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Abstract

Attacker-defender Stackelberg games have been used in
several deployed applications of game theory for infras-
tructure security. Security resources of the defender are
game-theoretically allocated to prevent a strategic at-
tacker from using surveillance to learn and exploit pat-
terns in the allocation. Existing work on security games
assumes that the defender honestly displays her real se-
curity resources. We introduce a new model in which
the defender may use deceptive resources (e.g., a mock
camera in the part for deterring potential adversaries, or
a hidden camera on the road for detecting overspeed) to
mislead the attacker. We provide algorithms for comput-
ing the defender’s optimal strategy in consideration of
deceptions. We also present experimental results evalu-
ating the effectiveness of using deceptive strategies.

Introduction
Attacker-defender Stackelberg games have been used in sev-
eral deployed applications of game theory for infrastruc-
ture security (Tambe 2011; Eric et al. 2012b). In this class
of games, the defender first commits to a security strategy,
then the attacker learns and responds to the defender’s strat-
egy (Paruchuri et al. 2008). Based on the assumption that
the attacker responses optimally according to his knowledge
of the defender’s strategies, a solution to the game yields an
optimal randomized strategy for the defender (Conitzer and
Sandholm 2006). Applications based on Stackelberg games
have been used in real world domains to make recommen-
dations for allocating limited resources for protecting criti-
cal infrastructure (Pita et al. 2008; Eric et al. 2012a; Agmon,
Urieli, and Stone 2011; Basilico, Gatti, and Amigoni 2009;
Fang, Jiang, and Tambe 2013).

Most existing work on security games assumes that the
defender honestly displays her security resources (Kiek-
intveld et al. 2009; Eric et al. 2012a; An et al. 2013). In
reality, sometimes a deceptive resource, e.g., a mock cam-
era in the park or a hidden camera on the road for detecting
overspeed (Zhuang and Bier 2010), can also be used to deter
illegal activities. Using deceptive resources may affect the
attacker’s knowledge of the defender’s strategies, and can
be used to potentially improve the payoff of the defender if
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assigned appropriately. Our goal in this work is to prelimi-
narily investigate models that exploit the advantage of using
deceptive resources for the defender.

Using deceptive resources can be considered as the de-
fender holding private information in the game (Rasmusen
and Blackwell 1994). Although there has been some re-
search on security games with private information, previ-
ous approaches can not be used to solve our problem. This
is because most of previous research, including (Wang and
Zhuang 2011; Yin and Tambe 2012), assume that only the
attacker holds private information, which is in contrast with
our case. Tsai et al. (Jain et al. 2010) has focused on a sce-
nario in which the defender used secret resources. However,
they assumed that the attacker had a perfect knowledge of
the defender’s strategies anyway in spite of the deceptions.
We will explore how the deceptive actions of the defender
may affect the attacker’s belief about the defender’s strat-
egy, and the attacker’s best response. In this paper, we intro-
duce a security game model in which the defenders strate-
gies can include deceptive protections. The deceptive protec-
tions succeed with a certain probability. We also provide al-
gorithms for computing the optimal defender strategy when
the attacker surveils unlimitedly before attacking and ana-
lyze the advantage of using deceptive resources.

Security Games with Deception
In security games, the defender assigns security resources to
potential attack targets to protect them. The attacker surveils
the defender’s actions, then chooses a target to attack. There
are n targets T = {1, . . . , n}. The defender has ηR real se-
curity resources. She can purchase extra fake resources at
the cost of βF per fake resource. She can also convert some
real resources into secret resources at the cost of βSe per
secret resource. If the defender assigns a fake resource to
a target, she is performing a fake protection. Namely, she
pretends to protect a target when she is in fact not protect-
ing it. Similarly, if the defender assigns a secret resource to
a target, she is performing a secret protection. Namely, she
pretends not to protect a target when she is in fact protecting
it. Each deceptive protection fails with a probability of r.1

1We assume that all deceptive protections fail with the same
probability for the ease of analysis.



