Location j, we
use variables that are SOS1, and their values are determined by
both solution x and utility u. Define binary variables ah

j such that
ah

j ¼ 1 if all individuals in Group h visit Location j, and ah
j ¼ 0 other-

wise. Define scalar Uh as the utility associated with the location
that Group h visits, for all h 2 H. For any Group h, only one of the
ah

j ’s can take value 1 depending on which open location has the
highest utility value. Let M be an arbitrarily large number, set as
M ¼ max

j2F ;h2H
uh

j in our later computation. The following constraints

ensure that individuals in each group will visit an open location
with the highest utility:X

j2F
ah

j ¼ 1 8h 2 H; ah
j 2 f0;1g 8j 2 F ; h 2 H ð10aÞ

Uh � uh
j ð1� xjÞP 0 8 j 2 F and h 2 H ð10bÞ

Uh � uh
j ð1� xjÞ 6 Mð1� ah

j Þ 8 j 2 F and h 2 H: ð10cÞ

(10a) makes sure that each group of individuals only visits one
location in F ; (10b) and (10c) together ensure that for all h 2 H,
Group h visits an open location that has the maximum utility. To
see this, for every h 2 H, when xj ¼ 1 as Location j is closed, both
(10b) and (10c) are relaxed, and ah

j is set to 0 in (10c) to keep it fea-
sible. Otherwise, (10b) enforce Uh to be the maximum uh

j among all
locations with xj ¼ 0. Let j�ðhÞ be such a location whose uh

j�ðhÞ ¼ Uh.
Then, the j�ðhÞth constraint in (10c) will set ah

j�ðhÞ ¼ 1, with all other
ah

j kept to zero as their left-hand sides of the corresponding
constraints in (10c) are positive. (Recall that we assume all utility
values are distinct, and thus j�ðhÞ is unique for every group h.) The
probability of Person i visiting Location j (i.e., pij) is

pij ¼
X

h

fi;hah
j ; ð10dÞ

We give the integer programming model of DPEC-E as follows.

DPEC-E : min
x2f0;1gn ;z2f0;1gm ;a2f0;1gw�n

ð2aÞ : ð2bÞ; ð2cÞ; ð10aÞ—ð10bÞf g:
4.2. An exact algorithm for optimizing DPEC-E

The idea of an exact algorithm for optimizing DPEC-E is to for-
mulate DP recursions to traverse all possible effective solutions x,
and then optimize a restricted DPEC-E with fixed x to obtain the
corresponding best vaccination decisions z.

4.2.1. Preference lists and frontier locations
For every group h 2 H, we define a preference list, denoted by rh,

as a permutation of set F ¼ f1; . . . ;ng with a descending order of
the utilities viewed by Group h. For Group h 2 H, its preference list
is given by

rh ¼ fr1; . . . ;rng : rj 2 F 8j ¼ 1; . . . ;n with uh
r1
> . . . > uh

rn
:

Fig. 1(a) illustrates an example of preference lists, for five
behavioral groups. For each group, the corresponding column con-
tains the location IDs ordered by their utility values, with the high-
est utility showing at the top. For example,
r1 ¼ f113;10;52;61;111g means that Location 113 is the most
favorable and Location 10 is the second favorable considered by
Group 1.

Fig. 1(b) demonstrates how decisions of closing locations affect
which location people in each group visit. The shaded entries cor-
respond to a closed location (Location 14), and for each group, we
underline locations that are visited, as their utilities are the highest
among all open locations. The location chosen by a group is named
‘‘frontier location.’’ For example, Locations 113, 80, 66, 30, and 58
are frontier locations for Groups 1–5, respectively.

4.2.2. Algorithmic details
Closing non-frontier locations is ineffective, as it will not reroute

people to visit different locations and thus will not change the
objective. Hence, we only need to sequentially close frontier loca-
tions to progressively improve the objective value. This becomes
the key in the development of an exact algorithm for optimizing
DPEC-E. We consider DPEC-E as a series of location closing fol-
lowed by vaccination decisions at the end. More specifically, given
a subset of locations to close at a given stage, our decisions are
either (i) to stop closing locations and start vaccination, or (ii) to
close one more location (if budget allows) and proceed to the next
stage.

Denote gðF 1; kÞ as the minimum expected infection size that is
achievable, given that all locations in set F 1 have already been
closed and a budget k remains for closing additional locations.
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(The budget for vaccination is a constant Bz for any gðF 1; kÞ.) For all
possible F 1 #F and 0 6 k 6 Bx, the DP recursions are

gðF 1; kÞ ¼ min

min
h2H:dðrhnF1 Þ1

6k
g F 1 þ ðrh n F 1Þ1; k� dðrhnF1Þ1

� �
;

j�ðF 1Þ; i:e:; the optimal objective of DPEC-E given
xj ¼ 1 8j 2 F 1 and xj ¼ 0 8j 2 F n F 1:

8>>><
>>>:

Here we use ð	Þ1 to represent the first element of set 	. Set rh n F 1 is
obtained from subtracting every location in F 1 from list rh while
keeping the order of the original locations that are still open. Thus,
ðrh n F 1Þ1 gives the frontier location for Group h after closing all

locations in F 1. When set h 2 H : dðrhnF1Þ1 6 k
n o

¼ ; for some k

and F 1, we set gðF 1; kÞ positively infinite.
An initial state is given by ðF 1; kÞ ¼ ð;;BxÞ. For state (F 1; k), if we

stop closing locations and proceed to vaccinate individuals, the
resulting infection spread is obtained from solving DPEC-E with x
being fixed. If we decide to close more locations, the above recur-
sion closes one more location from the current frontier locations
ðr1 n F 1Þ1; . . . ; ðrw n F 1Þ1 and then embarks on the next stage.
We update set F 1 by including the just-closed location, and reduce
budget k by deducting the corresponding cost for closing.

