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Abstract. Classical supervised learning assumes that training data is
representative of the data expected to be observed in the future. This
assumption is clearly violated when an intelligent adversary actively tries
to deceive the learner by generating instances very different from those
previously seen. The literature on adversarial machine learning aims to
address this problem, but often assumes constraints that sophisticated
and determined adversaries need not abide by. We model the adversarial
machine learning problem by considering an unconstrained, but utility-
maximizing, adversary. In addition, rather than modifying the learning
algorithm to increase its robustness to adversarial manipulation, we use
an output of an arbitrary probabilistic classifier (such as Naive Bayes)
in a linear optimization program that computes optimal randomized op-
erational decisions based on machine learning predictions, operational
constraints, and our adversarial model. Our approach is simpler than its
predecessors, highly scalable, and we experimentally demonstrate that it
outperforms the state of the art on several metrics.

1 Introduction

In a classical supervised learning setting one starts with a data set of instances
generated according to some fixed distribution, and learns a function which (one
hopes) effectively evaluates new instances generated from the same distribution.
While this assumption is often reasonable, it is clearly violated in adversarial
settings. For example, if machine learning is used for network intrusion detec-
tion, an intelligent adversary will try to avoid detection by deliberately changing
behavior to appear benign.

We study the problem of adversarial machine learning, which we view as a
game between a defender (learner), who uses past data to predict and respond
to potential threats, and a collection of attackers who aim to bypass defen-
sive response to their activities while achieving some malicious end. The issue of



learning in adversarial environments has been addressed from a variety of angles,
such as robustness to data corruption [1], analysis of the problem of manipulat-
ing a learning algorithm [2, 3], and design of learning algorithms in adversarial
settings [4-7]. The approaches aspiring to adjust learning algorithms to cope
with adversarial response suffer from the following five problems: 1) the pro-
posals require significant restrictions on the nature of learning algorithms (e.g.,
logistic or linear loss functions); 2) it is typically assumed that the attacker is
concerned with the total loss (error), whereas it is usually more reasonable to
assume that the attackers are interested in false negatives (i.e., not being de-
tected); 3) methods to date fail to account for operational constraints, making
them largely impractical [8]; 4) current methods make strong restrictions on
transformation of test data by attackers (e.g., a common assumption is a linear
transformation), and 5), current methods are almost universally restricted to
deterministic decisions for the learner, and cannot take advantage of the power
of randomization in adversarial settings [9]. Most of these limitations are due
to the fact that past approaches attempt to modify a learning algorithm to ac-
count for adversarial behavior. In contrast, the approach we take separates the
problem of prediction, for which machine learning is used, from the problem of
operational response that uses machine learning to quantify uncertainty for the
associated optimization problem. This approach enables us to use an arbitrary
machine learning algorithm without modification (as a black box), as we embed
adversarial reasoning into the optimization problem which determines opera-
tional decisions, rather than into the learning algorithm. Our key insight is to
interpret the predictions obtained from past data (using learning) as revealed
preferences of the attackers regarding “ideal” malicious content. OQur approach
is to use the resulting quantification of uncertainty about attacker preferences
in a Bayesian Stackelberg game model to optimally compute randomized oper-
ational decisions under budget constraints. We develop a linear programming
approach for computing optimal commitment in this game, where the attackers
are modeled as utility maximizers.
In all, we make the following contributions:

1. A general framework for optimizing operational decisions based on machine
learning,

2. a model of attacker evasion of a randomized classification scheme

3. a linear programming formulation to compute optimal oeprational decisions
under budget constraints, and

4. an extensive evaluation of our approach, which we show to significantly out-
perform the state of the art.

