FIREAXE: The DHS Secure Design Competition Pilot

[Extended Abstract]

Yevgeniy Vorobeychik, Michael Z. Lee, Adam Anderson, Mitch Adair, William Atkins, Alan
Berryhill, Dominic Chen, Ben Cook, Jeremy Erickson, Steve Hurd, Ron Olsberg, Lyndon
Pierson, and Owen Redwood*

ABSTRACT

Application security is a crucial problem in today’s techno-
logical society. Currently, there does not exist a place for
discovering, learning, and testing secure design principles.
FIREAXE is the pilot competition that attempts to fill this
gap. Two teams, one in New Mexico, and one in California,
participated in this trial run. We successfully show that a
secure design competition is feasible and useful for teaching
and guiding students to implement more secure software.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems|: Security and Protection

General Terms
Security

Keywords

Cybersecurity competition

1. INTRODUCTION

FIREAXE is the trial run of a project, sponsored by the
Science and Technology Directorate of the Department of
Homeland Security, designed to test and explore new secure
design principles. This document discusses the methods at-
tempted and lessons learned, as well as future directions
and competition deployment. In a world where security is

* Affiliations, in author order, are: Sandia National Labs,
University of Texas at Austin, University of Nebraska at
Omaha, University of Texas at Dallas, Sandia, University
of California at Berkeley, Arizona State University, Sandia,
Sandia, Sandia, Sandia, Sandia, Florida State University,
Sandia. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSIIRW 12, October 30 - November 2, Oak Ridge, Tennessee, USA
Copyright 2012 ACM 978-1-4503-1687-31 ...$15.00.

so vital to preserving the stability and safety of our critical
infrastructure, the failure of our educational system to train
security-minded engineers is both a huge disservice to the
next generation and a dangerous risk to our national safety.

Secure design is a difficult concept to teach; while one can
certainly present the theory, genuine understanding is usu-
ally not gained until the system has been attacked. Only
then do the flaws of an implementation become truly ap-
parent. Clearly, we prefer not to wait for an attack to dis-
cover design flaws, and would like any design to be security-
minded from the start. This is so for any application, but es-
pecially true for critical infrastructure, where consequences
of security failures could be catastrophic. The key open
questions are: a) how do we ensure that software engineers
internalize security principles which they may (at best) know
only in theory and b) how do we create an environment
where secure design principles, as well as securely designed
systems, will naturally emerge? We submit that a secure de-
sign competition is the most naturally way to address both of
these questions. Moreover, unlike typical cybersecurity com-
petitions such as Tracer FIRE, CSAW, and ideas described
in the DESSEC report, a crucial feature of our competition
is that it involves both the design of a secure system, and an
attack on it.

In a secure design competition that we describe, two teams
compete by first jointly and independently designing a styl-
ized electronic voting system (i.e., one stripped of much of
the complexity that real voting systems necessarily possess,
but having many of the relevant features from real systems),
and then red teaming the opposing system. This process of
“design then red team” is repeated twice to allow each team
to address security failures exploited by its counterpart.

2. COMPETITION STRUCTURE

The FIREAXE Secure Design Competition pitted together
two teams of three summer interns each. One team was sit-
uated at Sandia’s Albuquerque, New Mexico site (we call it
the NM team), while the other was located at Sandia’s Liv-
ermore, California site (we call it the CA team). In addition,
the competition organizers served as the “white team” tasked
with mentoring, answering competition questions, clarifying
the rules (and, in several cases, modifying these as neces-
sary), and scoring the teams. The focus of the competition
was on designing a stylized electronic voting system (EVS)
following a provided specification and deployed on a pair of
general-purpose PCs. In a nutshell, the EVS consisted of a
server (analogous to the election management system) and a
client (the actual voting station). The server reads the elec-

1. Load osm

2. read config.txt
voting system

and alpha txt

5. client reads client server

votes.txt
3. Write config

N/ infotousB [k
= 4, read config |

from USB/ =
6. client writes’ ‘ L i

— 9. results
results to USB 7 server reads
results from USB gre verified
USB disk

Figure 1: High level EVS overview

tion configuration information (provided as a collection of
text files on the server machine), and conveys it to the client
via a USB. The client first reads the configuration from the
USB, and subsequently reads in the votes (provided as a text
file on the client machine). Finally, the client conveys the
information about votes to the server using the same USB.
Figure 2 offers a schematic representation of the voting pro-
cess. In addition to designing the actual EVS application,
the teams were allowed to choose and configure their own
OS platform for deploying the EVS, with the constraint that
it was based on Linux.