We assume that the attacker does not reason about the de-
ceptions used by the defender. We also assume that for an at-
tacker who is surveilling the defender’s strategy with a fake
protection, if the fake protection succeeds, he will observe
that the target is protected; If a fake protection fails, he will
observe that the target is not protected. For the secret protec-
tion, if it succeeds, the attacker will observe no protection; if
it fails, the attacker will observe that the target is protected.
2 The defender’s budget is Bgt. We refer to this model as
SGDB (Security Games with Deceptions and Budget con-
straints) in the rest of this paper.

If the attacker attacks a target i when i is protected by a
real resource or a secret resource, he will achieve a payoff
of U ca(i), while the defender will achieve a payoff of U cd(i).
If the attacker attacks when i is protected by a fake resource
or is not protected at all, then the attacker’s payoff is Uua (i)
while the defender’s payoff is Uud (i). We assume that the at-
tacker surveils the defender’s actions unlimited times before
he attacks, and chooses an optimal target to attack based on
his belief about the defender’s strategies. Next, we introduce
the strategies of the agents and the equilibrium of the game
in consideration of deception.

Strategies and Equilibrium
Pure strategies
A pure defender strategy can be defined as s = 〈si, si ∈
{R,F, Se,N}〉, with si = R representing that target i is
protected by a real resource, si = F representing that target
i is protected by a fake resource, si = Se representing secret
protection, and si = N representing that target i is left alone
(i.e., not protected). However, since what matters to the at-
tacker is whether a target is covered or not, but not how a
target is covered, a strategy observed by the attacker can be
defined as o = 〈oi, oi ∈ {0, 1}〉, where oi = 0 represents
that the attacker observes that target i is not covered while
oi = 1 represents that the attacker observes that target i is
covered.

Let γ(o|s) represent the probability that a real defender
strategy s is observed as o. For calculating γ(o|s), we define
an indicator function first.

1Y (si) =

{
1, if si = Y,

0, otherwise.
(1)

Then we can calculate γ(o|s) as follows.

Proposition 1. γ(o|s) =
∏
i∈T

(
1Se(si)(r ·oi+(1−r)(1−

oi))+1F (si)((1−r)oi+r(1−oi))+1R(si)oi+1N (si)(1−
oi)
)
.

Proof. Let γ(oi|si) represent the probability that when the
defender plays a strategy s, the protection assigned to target
i (namely, si) is observed by the attacker as oi. For the four
states of si, consider the following situations.

2In fact, we can also assume that if a fake protection fails, the
attacker will observe a fake protection while if a secret protection
fails, the attacker will observe a secret protection. This assumption
will lead to the same attacker strategy as the previous one, as we
show in the appendix.

Case 1: 1Se(si) = 1. With probability r the secret pro-
tection will fail, e.g., oi = 1; with probability 1 − r
the deception will succeed and oi = 0. It follows that
γ(oi|1Se(si) = 1) = r · oi + (1− r)(1− oi).

Case 2: 1F (si) = 1. With probability r the fake protection
will fail, i.e., oi = 0; with probability 1− r the deception
will succeed and oi = 1. It follows that γ(oi|1F (si) =
1) = (1− r)oi + r(1− oi).

Case 3: 1R(si) = 1. Then oi = 1. It follows that
γ(oi|1R(si) = 1) = oi.

Case 4: 1N (si) = 1. Then oi = 0. It follows that
γ(oi|1N (si) = 1) = (1− oi).

Therefore, γ(o|s) =
∏
i∈T γ(oi|si). Since γ(oi|si) =∑

Y ∈{R,F,Se,N} 1Y (si)γ(oi|1Y (si) = 1). We then gain the
result in Proposition 1.

Let S denote the defender strategy space. When the de-
fender plays s ∈ S, the attacker will observe it as a certain
o such that γ(o|s) > 0. The attacker’s pure strategy can be
represented as a = 〈ai : ai ∈ {0, 1},

∑
i∈T ai = 1〉 where

ai = 1 represents that the attacker attacks target i. As previ-
ous research on security game, we restrict attacker strategies
to pure strategies.