Given a fixed solution x to DPEC-E characterized by set
F 1 ¼ fj 2 F : xj ¼ 1g, we compute

ah
j ¼ 1 argmaxl2FnF1fuh

l g ¼ j
� �

for all j 2 F ; h 2 H ð12aÞ

pij ¼
X
h2H

fi;h1 argmaxl2FnF1fuh
l g ¼ j

� �
for all i 2 P; j 2 F ; ð12bÞ

where 1ð	Þ returns 1 if 	 is true and 0 otherwise. For a given set of
closed locations in F 1, selecting which individuals to vaccinate is gi-
ven by

min
z2f0;1gm

X
j2FnF1

X
i2P

qjpijð1� hiÞð1� ziÞ :
X
i2P

cizi 6 Bz

8<
:

9=
;; ð12cÞ

as a 0–1 Knapsack problem that can be optimized by off-the-shelf
MIP solvers.

Remark 2. This algorithm searches for locations to close only
among the current frontier locations at each step. Consider a
special case with cardinality budget constraint for closing locations
(i.e., d1 ¼ � � � ¼ dn ¼ 1), such that Bx represents the maximum
number of locations that one can close. Frontier locations through-
out the recursion are subsets of ðr1ÞBx

[ � � � [ ðrwÞBx
, where

ðrhÞBx
returns a set of first Bx elements of list rh. A search over

such a subset, with its cardinality 6 wBx, is much more efficient
than a search over the entire F .
5. Computational results

We test both DPEC-B and DPEC-E on problem instances derived
from real-world datasets. The computation emphasizes on (i) dem-
onstrating computational efficacy of the solution algorithms, (ii)
varying parameters and deriving policy insights from the DPEC re-
sults. All computations are performed on a HP Workstation Z210
Windows 7 machine with Intel (R) Xeon (R) CPU 3.20 GHz, and
8 GB memory. All involved integer programs are solved by default
CPLEX 12.4 [8] via ILOG Concert Technology with Cþþ.

5.1. Experimental design and computational setup

We use EpiSims simulator [3] to produce instances used for
evaluating our models and approaches. EpiSims simulator models
epidemic spread and probabilities that represent individual
movement patterns among locations. The data is for Portland, Ore-
gon, and describes typical movement of the city’s population over a
24-h period. The dynamic movement of individuals simulated by
EpiSims is formed by actual census, land-use, and population
mobility data. We therefore view it as representative of actual tra-
vel patterns.

Each data point in our data set corresponds to an individual en-
gaged in an activity at a specific location, and contains the follow-
ing characteristics: An ID of the individual, an ID of the household
to which this individual belongs, an ID of the activity that this data
point represents, the purpose of this activity (for example, home or
shopping), start time and duration of the activity, and, finally, an ID
of the location where the activity takes place. From this, we extract
only the person ID, location ID, and activity duration. We then pro-
cess this information to obtain pij for all i 2 P and j 2 F as follows:
After a pass through the entire data set, we collect for Person i 2 P
the set of locations that he/she has visited. We set pij ¼ 0 for any
location j that is never visited by Person i. If j is visited by i, we
compute the total time that i spends at this location over all visits
to the location, and divide this value by the total time that Person i
spends at all locations to obtain pij. While our data contains
approximately 1.6 million people moving among approximately
250,000 different locations, we randomly choose 100 individuals
from it for evaluating our algorithms, which subsequently restricts
our attention to 195 corresponding locations that the 100 people
visit.

To test DPEC-E, we categorize the entire population into five
behavioral groups H ¼ f1; . . . ;5g. Each pair of group and location
is assigned a random integer uh

j ; j 2 F ; h 2 H, ranging from 1 to
100 representing the group’s preference for visiting Location j.
For each person we generate five random numbers and normalize
them to represent the likelihood that a person belongs to five
behavioral groups.

We adopt three different sets of initial infectious probabilities
h ¼ ½hi : i 2 P�. The first set is randomly generated from an expo-
nential distribution with mean =1.5% to represent the most general
pattern of disease-carrying initial state in a population. This set is
used in the majority of our computation, with the following two
exceptions. Tests in Section 5.2.3 rely on a less variable h, randomly
generated as initial infectious probabilities from a uniform distri-
bution over [0.05,0.15], to compute dynamic infection status
through time. Tests in Section 5.2.5 aim to compare different ap-
proaches for solving DPEC-E. We randomly generate entry values
in 100 different vectors h from an exponential distribution with
mean =1%.

Two different sets of cost values are tested and analyzed. In Sec-
tion 5.2, we randomly generate the vaccination cost ci; 8i 2 P from
normal distribution Nðl;r2Þ ¼ Nð10;12Þ and facility closing cost
dj; 8j 2 F from normal distribution Nðl;r2Þ ¼ Nð100;502Þ. Tests
in Section 5.3 use cardinality cost values, and set
c1 ¼ � � � ¼ cm ¼ 1 and d1 ¼ � � � ¼ dn ¼ 1.