The competition proceeded in two rounds, with each round
divided into two phases. The first phase involved each team
independently developing a voting system. At the end of
the first phase, both teams submitted their entire EVS plat-
form (OS, together with the EVS executables) for both the
client and the server (e.g., as an iso or a dd image), EVS
deployment instructions, and the source code for the actual
EVS client and server application. Each team’s submission
was then passed on to its counterpart, signaling the start of
phase two. In the second phase, each team is tasked with
generating attack vectors against the EVS of the other. In
the first round, attacks were constrained to be executed as
scripts from command line; thus, “terminal attacks”, i.e., at-
tacks involving special keyboard keys (such as control) were
disallowed. In the second round, the attack surface was ex-
panded to allow attacks involving an arbitrary sequence of
ten strings to be entered at the keyboard, allowing in ef-
fect execution of both arbitrary scripts, as well as special
keys. To ensure that the red teaming phase proceeded in
congruence with the spirit of the competition, we imposed
some ground rules on the attackers which effectively ruled
out attacks on the evaluation structure itself, and addition-
ally required that each attack vector be approved by the
white team.

Upon the completion of the second phase, each team sub-
mitted its attack vectors, and the evaluation and scoring
commenced. We structured the evaluation into five scenar-
10s which provided the means for simulating penetration and
subversion attacks by presenting an attack entry point:

e The Baseline scenario evaluated the EVS of each team
without deploying any attacks. Effectively, this sce-
nario evaluated whether the EVS complied with the
specification.

e The Client Breach scenario executed the attacks on
the client PC as the EVS user prior to running the
client application.

e The Server Breach scenario executed the attacks on
the server PC as the EVS wuser prior to running the
server application.

e The Client Subversion scenario executed the attacks
on the client PC as root prior to running the client
application.

e The Malicious USB scenario placed attack files onto
a USB drive to be used for running the EVS.

Each scenario was scored separately for each EVS, and the
total scores were added together to give the final score for
each team in the corresponding round.

After the first round was completed, each team received
the attack vector submissions targeting its EVS. At this
point, the second round proceeded exactly as the first.

3. SECURE DESIGN PRINCIPLES

One of the goals of this project is to identify secure design
principles and observe how the competitors operationalize
them in practice. Below we list some of these principles [1]:

e Reduce the attack surface. The smaller the attack
surface, the easier it is to verify or prove correctness.

e Use existing tools. Do not re-implement preexisting
components unless there is a good reason. A failure to
understand certain nuances in important functionality
could result in problems down the road. Worse yet,
a flawed implementation could result in unexpected
weaknesses.

e Enforce policies at the lowest level. In many
cases, the “lower” the level of implementation, the more
difficult it is for an attacker to gain access.

e Defense in depth. Never assume that the outermost
layers of security will stop all attackers. Always have
additional defensive layers outside of your known at-
tack model.

e Prevent easy access. Although security through ob-
scurity is generally frowned upon, an effort should be
made to prevent attackers from easily analyzing or oth-
erwise exploring a system. At the same time, do not
depend on obscurity to stymie all attackers.

Many of these principles seem obvious, but nevertheless they
are commonly overlooked in practice. In Section 4, we show
how the individual teams applied these principles (not al-
ways consciously) to their EVS design.

4. EVS DESIGN

This electronic voting system (EVS) specification is a sim-
plified representation of how a real EVS might behave. The
voting configuration is stored on a central server, which is
distributed to the client voting machine over a USB disk.
The client simulates the actual voting process by reading a
log of the voting session from a local file system. The client
then sends the results back to the central server over USB,
at which point the server runs a final tally and writes the
results out to disk.

In addition to designing the EVS application, both teams
were also allowed to customize a Linux OS, for example, by
customizing the kernel. We now describe how each team
designed the EVS and its environment.

4.1 Customizing the Kernel

Both teams created a customized version of the Linux ker-
nel. For the NM team, the kernel customization provided the
security anchor. In doing so, they ultimately succeeded in
protecting themselves against a root-level (client subversion)
attack by the CA team. Rather than creating custom mod-

ifications, both teams used readily available tools to harden
the kernel. For example, both teams applied the grsecurity
patches to the kernel to provide additional security restric-
tions and modified the default kernel configuration to re-
move much of the unneeded functionality. The NM team
also packaged the root file system directly into the kernel
image to prevent an adversary from rebuilding the image
with a modified file system.

The kernel embodied several of the secure design princi-
ples. Both teams manipulated the kernel options to remove
unnecessary functionality, greatly reducing the attack sur-
face. Similarly, both teams hardened the kernel using exist-
ing grsecurity patches. Many runtime policies were enforced
at the kernel level, and the NM team severely restricted the
capabilities even at the root user level (the CA team opted
not to do so). Moreover, the NM team made it difficult to
access and modify their system out-of-band by packing the
file system into the kernel as a compressed image.