Mixed strategies
A mixed strategy played by the defender can be defined as
x = 〈xs〉, with xs representing the probability that pure
strategy s is used. It can be compactly represented as a cov-
erage vector c = 〈cYi : Y ∈ {R,F, Se}〉, where cRi is the
probability that target i is covered by a real resource, cFi is
the probability that target i is covered by a fake resource,
and cSei is the probability that target i is covered by a secret
resource. We can compute the compact representation from
a mixed strategy as follows.

cYi =
∑
s∈S

xs1Y (si) ∀i ∈ T, Y ∈ {R,F, Se} (2)

Assume that the defender commits to a mixed strategy
x, which can be compactly represented as c, and executes
a pure strategy s sampled from x each time. After making
a large number of observations, the attacker will observe a
mixed strategy xo = 〈xo〉, with xo representing the proba-
bility that strategy o is observed. This mixed xo can be rep-
resented compactly as a coverage vector e=〈ei〉,where ei is
the probability that the attacker observes target i being cov-
ered. We define the mapping from the defender’s coverage
vector c to the coverage vector e observed by the attacker as
h(c) : c→ e.

Proposition 2. If the defender commits to a coverage vec-
tor c, the attacker will observe it as a coverage vector e, in
which

ei = cRi + (1− r)cFi + rcSei ∀i ∈ T (3)



Proof. Given o, it follows that
∑
s xsγ(o|s) = xo. Given

s, it follows that
∑
o γ(o|s) = 1. Assume that given s,

1Se(sj) = 1 for a target j, it follows that∑
o

γ(o|s)oj =
∑
o,oj=1

γ(o|s)

=
∑
o,oj=1

∏
i∈T

γ(oi|si)

=
∑
o

γ(oj = 1|1Se(sj))
∏

i∈T,i 6=j

γ(oi|si)

= r
∑
o

∏
i∈T,i 6=j

γ(oi|si)

= r

Similarly, if 1F (sj) = 1, it follows that
∑
o γ(o|s)oj =

1−r. If 1R(sj) = 1, then
∑
o γ(o|s)oj = 1. If 1N (sj) = 1,

then
∑
o γ(o|s)oj = 0. Thus

∑
o γ(o|s)oj = (1R(sj) +

1F (sj)+1Se(sj))
∑
o γ(o|s)oj = 1R(sj)+(1−r)1F (sj)+

r1Se(sj).
Therefore, the relationship between e and c can be defined

as follows (ei is the coverage of target i observed by the
attacker).

ei =
∑
o

xooi

=
∑
o

∑
s∈S

xsγ(o|s)oi

=
∑
s

xs
∑
o

γ(o|s)oi

=
∑
s

xs1R(si) + (1− r)
∑
s

xs1F (si) + r
∑
s

xs1Se(si)

= cRi + (1− r)cFi + rcSei

Stackelberg Equilibrium
As previous work on security game (Kiekintveld et al. 2009),
we assume U cd(i)−Uud (i) > 0 and Uua (i)−U ca(i) > 0. For
a strategy profile 〈c, e = h(c),a〉, the expected utilities for
both agents (from their individual perspectives) are given by:

Ud(c,a) =
∑
i∈T

aiUd(c, i), (4)

Ua(e,a)=
∑
i∈T

aiUa(e, i), (5)

where Ud(c, i) = (cri + cSei )U cd(i) + (1− cri − cSei )Uud (i)
and Ua(e, i)=eiU

c
a(i)+(1− ei)Uua (i). It is noticeable that

unlike security games without deceptions, the attacker’s ex-
pected utility (from his perspective) now depends on what he
observes but not what the defender plays. The attacker’s re-
sponse function is g(e) : e→ a. Therefore, the Stackelberg
equilibrium in this case can be defined as follows:

1. The defender plays a best-response: Ud(c, g(h(c))) ≥
Ud(c

′, g(h(c′))) for any c′.

2. The attacker plays a best-response: g(e) ∈ Fa(e) where
Fa(e) = arg maxa Ua(e,a) is the set of follower best-
responses.

3. The attacker breaks ties optimally for the defender:
Ud(c, g(e))≥Ud(c,a′) for any a′∈Fa(e).

Next, we explore how to compute the optimal defender strat-
egy for a security game considering deceptive resources.

Computing Optimal Defender Strategy
For a security game with deceptive resources, the optimal
defender strategy can be calculated by the following MILP
(Mixed Integer Linear Program).