2 Model

We consider the problem of adversarial binary classification over a space X
of inputs, where each input feature vector € € X can be categorized as be-
nign or malicious. The defender, D, starts with a data set of labeled instances,



T ={(z1,y1),---,(®m,Ym)}, which we assume to accurately represent the cur-
rent distribution of input instances and corresponding categories.® D then uses
an algorithm of choice, such as Naive Bayes, to obtain a probabilistic classifier
p(x) which assigns to an arbitrary input vector a probability that it (or, rather,
a producer of it) is malicious. In traditional application of machine learning,
adversarial or not, one would then use a threshold, 6, and classify an instance
as malicious if p(x) > 0, and benign otherwise, with adversarial aspects of the
problem folded into the algorithm that derives the function p(-). It is on this
point that our approach diverges from current art. Specifically, we introduce a
function g(zx,p(-)) € [0,1] which prescribes a possibly randomized operational
decision (e.g., the probability of filtering an email or manually investigating an
observed network access pattern) for an instance x given a prediction p(x).
Clearly, the threshold function typically used is a special case, but we will pro-
ductively consider alternative possibilities. To simplify notation, where p(-) is
clear from context, we use instead ¢(x), keeping in mind its implicit dependence
on the prediction made by the learning algorithm.

We model the adversarial machine learning setting as a Stackelberg game
between a defender and a population of attackers. In this game, the defender
moves first, choosing ¢(-). Next, the attackers learn ¢(-) (for example, through
extensive probing), and each attacker subsequently chooses an input vector x
(e.g., a phishing email) so as to maximize their expected return (a combination
of bypassing defensive countermeasures and achieving a desired outcome upon
successfully penetrating the defense, such as a high response rate to a phishing
attack). Our assumption that the operational policy ¢(-) is known to attackers
reflects threats that have significant time and/or resources to probe and respond
to defensive measures, a feature characteristic of advanced cyber criminals [10].

We view the data set Z of labeled malware instances as representing revealed
preferences of a sample of attackers, that is, their preference for input vectors x
(if an attacker preferred another input «’, we assume that this attacker would
have chosen x’ instead of x). To appreciate this modeling choice, it is worth
noting that much variation in malware is due either to differences in perpetrators
themselves, or differences in their goals (even for the same attackers), and labeled
data provides information, albeit indirectly, about these differences. Therefore,
in our framework p(x) takes on a dual-meaning: first, it is the probability that
x reflects a malicious action, and second, if malicious, & represents an attacker’s
“type”, or ideal method of attack. Insofar as we view an attack x as ideal for
an attacker, it is just as natural to posit that an attacker would prefer attack
patterns that are close to « in feature space to those distant from it. For example,
a model in which an attacker would minimize the number of feature values to
alter in order to bypass defensive activities has this characteristic, as do models
which use a regularization term to reduce the scale of attack manipulation of
data [11,2,4,6,7].

3 The problem of adversarial tampering of such training data is outside the scope of
our work, and can be viewed as an extension of our setup.



Suppose that if an attack @, succeeds, the attacker gains V(x), which is also
the value lost to the defender. On the other hand, if an attack is filtered or caught
by the defender, both receive 0. Finally, if the attacker with a preference for @
chooses an alternative attack vector x’, his utility from successfully bypassing
defenses becomes V(x)Q(x, '), where

Qz,z') = e~ll===l, (1)

with ||-|| a norm (we use Hamming distance), and ¢ corresponding to importance
of being close to the preferred x. Observe that when § = 0, the attacker is
indifferent among attack vectors, and all that matters is success at bypassing
defensive action, while § — oo results in an attacker who does not react to
defensive action at all, either because it is too costly to change, or because this
attacker simply does not have the capability of doing so (e.g., someone who
merely reuses attack templates previously developed by others). The full utility
function of an attacker with type @ for choosing another input x’ when the
defense strategy is ¢(-) is then

plx,x'sq) = V(2)Qz,z')(1 - q(z)), (2)

since 1 — ¢(-) is the probability that the attacker successfully bypasses the de-
fensive action.

While the above attacker model admits considerable generality, we assume
that attackers fall into two classes: adaptive, as described above, and static,
corresponding to the limiting case of § — oco. Let v(x; ¢) be the value function
of an attacker with class (type) ¢t and preference for &, when the defender chooses
a policy ¢q. v¢(x; q) represents the maximum utility that the attacker with type
t can achieve given q. For a static attacker, the value function is

vs(z;q) = V(z)(1 —q(x)),

that is, a static attacker always uses his preferred input x, and receives his
corresponding value for it whenever the defender (operator) does not take action
upon observing x. For an adaptive attacker, the value function is

va(z;q) = max p(z, z'; ),
xz'eX
that is, the maximum utility that the attacker obtains from using an arbitrary
input &’ (that is, we assume that the adaptive attacker is unconstrained). Finally,
let P4 be the probability that an arbitrary malicious input was generated by
an adaptive adversary; the probability that the adversary was static is then
Pg=1-— Py.