4.2 Customizing the Userspace

In addition to securing the kernel, both teams attempted
to harden user-level programs and, in particular, the EVS
user shell. Both teams created a custom EVS user shell
that was only able to execute the client/server code, but
do nothing else. This alone made attacks that use this
shell as a penetration point almost impossible to execute.
Indeed, in round two, the CA team submitted no attacks
for client/server breach scenarios, and the NM team’s at-
tacks amounted to denial-of-service that exploited the spe-
cific (and easily repaired) interface quirks of the CA sys-
tem combined with poorly chosen remapping of keyboard
keys. The NM team also substantially hardened the root
user, removing all but the few default executables that the
specification explicitly required in order to effectively score
the competition. In order to enable additional customiza-
tion and, moreover, make it more difficult for an attacker
to reverse engineer the development environment, the NM
team used BusyBox (a common embedded systems package)
instead of GNU coreutils, for their development platform.
The NM team also used uClibc as a small C runtime library
and polarSSL for as a cryptography library. These compo-
nents are usually found on embedded systems and are easy
to pare-down and customize. The CA team, in contrast,
used standard python libraries to develop their EVS.

In the second round, both teams deployed some form of
access control at the EVS user level. The NM team made the
EVS application itself password protected, making reverse
engineering and attacks more difficult on its opponent. The
CA team created an audio CAPTCHA that requires a user
to listen to a sequence of beeps and enter the correct num-
ber in order to successfully log in as the EVS user. As it
turned out, the audio CAPTCHA used by the CA team was
exploited in a denial-of-service attack by the NM team.

The userspace libraries and runtime draw from several de-
sign principles. By severely restricting the user shells (and,
in the case of the NM team, the root shell), both teams
greatly reduced the attack surface. Moreover, all of the li-
braries and development environments were built using ex-
isting tools.

43 EVS

Teams were free to program their EVS application in any
language they desired. The NM team created versions in

Python, C++, and Java, but ultimately settled on C for
the ability to harden the binary through the toolchain and
to remove almost all library dependencies. The CA team
wrote their EVS in Python.

Both teams used cryptographic tools to enforce integrity
on the USB-based communication between the EVS client
and server. The NM team used Diffie-Hellman key exchange,
implemented in PolarSSL. The CA team used Diffie-Hellman
key exchange to create a shared secret which was then used
as pseudo-random key material. The key material was cycli-
cally XORed with the data in a manner similar to a one-time
pad. The data was usually short enough to never repeat the
shared key, thus ensuring secrecy.

One of the interesting design decisions is the different uses
of cryptography. In the kernel, the most critical use of cryp-
tography is for verification. Thus, the NM team used RSA
public key verification for this purpose (the CA team did
not do verification at the kernel level), but they deliber-
ately do not include a secret key inside the kernel to prevent
the opposing team from re-signing their own binaries. A few
weaknesses do exist in the NM scheme because the BusyBox
executable actually depends on the execution path. How-
ever, this is difficult to exploit due to the read-only nature
of the file system. In the electronic voting application, cryp-
tography was used by both teams to verify message integrity
but not secrecy.

4.4 The CA “Red Pill”

Arguably the most difficult scenario to defend against in
the competition is the client-subversion attack, where the
malicious code is run with root privileges. After being bested
at this vector in the first round of the competition, the CA
team attempted to exploit the human factor in an attempt
to protect their EVS from the same attack happening a sec-
ond time. The NM team’s attack involved replacing the shell
that the default user logs into and executes the client and
server from. Assuming (incorrectly, as it turned out) that
the NM team would reuse the same attack vector in the sec-
ond round, the CA team introduced a “red pill” to prevent
it. The red pill determined at boot time if the OS is running
in a virtual machine or physical hardware by examining the
contents of /dev/mem for known strings. If it is determined
that the OS is on physical hardware, it made the shell along
with some other important files immutable with the chattr
command. However, if it is determined that the OS is run-
ning inside a virtual machine, it leaves the system unaltered
in hopes of enticing the opposition to reuse their attack from
round one.

S. ATTACK SCENARIOS

As mentioned earlier, there were several restrictions placed
on the attackers, not the least of which is the requirement
that the attack plans be approved by the white team. One
of the main motivations for restricting attacks is to ensure
that red teaming efforts are focused on attacking the system
as designed by the counterparts, rather than flaws in the
competition setup itself.

5.1 Round One Attacks

5.1.1 NM Team’s Attacks

Since the CA team used a custom shell for the EVS user
that had no script interpreter, the NM team could not deploy

any attacks for the client/server breach scenarios. They did,
however, have successful attacks for client subversion and
malicious USB scenarios:

Client Subversion: The NM team’s root level attack in-
volved a simple replacement of the custom shell which then
launched a substitute client binary. This was straightfor-
ward to implement as the CA system did not protect against
a malicious root user.

Malicious USB: The NM team created a passive injec-
tion attack that tricked the CA team’s submission into ac-
cepting an empty input message.