5.2. Results of DPEC-B

We replace bilinear terms zixj in the DPEC-B formulation (2) by
inequalities in (3) and solve the resulting binary integer program-
ming model in the optimization solver CPLEX to compute the opti-
mal objective. Our analysis of DPEC-B covers the following aspects.
In Section 5.2.1, we analyze the effect of varying budgets Bx and Bz

on disease control, and articulate solution patterns such as the types
of closed locations and vaccinated individuals. In Section 5.2.2, we
justify the superiority of integrating decisions of vaccination and
location closing, by examining results of separating the two strate-
gies in disease control. In Section 5.2.3, we demonstrate the stability
of static DPEC-B, and compare with a benchmark dynamic strategy,
where the infectious probabilities evolve over time. In Section 5.2.4,
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we compare the results of DPEC-B with a ubiquitous ‘‘high-degree’’
strategy in practice. In Section 5.2.5, we compare Algorithms 1 and 2
for approximating solutions to DPEC-B.

5.2.1. Sensitivity analysis and solution patterns
We denote Bx% as the ratio of location closing budget to the cost

of closing all location, i.e., Bx=
P

j2Fdj, and Bz% denotes the ratio of
vaccination budget to the cost of vaccinating the entire population,
i.e., Bz=

P
i2Pci. Fig. 2 depicts the optimal objectives of DPEC-B, cor-

responding to Bx% ranging between [0%, 6%] and Bz% ranging be-
tween [0%, 20%]. When budgets increase, the expected number of
infections decreases at a decreasing rate, reflecting a submodular
disease control effect for each unit of additional budget input in
both prevention and intervention procedures.

Characterizing closed locations. The DPEC models we study
involve two types of heterogeneity: the initial infectious probabil-
ities (characterized by hi) and propensities of visiting locations
(characterized by pij in DPEC-B, and by fi;h;uh

j in DPEC-E). Intui-
tively, one prefers to close locations that are the most popular
among all individuals, and locations that have the highest chances
of having infected individuals in presence.

Our computational results in Fig. 3 show evidences of both intu-
itions. Define the popularity of Location j by the summation of its
visiting propensities from all individuals, i.e.,

P
i2Ppij. Fig. 3(a) high-

lights closed locations in DPEC-B for Bx% ¼ 2%, 4%, and 6% (with a
constant Bz% ¼ 8%), and depicts their popularity in a decreasing
order. The figure only contains the first 36 locations (out of 195)
which include all locations that are closed. When Bx% ¼ 2% and
Bz% ¼ 8%, we observe that closed faculties are the most popular
ones. This becomes even more obvious as we increase Bx to 4%
and 6%. Fig. 3(b) highlights closed locations according to the prob-
abilities of having infection presence at different locations (i.e.,
qj; j 2 F ), where it is evident that locations with higher chances
of having infectious individuals are more likely to be closed.

Characterizing vaccination solutions. Fig. 4 depicts relations
of vaccination solutions with the initial infectious probabilities
(i.e., hi for all i 2 P) and with individuals’ probabilities of being in-
fected after vaccination, which we refer to as ‘‘post-vaccination
infection probabilities’’ (i.e., ð1� hiÞ

P
j2F0 pijqj for all i 2 P).

Fig. 4 has each vertical set of bars/blocks represent an individual
in P: the black blocks, if exist, signify the vaccinated individuals;
the gray bars in Fig. 4(a) stretch proportional to the initial infec-
tious probabilities, and in Fig. 4(b) stretch proportional to post-
vaccination infection probabilities. We order each individual fol-
lowing a descending order of initial infectious probabilities in
Fig. 4 and a descending order of the post-vaccination infection
probabilities in Fig. 4(b). The results are given for Bz% ¼ 4%, 12%
and 20% with Bx% ¼ 2% being constant.
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Fig. 2. Optimal objectives of DPEC-B under different Bx and Bz .
The distribution of vaccination subject in Fig. 4(a) displays no
special pattern. In Fig. 4(b) it tends to concentrate towards the left
end, corresponding to relatively high post-vaccination infection
probabilities. This observation is in line with an intuition that vac-
cination does not depend on initial infectious probabilities but is
affected by individuals’ chances of being infected.

5.2.2. Effect of integrating vaccination and location closing
Strategies of vaccination and location closing are sometimes

separately analyzed in the epidemic control literature. In this pa-
per, we simultaneously optimize both variables, where closing
locations controls infection spread by either forcing people to can-
cel their visits so as to reduce their exposure to possible infection
(i.e., DPEC-B), or reshaping individuals’ travel patterns (i.e., DPEC-
E).

We compare DPEC-B with a decision model in which vaccina-
tion and location closing decisions are optimized respectively in
Formulation (12c) and in Formulation

min
x2f0;1gn

X
j2F

X
i2P

qjpijð1� hiÞð1� xjÞ :
X
j2F

djxj 6 Bx

( )
: ð12dÞ

We then fix the two sets of solutions in (2a) to calculate the corre-
sponding expected number of infected individuals under separate
prevention and intervention control. We set budgets Bz and Bx to
1%, 3%, 5%, 7% and 9% of

P
i2Pci and

P
j2Fdj, respectively. Our results

show that vaccination and location closing are supplement to each
other, and a good integration of the two could effectively control
infection spread.