Having described in some detail our model of the adversarial response to de-
fensive choice of ¢(+), we now turn to the objective of the defender. At the high
level, a natural goal for the defender is to maximize expected value of benign
traffic that is classified as benign, less the expected losses due to attacks that
successfully bypass the operator (i.e., incorrectly classified as benign). Presently,



we show that a special case of this is equivalent to maximizing accuracy or min-
imizing loss. To formalize, we make two assumptions. First, we assume that the
set of all possible instances X is finite, and use q and p as vectors corresponding
to g(x) and p(x) respectively, using some fixed arbitrary ordering over X. This
assumption is clearly unrealistic (even if X’ is technically finite, it will typically
be intractably large), but will help with exposition below. We subsequently (in
Section 3) describe how to apply our approach in practice, when this assumption
will not hold. Second, we assume that the defender gains a positive value G(x)
from a benign input @ only if it is not inspected. In the case of email traffic, this
is certainly sensible if our action is to filter a suspected email. More generally,
inspection can be a lengthy process, in which case we can interpret G(x) as the
value of time lost if « is, in fact, benign, but is carefully screened before it can
have its beneficial impact. Formally, we suppose that the defender maximizes
Up(q,p,X), defined as

Up(q,p, X) = Y _ [(1 —q(@))G(@)(1 - p(x))—

p(x)(Psvs(x; q) + Pava(z;q))] . (3)

To appreciate that this formal definition of the defender’s objective is sensible,
let us first rewrite it for a special case when V(z) = G(x) = 1 and Ps = 1,
reducing the utility function to Y (1 — ¢q(x))(1 — p(x)) — p(x)(1 — q(x)).
Since p(z) is constant, this is equivalent to minimizing

> a(@)(1 = p(@) + p(@)(1 - q(=)),

xreX

or, for each x, the sum of probability that it is benign and misclassified as
malicious, and probability that it is malicious but misclassified as benign; i.e.,
expected loss.

The final aspect of our model is a resource constraint on the defender. Som-
mer and Paxson [8] identify the cost of false positives and the gap between
the output of machine learning algorithms and its use in operational decisions
as two of the crucial gaps that prevent widespread use of machine learning in
network intrusion detection. Our framework directly addresses the latter point,
and we now turn focus to the former. False positives are quite costly because
following up on an alert is a very expensive proposition, involving the use of a
scarce resource, a security expert’s time understanding the nature of the alert.
In practice, it is simply not feasible to follow up on every alert, and there is a
need for a principled approach that accounts for such budget constraints. An
additional cost of false positives comes from the fact that, depending on the
nature of operational decision, it results in some loss of value, either because
a valuable email gets filtered, or because important communication is delayed
due to deeper inspection it needs to undergo. In fact, G(x) in our model already
serves to quantify this loss of value. We handle the typically harder constraint
on defensive resources by introducing a budget constraint, where we ensure that
our solution inspects at most a fraction ¢ of events, on average.



3 Computing Optimal Operational Decisions

Now that we have described our model of adversarial machine learning, the
natural next question is: how do we solve it? Since our objective and constraints
are linear (using the assumption that the attacker’s gains translate directly into
defender’s losses), we can formulate our optimization problem as the following
linear program (LP):

max Up(q,p, X) (4a)
s.t.: 0<g(x)<1 VeeX (4b)
va(z;q) > p(x, z’;q) Va,x' e X (4c)
vs(@;q) = V(z)(1 - q(x)) VeeX (4d)
> alx) < clx|. (4e)

x

Since the number of variables in this LP is linear in |X|, while the number of
constraints is quadratic in this quantity, clearly we cannot hope to use this when
the space of all possible inputs is large (let alone infinite). Note, however, that
we only need to compute the decisions g(x) for inputs & we actually see in
reality. Therefore, in practice we batch observations into small sets X C X, and
solve this optimization program using inputs restricted to X. In this setup, we
assume that the attacker spends significant offline effort probing the classification
scheme to learn the probabilities ¢(x), and deploys an optimal attack once these
are satisfactorily learned. Consequently, the game is effectively one-shot.