5.1.2 CA Team’s Attacks

In round one, the NM team offered a full shell for the
EVS user, which was subsequently exploited by the CA team
during the red teaming phase.

Client Attacks: The CA used a replay attack. The NM
round one submission did not use a randomized shared se-
cret as part of their integrity check to protect the files as
they moved from the client to the server. Thus, a given set
of input files (sequence of votes and election configuration)
produce the same set of output files that are communicated
to the server. Thus, the CA team replayed an election en-
gineered using the NM system offline, waited until the USB
was unmounted by the client, and then overwrote its con-
tents with the files artificially generated which would pass
the integrity test at the server. Because the round one NM
EVS submission had the complete shell for the regular EVS
user, the CA team exploited the fact that certain obscure
sh flags (sh -nv) allow one to copy the replay files onto the
USB (even though no copy command was available in the
user shell). Additionally, since mount and umount were en-
abled, the CA team was able to run the client breach attack
in the client subversion scenario.

Server Breach: In this scenario the CA team executed
a similar replay attack that was used in the other scenarios:
they used sh to copy the replay files generated offline onto
the USB once it was inserted into the server.

Malicious USB: The CA team exploited a bug in the
NM team’s EVS code by filling the USB prior to its use in
EVS. In this case, the NM team creates empty files on the
USB, which appeared to the server as if no one had voted.
The result was that all candidates were declared as winners.

5.2 Round Two Attacks

5.2.1 NM Team’s Attacks

For the second round, the New Mexico team came up with
attacks for all scenarios, although in all cases except client
subversion these were denial-of-service attacks.

Client/Server Breach: The NM team abused the audio
CAPTCHA used by the CA system. Because the CAPTCHA
takes a non-trivial amount of time to play, in combination
with the decision by the CA team to remap filtered keys to
the “enter” key, the NM team’s attack involved pressing the
“[” key for 5 seconds, which results in a 15 minute delay while
the CA system processes the failed CAPTCHA answers to-
gether with repeated new queries. Since a short amount of
time spent to enter an attack string causes a nearly arbitrary
system delay, this was an effective denial-of-service attack.

Client Subversion: This time around, the CA system’s
root shell was better locked down and prevented write access

to a lot of directories. However, because mount is required
for the root shell, it is also possible to abuse it by mount-
ing temporary file systems on top of protected directories.
In particular, the NM team mounted a writable tmpfs on
top of the home directory allowing arbitrary write access to
supposedly trusted paths.

Malicious USB: The CA round two submission still did
not verify the integrity of the message, but instead tried to
empty the USB stick before use. However, due to implemen-
tation oversights, there were a number of ways to prevent
this operation from succeeding, such as creating a symlink
to a directory, which resulted in a denial-of-service attack
(the attack was recognized as such by the CA team).

5.2.2 CA Team’s Attacks

The CA team was able to produce only one successful
attack (which resulted in a detected DoS) involving the ma-
licious USB scenario. For this attack, the CA team created
a folder structure on the USB that the recursive delete code
couldn’t delete. It would open too many directories and die
due to the lack of file descriptors. The CA team also at-
tempted a client subversion attack. However, it was unable
to deploy it because the NM system in round two included
two highly restrictive features of the root shell: 1) one could
only execute or view files on a pre-generated white list which
included only the election configuration files, output files,
and the actual client/server binaries, and 2) configuration
files were restricted to only contain alphanumeric characters,
effectively preventing the CA team from executing scripts.

6. SCORING

The competition was scored as follows. During each sce-
nario, the EVS system was executed following a specified
sequence of commands. At the end, the server created out-
put files containing election results, which were then com-
pared to the “golden copies”. If the output files matched the
golden copies perfectly, the EVS received a score of 4 points
for that scenario, with the red team receiving no points. If
these were incorrect, the EVS team received 0 and the red
team received 2 points. Additionally, we treated denial-of-
service (DoS) attacks as a special case, and allowed an EVS
to receive points merely for detecting that it has been a tar-
get of a DoS. An attack was considered a DoS if it resulting
in the EVS not producing any output files with election re-
sults. If a DoS attack was correctly recognized by the EVS,
it received 1 point, and the red team would receive 0; oth-
erwise, the scenario was scored as a successful attack.

7. CONCLUSION

From our experiences, we believe that this pilot Secure
Design competition is largely a success. Not only is it an
effective way to teach people at all levels, from students
to senior developers, about the concepts and importance of
secure design, but it also provides a safe environment for
both novel design and creative offense without impacting
critical infrastructure.

8. REFERENCES

[1] Terry V. Benzel, Cynthia E. Irvine, Timothy E. Levin,
Ganesha Bhaskara, Thuy D. Nguyen, and Paul C.
Clark. Design principles for security. Technical report,
Naval Postgraduate School, 2005.