P1 : max
c

d (6)

s.t. ai ∈ {0, 1} ∀i ∈ T (7)∑
i∈T

ai = 1 (8)

cYi ∈ [0, 1] ∀i ∈ T, Y ∈ {R,F, Se} (9)

cRi + cFi + cSei ≤ 1 ∀i ∈ T (10)

βF

⌈∑
i∈T

cFi

⌉
+βSe

⌈∑
i∈T

cSei

⌉
≤Bgt (11)

∑
i∈T

cRi +

⌈∑
i∈T

cSei

⌉
≤ ηR (12)

ei = cRi + (1− r)cFi + rcSei ∀i ∈ T (13)
d− Ud(i,a) ≤ (1− ai)M ∀i ∈ T (14)

0 ≤ k − Ua(i, e) ≤ (1− ai)M ∀i ∈ T (15)

Eqs. (7) - (10) implement the feasibility of coverage and
defender strategy. dxe represents the smallest integer no less
than x. Thus

⌈∑
i∈T c

F
i

⌉
and

⌈∑
i∈T c

Se
i

⌉
are the smallest

number of fake resources and secret resources the defender
should use to form the mixed strategy computed above. Eq.
(11) constrains the costs on secret resources and fake re-
sources to be within the budget. Eq. (12) ensures that se-
cret resources are converted from real resources. Eq. (13)
is used to calculate the attacker’s observed coverage vector.
In Eqs. (14) and (15), M is a large constant. The two con-
straints force the attacker to react optimally. Eq. (14), Eq.
(15) and the objective together ensures the solutions satisfy-
ing the equilibrium we defined before.

A Fast Algorithm Since the run time of MILP increases
exponentially with the increase of the scale of the problem,
we introduce an algorithm based on ORIGAMI (Kiekintveld
et al. 2009) to compute the optimal defender strategy fast.
ORIGAMI computes a coverage vector such that the num-
ber of targets which are indifferent to the attacker is the
largest. Based on the definition of SSE, the attacker breaks
ties in favor of the defender. Thus the coverage vector com-
puted by ORIGAMI leads to optimal defender utility. The
targets which lead to the same attacker utility are defined as
an attack set.

Since in our model, the attacker’s choice depends on what
he observes, namely e, thus an attack set can be represented



as Γ(e) with similar definition as ORGAMI uses. We intro-
duce an algorithm called R-ORIGAMI (Revised ORIGAMI)
to deal with an SGDB. The inputs of R-ORIGAMI are
the number of real resources, the budget, the costs of us-
ing a fake or secret resource, and the probability r with
which a fake or secret resource may fail. The outputs of R-
ORIGAMI are the defender’s optimal coverage vector c, the
corresponding coverage vector e observed by the attacker,
and the attack set Γ(e). The main idea is to calculate e and
Γ(e) using ORIGAMI, then choose a c = h−1(e) and an
a = g(e) to construct an SSE.

To calculate e and Γ(e), we need to input the number
of available resources in the attacker’s perspective, namely
the upper bound of

∑
ei, which depends on the number of

real resources, fake resources, and secret resources the de-
fender uses. However, given the budget and the costs of us-
ing a fake resource and a secret resource respectively, there
may be a lot of combinations of fake resources and secret
resources. To calculate the number of fake resources and se-
cret resources the defender should use, we first analyze and
find out the best combinations. We begin with the following
observation.

Proposition 3. The defender needs at most one secret re-
source.

Proof. If the defender does not use any secret resources,
all budget can be used to buy fake resources. Let m rep-
resent the number of fake resources, then m =

⌊
Bgt
βF

⌋
.

bxc represents the largest integer no larger than x. Assume
that a profile 〈c, e,a〉 with aj = 1 corresponds to an SSE.
If the defender uses one secret resource, then the num-
ber of available real resources becomes ηR − 1, and the
number of fake resources will be m =

⌊
Bgt−βSe

βF

⌋
. As-

sume that a profile 〈c′, e′,a′〉 with a′k = 1 corresponds
to an SSE in which one secret resource is used. We have
Ud(c,a) = cRj U

c
d(j) + (1 − cRj )Uud (j), cRj ≤ ej and

Ud(c
′,a′) = (c′

R
k + c′

Se
k )U cd(j) + (1 − c′Rk − c′

Se
k )Uud (j).