A natural sanity check that our formulation is reasonable is that the solution
is particularly intuitive when there is no budget constraint or adaptive adversary.
We now show that in this case, the policy ¢(x) which uses a simple threshold on
p(x) (as commonly done) is, in fact optimal.

Proposition 1. Suppose that P4 = 0 and ¢ = 1 (i.e., no budget constraint).
Then the optimal policy is

L i) > ol
q(w):{ @) 2 erve

0 o.w.

Proof. Since we consider only static adversaries and there is no budget con-
straint, the objective becomes

max > 11— q(@)G(@)(1 - p(@)) - p(@)vs(z)],

xreX

and the only remaining constraint is that ¢(z) € [0, 1] for all . Since now the
objective function is entirely decoupled for each x, we can optimize each g(x) in
isolation for each & € X'. Rewriting, maximizing the objective for a given x is
equivalent to minimizing ¢(x)[G(x) — p(x)(G(x) + V(x))]. Whenever the right
multiplicand is negative, the quantity is minimized when ¢(x) = 1, and when it



is positive, the quantity is minimized when ¢(x) = 0. Since p(x) > %
implies that the right multiplicand is negative (more accurately, non-positive),

the result follows.

While traditional approaches threshold an odds ratio (or log-odds) rather
than the probability p(x), the two are, in fact equivalent. To see this, let us
consider the generalized (cost-sensitive) threshold on odds ratio used by the
Dalvi et al. [11] model. In their notation, Ue(+,+), Uc(+, =), Ue(—,+), and
Uc(—, —) denote the utility of the defender (classifier) when he correctly identifies
a malicious input, incorrectly identifies a benign input, incorrectly identifies
a malicious input, and correctly identifies a benign input, respectively. In our
setting, we have Uc(+,+) = 0 (i.e., no loss), Uc(+,—) = 0 (and capture the
costs of false positives as operational constraints instead), Ue(—, +) = —V (),
and Ue(—, —) = G(x) (note that we augment the utility functions to depend on
input vector x). The odds-ratio test used by Dalvi et al. therefore checks

p) _ Uc(= =) =Uc(+,-) _ G()
L—p(x) = Ue(+,+) —Uc(—,+) V(z)

and it is easy to verify that inequality 5 is equivalent to the threshold test in
Proposition 1.

Consider now a more general setting where P4 = 0, but now with a budget
constraint. In this context, we now show that the optimal policy is to first set
q(x) = 0 for all  with p(x) below the threshold described in Proposition 1,
then rank the remainder in descending order of p(x), and assign ¢(z) = 1 in this
order until the budget is exhausted.

()

Proposition 2. Suppose that P4 = 0 and c|X| is an integer. Then the optimal
policy is to let g(x) = 0 for all T with

G(=)

P@) < G V@)

Rank the remaining x in descending order of p(x) and set q(x) = 1 for the top
c|X| inputs, with q(x) =0 for the rest.

Proof. The LP can be rewritten so as to minimize

Y a(@)[G(x) — p(a)(G(z) + V()]

x

subject to the budget constraint. By the same argument as above, whenever
p(x) is below the threshold, the optimal g(x) = 0. Removing the corresponding
x from the objective, we obtain a special knapsack problem in which the above
greedy solution is optimal, since the coefficient on the budget constraint is 1.

In a nutshell, Proposition 2 suggests an intuitive policy that whenever the budget
constraint binds, we should simply inspect the highest priority items. Therefore,
randomization becomes important only when there is an adversary actively re-
sponding to our inspection efforts.



4 Experiments

Experimentally validating a scheme for adversarial machine learning is inherently
difficult using publicly available data, such as spam. The reason is that insofar
as this data captures evolution of spam, it is in response to the ecology of spam
filters, and, in addition, the precise nature of the actually deployed filters is not
a part of such public databases. In addition, spam is in itself a rather benign
attack, as compared to, say, a spear phish aimed at stealing intellectual property.
The latter is clearly much more targeted, much more costly to the organizations,
and involves far more sophisticated and adaptive adversaries. All of the previous
attempts to address machine learning in adversarial settings struggled with this
problem, and evaluation is typically either (a) nevertheless involving public spam
data [4-7], or (b) generating synthetic data according to their model of the
adversary [11,7]. We do both: evaluate our approach on actual public spam data,
and using synthetically generated attacks. There is a clear limitation of using
one’s own model for validation: it naturally favors the proposed approach if
the model is assumed to be an accurate description of attacker’s behavior. We
address this limitation by evaluating the robustness of our approach to errors in
the adversarial model it uses (see online appendix, http://appendices.webs.
com/amlrobust.pdf).