Fig. 5 demonstrates the comparison, in which each (Bx%; Bz%)
contains two bars to represent the expected number of infected
individuals in DPEC-B and in the separate control model, respec-
tively. The solid line in Fig. 5 depicts the expected infected number
before intervention. We observe that integrating prevention and
intervention decisions leads to smaller infection spread in all in-
stances. The winning margins get bigger when budgets Bx and Bz

increase.

5.2.3. Static versus dynamic DPEC-B
The paper focuses on static models for closing locations and

vaccinating population. This is reasonable if we consider the spo-
radic nature of disease outbreaks and fast responding actions that
are needed. Here we justify the approach from another perspective
and show that the static solutions, if applied repeatedly, yield re-
sults nearly as good as dynamically optimizing DPEC-B.

Consider the disease control as a dynamic process over a finite
time horizon 1; . . . ; T in which decisions are made at the beginning
of each time period, while individuals’ infectious probabilities
evolve as we implement the solutions through time. We parame-
terize all decisions and the infectious probabilities with time t, as
(xt ; zt) and ht

; t ¼ 1; . . . ; T , to represent decisions made at period
t, and infectious probabilities at the end of period t, respectively.
(Vector h0 contains all initial infectious probabilities.) Values of
ht are recursively updated based on ht�1 and decisions ðxt; ztÞ, using

ht
i ¼ ht�1

i þ ð1� ht�1
i ÞðrAV

i zt
i þ rBV

i ð1� zt
i ÞÞ
X
j2F

p0jpijð1� xt
j Þ

8t ¼ 1; . . . ; T; i 2 P: ð12eÞ

That is, the probability of Person i being infectious at the end of time
t equals to his/her infectious probability at the end of time t � 1
plus the complementary multiplied by the chance of Person i get-
ting infected in time t. We justify this dynamic model by applica-
tions of annual disease control, where individuals may be
vaccinated in multiple years for the same disease, and locations
can be closed but reopen in different years.
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Two strategies are considered for optimizing DPEC-B over mul-
tiple time periods.

	 Strategy 1: At the beginning of period t, solve DPEC-B with
h ¼ ht�1 and compute solutions ðxt ; ztÞ. Update ht according
to (12e) and repeat the process for t ¼ 1; . . . ; T .

	 Strategy 2: At the beginning of time 1, solve DPEC-B with
h ¼ h0 and apply its solution ðx1; z1Þ repeatedly to all time
periods, i.e., ðxt ; ztÞ ¼ ðx1; z1Þ for t ¼ 2; . . . ; T.

Fig. 6 illustrates the cumulative objectives of DPEC-B by using
Strategy 1 (‘‘Dynamic Optimization’’) and Strategy 2 (‘‘Static
Approximation’’), over 35 time periods, for three ðBx%;Bz%Þ combi-
nations. In general, Static Approximation yields good approxima-
tions to results of Dynamic Optimization, with relevant deviation
consistently smaller than 4%. This observation provides a strong
support for this paper to focus on the static DPEC-B model. After
solving one DPEC-B, a policy maker can apply the solution to multi-
ple time periods, without updating the infectious probabilities of
individuals. More importantly, this approach is much more effi-
cient computationally compared with Dynamic Optimization.

5.2.4. DPEC-B versus a high-degree heuristic strategy
[5] describes an approach commonly used in the practice of dis-

ease control, in which a policy maker simply vaccinates individuals
who visit the most number of locations, and closes locations that
are visited by the most people. We refer to this policy as the
high-degree strategy, for which we define the degree of Location
j 2 F by DFðjÞ and the degree of Person i 2 P by DPðiÞ, where
DFðjÞ ¼

P
i2Ppij; 8j 2 F , and DPðiÞ ¼

P
j2FpijDFðjÞ; 8i 2 P.
We test Bx% ¼ 0%, 2%, 4% and 6%, and Bz% ranging between
[0%,16%]. The results are compared between DPEC-B and the
high-degree strategy, where the latter repeatedly closes locations
and vaccinates individuals with the highest degrees until exhaust-
ing budgets Bx and Bz. Fig. 7 presents the results of DPEC-B and the
high-degree strategy. The former is significantly better for all
ðBx%;Bz%Þ combinations.

5.2.5. Algorithm 1 versus Algorithm 2
We generate 100 sets of initial infectious probabilities hi for all

i 2 P for this test. Using each set of data, we implement Algorithms
1 and 2 for solving DPEC-B with various budgets (e.g., Bx% set to
0.5%, 1%, 1.5% and 2%, and Bz% varied between [0%;25%]).

Table 1 presents the objective averages and CPU time given by
the two algorithms and by the CPLEX solver (optimal). In general,
both the approximate algorithms provide results that are close to
the optimal objective values. For Bz% 6 5% and Bx% 6 1%, they at-
tain near-optimal solutions, of which the objective values deviate
by no more than 3% from the optimal objectives. Relative deviation
increases at an increasing rate as we increase budgets, which,
though, is mainly attributed to reductions of objective values
(i.e., the scales of infection spread shrink effectively given more
budgets for intervening). On the other hand, Algorithms 1 and 2
use much less CPU time than solving DPEC-B as an integer program
in CPLEX.