The relationship between Ud(c,a) and Ud(c′,a′) depends
on the game setting, thus using one secret resource may be
helpful.

However, if the defender uses two secret resources, the
number of real resources becomes ηR − 2 (assuming ηR ≥
2), m =

⌊
Bgt−2βSe

βF

⌋
. Assume that a profile 〈c′′, e′′,a′′〉

with a′′l = 1 corresponds to an SSE in which two secret re-
sources are used. Then

∑
i∈T e

′′
i ≤ ηR−2+2r+(1−r)m.

Obviously,
∑
i∈T e

′′
i <

∑
i∈T e

′
i. Therefore, the size of

Γ(e′′) is no larger than the size of Γ(e′), and for any i ∈
Γ(e′′), e′′i < e′i. Since Ud(c′′,a′′) = (c′′

R
l + c′′

Se
l )U cd(l) +

(1 − c′′
R
l − c′′

Se
l )Uud (l) and c′′

R
l + c′′

Se
l ≤ min{ e

′′
l

r , 1},
we have Ud(c′′,a′′) ≤ Ud(c

′,a′′) ≤ Ud(c
′,a′). Therefore,

using two secret resources will not lead to higher defender
utility than using one secret resource. The same reasoning
applies to more the two secret resources. Therefore, the de-
fender needs at most one secret resource.

Thus there are only two reasonable combinations of secret

resources and fake resources for the defender. First, convert-
ing a real resource into a secret one, using the left budget
to buy fake resources. Second, using all budget to buy fake
resources. For each combination, the corresponding upper
bound of

∑
ei is taken as input of ORIGAMI to calculate e

and Γ(e).
Now we need to consider that given e, how to construct

c = h−1(e) and a = g(e) which will lead to the highest
defender utility. Proposition 3 has shown how we should as-
sign secret resources. The following observation shows how
to assign fake resources.

Proposition 4. The defender should not assign any fake pro-
tection to the target the attacker will choose to attack.

Proof. Assume that the attacker will choose to attack target
i when i is covered with cRi ≥ 0, cSei ≥ 0, cFi > 0, thus
ei = cRi + rcSei + (1− r)cFi . In this case, if the defender re-
move the fake protections assigned to i, ei will decrease and
the attacker utility of i will increase. Therefore, the attacker
will still choose to attack target i. In addition, the defender
utility of target i does not change. Thus there is no need to
assign fake protections to target i at first. Actually, as long as
there are real resources available, the defender could always
exchange some fake protections assigned to i with some real
protections assigned to other targets while keeping the attack
set unchanged, thus increase her utility.

Based on Proposition 3 and Proposition 4, we also have
the following Proposition.

Proposition 5. Given attacker belief e, Γ(e) and the at-
tacker’s choice of target i. The defender should set cSei =
min{1, 1−ei1−r } and cRi = max{0, ei−r1−r } to achieve the high-
est utility.

Proof. First, based on Proposition 3 and Proposition 4, it
follows that cRi + rcSei = ei, cRj + (1 − r)cFj + rcSej =
ei(j ∈ Γ(e), j 6= i). Since the defender utility depends on
cRi + cSei and cRi + cSei ≤ 1, to maximize her utility, the
defender should set cRi = 0 and cSei = ei

r if ei ≤ r, while
setting cSei = 1−ei

1−r and cRi = ei−r
1−r if ei > r. Thus we gain

the results in Proposition 5.
According to the SSE assumption that the attacker breaks

ties in favor of the defender, the attacker’s choice should be
the target which leads to the highest defender utility under
cSei + cRi .