4.1 Setup

In all our experiments we use the TREC spam corpora from 2005 — 2008. First,
we use this data as is to compare the performance of our approach in a spam
filtering task, compared to state-of-the-art alternatives. Subequently, we use this
data only for training, and simulate adversarial behavior according to our model
(as done, for example, by Dalvi et al. [11]). Throughout, we performed 10-fold
cross-validation and analyzed the results using the approach outlined by Demsar
[12]. We compare our approach against using a classifier it is based upon (i.e.,
p(x)) directly using pairs of the form {C, E[OPT(C)]}, where C is the classifier
providing p(x) for our model, and E[OPT(C)| denotes our approach using C.
We use Friedman’s test to compute the p-values, using N = 4 data sets and
k = 2 classifiers, as we are only concerned with the performance of our approach
with respect to the corresponding classifier. We use the post-hoc Bonferroni test,
which does not alter « as «/(k—1) = @ when k = 2, as in all of our comparisons.
As detailed by Salzberg [13], the feature criteria were chosen to optimize the
performance of Naive Bayes on the TREC 2005 spam corpus. Feature vectors
were generated from the raw emails, and the same criteria were used for each
corpus. None of the algorithms have been optimized or tuned on future data.
Below we train on a fold of the TREC 2005 data, evaluate the performance over
the test fold for the TREC 2005 corpus, and test over the entire set of future
corpora.

Our approach uses predictions p(x) obtained using three existing classifiers:
Naive Bayes (our non-adversarial baseline), and the adversarial classifiers de-
veloped by Bruckner and Scheffer [6] and Dalvi [11], which are state-of-the-art



alternatives.* We denote the expected utility of our approach as E[OPT(-)],
where the argument is an existing classifier that provides p(x). We solve the LP
(Equations 4a-4e) using CPLEX version 12.2.

Our optimization approach explicitly bounds the number of instances that
can be inspected. We consider two principled ways of imposing the same restric-
tion on existing classifiers:

1. Let X be all = with p(z) above a threshold from Proposition 1. Then set
q(z) = 1 if |X| < ¢|X|, while g(x) = ¢ otherwise. This policy is optimal
when there are only stationary attackers and p(x) € {0,1}. We use this as
the default.

2. Rank the instances in descending order of p(x), and set ¢(x) = 1 for the first
¢|X] of these (as long as p(x) exceeds the threshold from Proposition 1). This
policy is optimal when there are only stationary attackers, as we showed in
Proposition 2. We call this “Naive Ranking”.

We used the ifile tool by Rennie [14] to select tokens for the feature vec-
tors. Many of the desirable tokens for the TREC 2005 corpus are specific to the
company where the emails were collected. Since our experiments evaluate per-
formance on future TREC data which includes emails collected from different
sources, we selected a subset of tokens that are environment invariant.

We compare the algorithms below using an empirical utility function, which
we normalize to facilitate comparison across different cost settings (this utility
is a generalization of accuracy that accounts for costs V(x) and G(x), which are
fixed to V and G respectively):

- X+ X~
Up=1-— w| X[+ [X7] 7 (6)
w|XrN| + |X7p|

where | X7 | is the number of true negatives, | Xrp| the number of true positives,
X~ = Y y(®)(1 — g(x)) the expected number of false negatives, |X*| =
> o(1—=y(x))q(x) the expected number of false positives, and w = % (note that
when w = 1, this measure becomes exactly the total expected accuracy achieved

by q(x)).

4.2 Performance on Public Spam Data

Our first set of Experiments is a direct comparison of the performance of our
model as compared to state-of-the-art alternatives described above evaluated
on public spam data. In this experiment, we use TREC 2005 data to train the
classifiers, compute the optimal g(x) for our approach while using the other
alternatives as prescribed, and evaluate (by computing the expected normalized
utility shown in Equation 6) on TREC data for years 2005-2008. As in all past
evaluations of adversarial machine learning algorithms ([4-7]) we do not retrain
the classifiers, since our intent is not merely to demonstrate value on spam data,

4 We use the variant of Bruckner and Scheffer’s classifier with the linear loss function.



but to anticipate far more actively adversarial environments in which attackers
adapt to defense decisions quickly, and the defender wishes to have success in
anticipating adversarial response.’