5.3. Results of DPEC-E

We solve DPEC-E by using the approach developed in Sec-
tion 4.2. Throughout this section we assume ci ¼ 1 8i 2 P, and
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dj ¼ 1 8j 2 F . Therefore, Bz and Bx are simply referred to as the
maximum number of individuals to vaccinate and the maximum
number of locations to close. To visualize the impact of compensa-
tory behavior, we design a DPEC-B comparison instance in line
with the settings of DPEC-E as follows. Assume that people in
Group h visit the location with the highest utility and stay at home
if it is closed. Accordingly, pij for all i 2 P and j 2 F and qj for all
j 2 F can be calculated based on (12b) and (1a). We demonstrate
how compensatory behavior affects disease control and the result-
ing infection spread.

5.3.1. Sensitivity analysis and solution patterns
Fig. 8 depicts the objective values of DPEC-E and the compari-

son DPEC-B. Each curve, corresponding to a specific Bx% value,
comprises a series of points horizontally located by an increasing
sequence of Bz% values, and vertically by the optimization objec-
tives. We set Bx% respectively to 0%, 1% and 1.5%, and vary Bz% be-
tween ½0%;20%�.

Without closing any location, both DPEC-E and DPEC-B reduce
to the same formulation that minimizes the infection spread
through budgeted vaccination, parameterized by equivalent visit-
ing probabilities. Therefore, the curves in DPEC-E and DPEC-B for
Bx% ¼ 0% coincide exactly. Meanwhile, the curves’ vertical distri-
bution reveals that increasing Bx results in notable reduction of
infection spread in DPEC-B, while it has little impact in DPEC-E.

In DPEC-E, closing locations does not prohibit people from mak-
ing visits (since they visit alternative locations if the top choice is
closed). As a result, the intervention does not change the total
number of visits, but only induces different patterns of people’s
presence in the locations. A higher budget Bx entails more feasible
decisions x which potentially constitute more patterns of infec-
tious presence and exposure. Therefore, the scale of infection de-
creases as we increase Bx, but not strictly.
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Our observation here has important policy implications: when
the primary effect of closing down locations is to let people simply
congregate elsewhere, the action may have negligible benefit. In
such a case, it may be better to utilize limited resources for vacci-
nating more individuals or applying alternative intervention strat-
egies, e.g., travel restriction.

Characterizing closed locations. First, we show that closing
additional locations does not always reduce the scale of infection
in DPEC-E. For a specified set F 1 of closed locations, we append
DPEC-E with equality constraints xj ¼ 1 for j 2 F 1 and xj ¼ 0 other-
wise. Table 2 presents the optimal objective values of DPEC-E for
different selections of F 1, where Bz ¼ 8 in all tested instances.

In Table 2, by having all locations open, the minimum expected
number of infected individuals is 75.3. If we close Location 14, the
objective decreases to 73.6. However, by closing Location 66, we in-
crease the objective to 77.1, leading to an observation that closing
additional locations does not always improve the objective value
of DPEC-E. To see why, people who planned to visit the closed loca-
tions will instead visit other alternatives, which may cause worse
cases that inevitably have high infectious individuals gathering in
the same location, leading to the objective value increase.

Our results also demonstrate a correlation between the number
of frontier locations and the infection spread in DPEC-E. We test
DPEC-E and DPEC-B on a specific instance with Bz ¼ 8 and Bx ¼ 2.
(As a reference, the optimal objective value with Bx ¼ 0 and the
same Bz is 75.3.).

In Table 3, the objective of DPEC-B decreases by
ð75:3� 26:2Þ=75:3 ¼ 65:2%, through closing Locations 14 and 66.
The DPEC-E objective values are much higher than DPEC-B, indicat-
ing the importance of individuals’ cooperation, as well as the gov-
ernment’s enforcement on restricting travels and raising public
awareness during epidemic periods.

Results of closing Locations 14 and 66 given by DPEC-B are gi-
ven in Fig. 9(a), where individuals in Groups 1, 2 and 4 are enforced
to stay home, considerably decreasing the number of visits per-
formed in all locations. Solution patterns of location closing are
in line with previous observations about DPEC-B that popular loca-
tions or locations with high presence rates of infection are usually
closed (see Fig. 9(b)).

Meanwhile, closing up to two locations in DPEC-E reduces the
expected number of infected individuals by ð75:3� 73:6Þ=75:3 ¼
2:3%. For the four alternative closing solutions, Fig. 10 shades
closed locations and underlines the corresponding frontier loca-
tions. Individuals from behavioral groups visit locations that are
different from one another, and there are five distinct frontier loca-
tions. This observation indicates that solutions of closing locations
intends to maximize the number of distinct locations visited by
different behavior groups.

To provide further evidence, we compute the objective values of
DPEC-E corresponding to a set of feasible solutions for Bz ¼ 8 and
Bx ¼ 3. For each feasible solution, we identify the number of dis-
tinct frontier locations selected by all five groups. Fig. 11(a) pre-
sents each solution as a point, with the horizontal axis denotes
the number of distinct frontier locations and the vertical axis de-
notes the objective value. As a comparison, we revise the horizon-
tal axis in Fig. 11(b) to denote the number of locations that are
closed correspondingly.

Fig. 11 demonstrates a strong negative correlation between
infection spread and the number of frontier locations (not the
number of closed locations). A good location closing decision fea-
tures more distinct frontier locations, such that crowd disperses
across more locations in smaller groups. Following this pattern,
an infectious person will potentially infect fewer people, and thus
leads to a smaller infection spread.

The four coinciding data points in Fig. 11(a) correspond to the
four closed locations in Fig. 10, where frontier locations of all
groups are mutually different. If we consider locations as unor-
dered, the four cases represent the same location visiting pattern.
This explains why they yield the same infection spread. On the
other hand, we observe small fluctuation of the objective when
there exists at least one location visited by more than one behav-
ioral groups (i.e., the number of frontier locations equal to 3 or 4
(but <5) in Fig. 11(a)). The fluctuation is due to different behavioral
group sizes. This type of disparities in infection spread caused by
group size heterogeneity, is much smaller than disparities caused
by different patterns of frontier locations. The latter is a conse-
quence of merging (or splitting) the current population in different
behavioral groups to locations with diverse infection risk.

5.3.2. Results of DPEC-B implemented in DPEC-E
We compute the objective values of DPEC-E by using optimal

solutions of DPEC-B, for Bx% ¼ 1% and 1:5% (respectively
corresponding to closing one and two locations), and Bz% ranging
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Table 1
Objectives and CPU seconds of the greedy, hybrid, and exact approaches.

Budgets Algorithm 1 Algorithm 2 CPLEX

Bx (%) Bz (%) E [# infected]a CPU (s) E [# infected] CPU (s) E [# infected] CPU (s)

0.5 0 11.4035 0.02 11.4035 0.01 11.1675 0.12
0.5 5 7.7925 0.02 7.8565 0.00 7.5678 1.23

0.5 15 3.1874 0.02 3.3859 0.02 3.0515 1.35

0.5 25 0.9395 0.01 1.1011 0.02 0.8764 1.31

0.5 35 0.1599 0.03 0.2282 0.02 0.1358 1.19

1 0 8.6115 0.02 8.6115 0.02 8.5186 0.10
1 5 5.5182 0.03 5.5822 0.01 5.3716 2.10

1 15 1.9306 0.01 2.0851 0.01 1.7855 2.17

1 25 0.4672 0.01 0.5629 0.02 0.3982 1.85

1.5 0 6.7063 0.02 6.7063 0.01 6.5814 0.10
1.5 5 4.0281 0.02 4.0859 0.01 3.8761 1.10

1.5 15 1.1968 0.01 1.2981 0.02 1.0286 1.22

1.5 25 0.2286 0.02 0.2883 0.02 0.1576 1.03

2 0 5.1832 0.02 5.1832 0.01 5.0389 0.11
2 5 2.9436 0.02 3.0060 0.02 2.6824 0.94

2 15 0.7865 0.02 0.8530 0.01 0.5343 1.04

2 25 0.1190 0.02 0.1553 0.01 0.0445 0.82

a Instances with objective values lower than 0.1000 have been omitted.
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between ½0%;20%�. Table 4 reports the objective values of DPEC-B
and DPEC-E, while Column B-in-E presents the values of
E½# infected� when DPEC-B solutions are implemented in DPEC-E.

The objective values in both B-in-E and DPEC-E are much larger
than in DPEC-B, while the B-in-E results are sometimes even worse
than the results given by solutions of no vaccination or location
closing. Compared with the optimal objective values of DPEC-E,
solutions of DPEC-B do not yield good results when the compensa-
tory behavior is actually in presence, but gaps between the two
objectives become smaller when more locations can be closed.



Table 2
DPEC-E results for fixed sets F 1 of closed locations.

# of locations to close
(j F 1 j)

Locations to close
(F 1)

Expected # of infected
individuals

0 None 75.3
1 {14} 73.6
1 {66} 77.1
2 {14,66} 75.4
2 {14,113} 73.6
3 {14,66,113} 73.6

Table 3
Results of DPEC-B and DPEC-E for Bx ¼ 2 and Bz ¼ 8.

Model Objective Closed locations at optimum

DPEC-B 26.2 {14,66}
DPEC-E 73.6 {14}, {14,58}, {14,80}, {14,113}
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5.3.3. DPEC-E versus the high-degree strategy
We consider the high-degree strategy for the DPEC-E case as

follows. Define the degrees of Location j; j 2 F , Person i; i 2 P, and
Group h; h 2 H by DFE ðjÞ;DPE ðjÞ, and DH

E ðhÞ, respectively. Let
G0 G1 G2 G3 G4
113 14 66 30 14
10 80 113 58 58
52 102 55 158 169
61 73 181 168 46

111 143 148 185 65
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G1 G2 G3 G4 G5 G1 G2 G3 G4 G5
113 14 66 30 14 113 14 66 30 14
10 80 113 58 58 10 80 113 58 58
52 102 55 158 169 52 102 55 158 169
61 73 181 168 46 61 73 181 168 46

111 143 148 185 65 111 143 148 185 65

Fig. 10. Frontier locations and c
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Without closing any locations, the frontier locations of all five
groups are: 113 for Group 1, 14 for Group 2, 66 for Group 3, 30
for Group 4, and 14 for Group 5, of which the degrees are ranked
the 27th, 21st, 4th, 8th, and 21st highest among all locations in F ,
respectively.