Our first set of results, shown in Figure 1, compares our optimization-based
approach to alternatives when V(x) = G(x) = 1 for all & and P4 = 0.5 (this
choice was made somewhat arbitrarily and not optimized to data), under a
variety of budget constraints. Since our optimization can take as input an ar-
bitrary p(x), we compare the results of using the alternative machine learning
approaches as input. From considering the four plots in Figure 1, each corre-
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Fig. 1. Comparison of algorithms on TREC data, trained on year 2005, and tested on
years 2005-2008. Our approach is labeled as E[OPT(-)], where the parameter is the
classifier that serves as our p(x). We use the following parameters: § = 1, V(z) =
G(z) =1,Pa+=0.5. (a) c=0.1; (b) ¢=0.3; (c) ¢ =0.5; (d) ¢=0.9.

sponding to a different budget constraint, it is apparent that the relative ad-
vantage of our approach (using any of the alternative p(x) in the optimization
problem) is pronounced (exhibiting 10-20% improvement over baseline) when
the budget is relatively tight. Additionally, as we would intuitively expect, our
approach performs better than alternatives as we move further into the future
(giving the spammers more time to react to countermeasures from 2005). With a
sufficiently generous budget constraint, it is also interesting to observe the trade-
off one would expect: the accuracy of our approaches is inferior to alternatives

5 In a separate set of experiments which we omit due to space constraints, we verified
that even after retraining the classifiers each year, our approach typically outper-
forms the alternatives.



on training data, but the decisions are more robust to adversarial manipulation
embedded in future data.

In Figure 2, we consider a higher cost of malware relative to benign instances,
fixing G(x) = 1 and considering V(z) = 2 and 10. Perhaps the most surprising
finding in these plots is that here Naive Bayes outperforms Dalvi et al. and
Bruckner and Scheffer in several instances, even though these are specifically
tailored to adversarial situations. Our approaches, however, perform consistently
better than the alternatives.
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Fig. 2. Comparison of algorithms on TREC data, trained on year 2005, and tested on
years 2005-2008. Our approach is labeled as E[OPT(-)], where the parameter is the
classifier that serves as our p(x). We fix § = 1,G(z) = 1, P4 = 0.5, and vary V(z) and
c. (a) V(z) =2,¢=0.1; (b) V(z) =10, ¢ = 0.1; (c) V(z) =2, ¢ =0.3; (d) V(z) = 10,
c=0.3.

We performed a statistical comparison between our approach and a corre-
sponding classifier p(a) on which it is based using Friedman’s test with the post-
hoc Bonferroni correction [12]. For all classifier pairs of the form {C, E[OPT(C)]}
with C € { Naive Bayes, Bruckner, Dalvi} and for ¢ € {0.1,0.3}, V(z) € {1, 2,10},
our approach is statistically better than the alternative at the o = 0.05 confi-
dence level.

4.3 Performance with an Optimizing Attacker

Evaluating performance on future TREC data as done above is fundamentally
limited since this data set represents spam, where adversaries generally do not
target a specific classifier or organization but a relatively large population of



spam filters. In contrast, our approach is tailored to highly sophisticated and
targeted attacks. The problem is that data of this nature is highly sensitive and
not publicly available. Indeed, the ideal, infeasible, experiment is to observe ad-
versarial response to our model as well as other alternatives and evaluate the
approaches with respect to such adversarial response. As the next best alter-
native which has become relatively standard [11,7], we complement the spam
evaluation with an alternative set of experiments aimed at modeling highly adap-
tive adversaries who maximize their expected utility in response to operational
decisions g(x). Specifically, we assume that a machine learning algorithm pro-
vides an accurate assessment of current or near-term threats, p(x), and that all
of the attackers are adaptive (i.e., that P4 = 1). Moreover, we assume that the
learner /defender has correct knowledge of these parameters, as well as the pa-
rameter of the adaptive attacker’s objective function, § (we relax this assumption
in the online appendix). Finally, we let V(x) = G(z) = 1 for all . For each year
Y in the TREC data set (e.g., Y = 2005), we perform 10-fold cross-validation.
However, rather than computing the utility directly using the test fold, we com-
pute the expected utility, assuming the adaptive attacker per our model above.
Equivalently, we can think of this as the following exercise: for each x in the test
fold, we assign it a benign label with probability 1—p(x), assign a malicious label
with probability p(x)Ps, and with probability p(x)Pa generate a new malicious
input «’ that maximizes the attacker’s expected utility given ¢(x) computed by
our algorithm.

In the first set of experiments, we choose p(x) as generated by each al-
ternative learning model that we consider (i.e., Naive Bayes, Dalvi et al., and
Bruckner and Scheffer). Figure 3 shows the results comparing the direct use of
the three classifiers, and as a part of our optimization program, when B = ¢|X|
with ¢ = 0.1 and ¢ = 0.3. This figure exhibits several findings. First, all three
alternatives, including the two state-of-the-art approaches to adversarial classifi-
cation, are exploitable by a sophisticated adversary. By comparison, all three of
our optimization-based counterparts are more robust and beat their respective
classifiers in paired comparisons. Second, the classifier of Dalvi et al. is in all
cases far more robust to adversarial manipulation than the one derived from
Bruckner and Scheffer. Finally, we did not display the results of using Naive
Ranking here, as it performs far worse; clearly, randomization is crucial when
facing a sophisticated adversary.

In another set of experiments, we use Naive Bayes as p(x), and evaluate
the quality of Dalvi et al., Bruckner and Scheffer, and our optimized approach
(still using a synthetic attacker). Figure 4 shows the results. As in the previous
set of experiments, our model outperforms all of the alternatives. Surprisingly,
however, Dalvi et al. and Bruckner and Scheffer do not much improve upon the
baseline Naive Bayes in this setting, and in some cases are even slightly worse.

In our final set of experiments in this section, we consider the impact of
varying V' (z). The results are shown in Figure 5. Again, our model consistently
outperforms alternatives in paired comparisons, at times by a considerable mar-
gin (up to 50% improvement in some cases). In all experiments in this section, we
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Fig. 4. The expected utilities, assuming P4 = 1 and that our attacker model is correct,
where p(x) is provided by Naive Bayes; top: ¢ = 0.1; bottom: ¢ = 0.3.

verified that our approach is statistically better than alternatives at the a = 0.05
confidence level.

A clear limitation of our evaluation above is that the comparison which sim-
ulates attacker behavior according to our modeling assumptions unduly favors
our approach. In fact, we ran extensive experiments relaxing this assumption,
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Fig. 5. The expected utilities, assuming P4 = 1 and that our attacker model is correct.
Top: V(x) = 2; bottom: V(z) = 10. ¢ = 0.3.

all of which show that our approach is quite robust to errors in the model spec-
ification. For lack of space, we deferred this discussion to the online appendix
(http://appendices.webs.com/amlrobust.pdf).

5 Conclusion

We have presented a general approach for finding the optimal inspection pol-
icy against both static and adaptive adversaries. We showed that in the special
case when an adversary is static and with no operational budget constraints,
our model is equivalent to traditional likelihood ratio approaches (equivalently,
using a threshold on the probability of malware/spam). Our experiments demon-
strated that our model consistently outperforms both a baseline, non-adversarial
machine learning approach, as well as several state-of-the-art adversarial clas-
sification alternatives. Overall, our approach demonstrates a clear advantage
when inspection is costly, events have weighted importance, and when there are
sophisticated, adaptive attackers. From a practical perspective, our approach
is very simple, highly scalable (it involves solving a linear program), and can
use an arbitrary classifier as input (indeed, a better classifier would improve
the performance of our optimization method). Our model is, of course, a severe
simplification of reality, and in future work one could consider attackers that
strategically manipulate training data, and/or multi-stage games in which de-
fender and attackers move in sequence. Despite the apparent simplicity of our
model, however, we demonstrate that it outperforms alternatives on actual data
and, thus, is a good starting point for future, more complex, modeling advances,



which would need to demonstrate sufficient added value to compensate for ad-
ditional complexity.
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