Subject to budgets Bz and Bz, the high-degree strategy vacci-
nates individuals and closes locations according to decreasingly or-
dered degrees fDPE ðiÞ; i 2 Pg and fDFE ðjÞ; j 2 Fg, respectively. For
Bx% ¼ 0%, 1% and 1.5% (corresponding to closing up to zero, one,
and two locations), the high-degree strategy will not close any
frontier locations given above, and thus leads to the same results
for all tested Bz% ranging between ½0%;20%�.

Fig. 12 presents the objective values of DPEC-E computed by
using the optimization model and the high-degree strategy, where
the latter solutions are suboptimal in all cases.
0

0.2

0.4

0.6

0.8

1

po
pu

la
rit

y 
of

 in
fe

ct
io

n 
pr

es
en

ce

closed

ons to parameters in DPEC-B.
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61 73 181 168 46 61 73 181 168 46

111 143 148 185 65 111 143 148 185 65

losed locations in DPEC-E.
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Table 4
Objectives of DPEC-E given by optimal DPEC-B solutions.

Budgets E [# infected]a Budgets E [# infected]

Bx Bz (%) DPEC-B B-in-E DPEC-E Bx Bz (%) DPEC-B B-in-E DPEC-E

1 0 30.36 83.03 81.05 2 0 15.10 85.16 81.05
1 2 29.15 81.31 79.16 2 2 14.15 79.26 79.16
1 6 27.16 77.74 75.44 2 6 12.83 75.61 75.44
1 10 25.31 74.22 71.76 2 10 11.71 72.17 71.76
1 15 23.16 69.72 67.20 2 15 10.39 67.86 67.20
1 20 21.14 66.36 62.66 2 20 9.27 63.62 62.66

a As a reference, the expected number of infected individuals without vaccination or closing locations is 82.97.
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6. Conclusions

In this paper, we study problems of disease prevention and epi-
demic control (DPEC) where people who may carry infectious virus
visit a set of locations with certain probabilities. Unlike most DPEC
literature, we integrate decisions of disease prevention (e.g., vacci-
nation) and intervention (i.e., closing locations). The paper mainly
focuses on two DPEC problem variants, with and without compen-
satory behavior of visiting locations, respectively. We formulate
both problems as integer programming models that can be opti-
mized by off-the-shelf solvers. Moreover, we develop approximate
algorithms for efficiently computing feasible solutions to the first
DPEC variant without compensatory behavior, and demonstrate
their computational efficacy.

Our computation is performed on a simulated instance, involv-
ing 100 people, 195 locations, and parameters extracted from
real-world datasets describing typical movement of population
in Portland, Oregon, over a 24-h period. We compare two imple-
mentation strategies of the DPEC decisions: One repeatedly solves
an updated DPEC by using new infectious probabilities at each
time period; the other solves the DPEC once and applies the same
static solutions to all time periods. It indicates that solutions
solved by static models can yield relatively good results in a set-
ting with dynamic evolving infectious rates. Moreover, we study
the relationship between optimal solutions and parameter set-
tings. Finally, by considering compensatory behavior, our models
yield the following policy insights. First, closing locations when
compensatory behavior exists does not necessarily reduce the
number of visits in all locations, but induce different visiting pat-
terns, resulting in minor disease control effects or even infection
scale increasing. Therefore, it is important to introduce govern-
ment interference procedures such as travel restriction, during
vaccination and location closing, and to carefully consider the
ramifications of these choices. Second, location closing decisions
that yield good infection control results intend to increase the
number of distinct frontier locations, by triaging a population to
as many different locations as possible.

Future research directions include investigating DPEC models in
a multi-objective programming context, and comparing the results
for different types of diseases. We are also interested in incorporat-
ing more types of prevention/intervention decisions into the cur-
rent models, and study efficient algorithms for optimizing the
solutions under extreme events.
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Appendix A. An alternative algorithm for solving DPEC-B

We describe an algorithm alternative to Algorithm 1 for solving
DPEC-B. It follows a hybrid scheme (i.e., Scheme 1 mentioned in
Section 3.2) that greedily close locations and subsequently vacci-
nate individuals based on DP recursions. The details are given as
follows.

A greedy strategy to close locations

Steps of greedily closing locations follow the same criteria in
Algorithm 1. We start with P̂0 ¼ P, and evaluate value
Xðj;PÞ ¼

P
i2Pkij

� �
=dj of closing Location j;8j 2 F . We reorder

locations in F , and consider a list L ¼ fj1; . . . ; jng with
Xðj1;PÞP � � �P Xðjn;PÞ. We first close locations according to the
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order in L, until the budget Bx is exhausted. We denote a feasible
solution by x̂. For any subset F̂ 1 with x̂j ¼ 1;8j 2 F̂ 1 and
x̂j ¼ 0;8j 2 F n F̂ 1, the DPEC-B reduces to a 0–1 Knapsack
problem:

min
X
i2P

X
j2FnF̂1

kij

0
@

1
Að1� ziÞ :

X
i2P

cizi 6 Bz; zi 2 f0;1g 8i 2 P

8<
:

9=
;: ðA-1Þ
DP for solving formulation (A-1)

Apply DP to solve Formulation (A-1) for a given F̂ 1. The algo-
rithm involves m stages that sequentially decide whether or not
to vaccinate Persons 1; . . . ;m subject to a budget limit Bz. At stage
i, if we do not vaccinate People i, the objective will increase byP

j2FnF̂1 kij with the same remaining budget. Otherwise, the budget
Bz decreases by ci with the objective being unchanged. For all i 2 P
and k ¼ 0; . . . ; Bz, the DP recursions are

fiðkÞ ¼ min
zi2f0;1g: cizi6k

X
j2FnF̂1

kij

0
@

1
Að1� ziÞ þ fiþ1ðk� ciziÞ

8<
:

9=
;

¼

P
j2FnF̂1 kij þ fiþ1ðkÞ if ci > k

min
X

j2FnF̂1

kij þ fiþ1ðkÞ; f iþ1ðk� ciÞ

8<
:

9=
; otherwise;

8>>><
>>>:

with boundary conditions being

fmþ1ðkÞ ¼ 0 for all k ¼ 0; . . . ;Bz:

We track backwards, and compute fiðkÞ; 8k ¼ 0; . . . ;Bz for
i ¼ m; . . . ;1. Value f1ðBzÞ provides the best objective value of Formu-
lation (A-1) for some fixed F̂ 1.

Algorithm 2 summarizes critical steps in the hybrid algorithm,
where Steps 2–2 corresponds to the greedy part for closing loca-
tions, and Steps 2–2 corresponds to the DP iterations for vaccinat-
ing individuals.

Algorithm 2. A hybrid approximate algorithm for solving
DPEC-B

Input: A DPEC-B instance.
Output: An objective value V�.
1: Compute kij for all i 2 P and j 2 F .

2: Initialize Kx :¼ Bx, F̂ 1 :¼ ;.
3: for j 2 F do
4: Compute Xðj;PÞ :¼

P
i2Pkij

� �
=dj.

5: end for
6: Sort all j in F in a descending order of Xðj;PÞ, denoted by
L ¼ fj1; . . . ; jng, such that Xðj1;PÞP � � �P Xðjn;PÞ.

7: for k ¼ 1; . . . ;n do
8: if djk

6 Kx then

9: Update F̂ 1 :¼ F̂ 1 þ jk;Kx :¼ Kx � djk
.

10: end if
11: end for
12: Compute Ki :¼

P
j2FnF̂1 kij for all i 2 P.

13: Define boundary conditions: fmþ1ðkÞ ¼ 0 for all k.
14: for i ¼ m to 1 do
15: for Kz ¼ 0 to Bz do
16: Compute

fiðkÞ ¼minzi2f0;1g:cizi6k Kið1� ziÞ þ fiþ1ðk� ciziÞf g.
17: end for
18: end forV� ¼ f1ðBzÞ.
Optimality gap

Consider Example 1 given in Section 3.2. After the greedy steps
in Algorithm 2, we have Xð1;PÞ ¼ 1:4 and Xð1;PÞ ¼ 1:3, and there-
fore F 1 = {1}. We start the DP with K1 ¼ 0:6 and K2 ¼ 0:7. Given
incumbent f3ð0Þ ¼ 0 and f3ð1Þ ¼ 0, we obtain f2ð0Þ ¼ 0:7 with
x2 ¼ 0, and f2ð1Þ ¼ 0 with z2 ¼ 1. In the subsequent stage, f1ð1Þ at-
tains the minimum 0:6 with z1 ¼ 0, i.e., the solutions are to vacci-
nate Person 2 and to close Location 1, with an objective value being
0.6. However, x1 ¼ 0, x2 ¼ 1, z1 ¼ 1, z2 ¼ 0 are the optimal solu-
tions with the minimum objective 0:4.

Indeed, similar to the pure greedy algorithm (i.e., Algorithm 1),
Algorithm 2 might also yield solutions with arbitrarily large opti-
mality gaps. Consider the same example we design in Section 3.2,
the third condition in (9) will set x1 ¼ 1 according to the greedy cri-
teria, and the first and second conditions in (9) will further guaran-
tee the DP recursions vaccinating Person 2 (with z2 ¼ 1 and thus
z1 ¼ 0). With the same solution ð~x;~zÞ and suboptimal objective va-
lue k12 yielded by Algorithm 2, we can have the optimality gap
arbitrarily large by letting k12 � k21.
Complexity analysis of Algorithm 2

The greedy steps to obtain a subset F̂ 1 are OðnÞ. To compute
fiðkÞ for each state ði; kÞ, we perform (i) one summation step as
ki þ fiþ1ðk� ciziÞjzi¼1 and (ii) one value comparison step as
ki þ fiþ1ðk� ciziÞjzi¼1 versus fiþ1ðk� ciziÞjzi¼0. Thus, implementing
the DP algorithm for each fixed F̂ 1 takes OðmBzÞ steps. In the
worse case, for every person i we calculate fiðkÞ for all
k ¼ 0; . . . ;Bz. The complexity is then proportional to the size of
all states, i.e., OðmBzÞ. The overall complexity of the hybrid ap-
proach is OðnþmBzÞ. Alternatively, Algorithm 2 has a complexity
of Oðmþ nBxÞ if we follow Scheme 2, i.e., using the greedy sub-
routine to decide solution P̂0 and then using DP to decide solu-
tion x.
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