We introduce R-ORIGAMI (Revised ORIGAMI) in Al-
gorithm 1 to solve SGDB. R-ORIGAMI explores the opti-
mal defender utility when the defender uses only real re-
sources (Lines 1 - 2), when the defender uses all her budget
to buy fake resources (Lines 3 - 8), and when the defender
converts a real resource into a secret one, and uses the left
budget to buy fake resources (Lines 9 - 19). Then returns
the optimal defender utility in the game (Line 20). Line 2
computes the coverage c, attacker set Γ(c), and defender
utility UR using ORIGAMI when there are n resources. In
Line 3, n1 represents the number of resources from the per-
spective of the attacker when the defender uses all her real
resources, and spends all the budget on fake resources. In



Algorithm 1: R-ORIGAMI
1 Let n be the number of real resources;
2 c,Γ(c), UR ← ORIGAMI(n);

3 n1 ← n+ (1− r)
⌊
Bgt
βF

⌋
;

4 e,Γ(e), g(e), UR&F ← ORIGAMI(n1);

5 c̄Rg(e) = eg(e);

6 for i ∈ Γ(e), i 6= g(e) do
7 c̄Ri + (1− r)c̄Fi ← ei;

8 c̄← 〈c̄Ri , c̄Fi : i ∈ T 〉;
9 n2 ← n− 1 + r + (1− r)

⌊
Bgt−βSe

βF

⌋
;

10 e,Γ(e)← ORIGAMI(n2);
11 for i ∈ Γ(e) do
12 ẽi = min{ eir , 1};
13 Ui = ẽiU

c
d(i) + (1− ẽiUud (i));

14 UR&F&Se ← maxi∈T Ui;
15 g(e)← argi maxi∈T Ui;

16 c̃Rg(e) = max{0, ei−r1−r }, c̃
Se
g(e)

= min{1, 1−ei1−r };
17 for i ∈ T , i 6= g(e) do
18 c̃Ri + rc̃Fi + (1− r)c̃Sei ← ei;

19 c̃← 〈c̃Ri , c̃Fi , c̃Sei 〉;
20 return max{UR, UR&F , UR&F&Se};

Line 4, g(e) is the attacker’s choice against e. Lines 5 - 8
assign real/fake resources based on Proposition 4. c̄ is the
best coverage for the defender when she uses only real re-
sources and fake resources. In Line 9, n2 represents the num-
ber of resources from the perspective of the attacker when
the defender converts a real resource into a secret one, then
spends the left budget on fake resources. Lines 11 - 15 com-
pute the attacker’s choice of target g(e) and the defender
utility UR&F&Se. Lines 16 - 19 compute the assignment of
real/fake/secret resources based on Proposition 4 and 5. c̃ is
the best coverage for the defender when she uses all three
kinds of resources.

Usefulness of Using Deception
In this section, we analyze the usefulness of using de-
ceptions theoretically and evaluate it experimentally. We
first explore the circumstances under which using decep-
tions leads to higher defender utilities than playing honestly.
Specifically, assume that the defender’s optimal strategy in a
security game without deceptions is to play c = 〈ci〉, which
leads the attacker to attack target i and brings the defender
a highest utility of Ud(c, i). Keeping the target set and the
payoff structure of the game unchanged while allowing the
defender to use deceptions within a budget, we can turn the
security game into an SGDB. Assume that in the SGDB,
the defender’s optimal strategy is to play c′ which leads the
attacker to attack target j and brings the defender a high-
est utility of Ud(c′, j). We now discuss when it follows that
Ud(c

′, j) > Ud(c, i). We begin with an observation about
the usefulness of fake resources.

Figure 1: Solution quality against varying success rate

Proposition 6. Using fake protections as deceptive protec-
tions only, Ud(c′, j) > Ud(c, i) is true as long as ∀i ∈
Γ(c), cRi < 1.

Proof. Adding a fake resource is equivalent to adding 1− r
real resource in terms of the attacker’s observed coverage
vector. In the security game without deceptions, the at-
tacker’s observed vector is the same as the defender’s cov-
erage vector. If for any i ∈ Γ(c), cRi < 1, adding real
resources will raise the coverage rate of all targets within
Γ(c). Since the attacker’s choice is always covered by real
resources, thus the defender utility will increase.

Assume that the budget could afford to convert a real re-
source into a secret one and that the defender does not use
any fake resources in c′. The following observation shows
the usefulness of converting real resources into secret ones.

Proposition 7. Using secret protections as deceptive protec-
tions only, Ud(c′, j) > Ud(c, i) is true as long as |Γ(c)| >
1, the attacker’s choices in the game without deception and
the game with deceptions are the same, namely i = j, and in
the defender’s optimal strategy in the game without decep-
tions, cj < 1.

Proof. Converting a real resource into a secret one is equiva-
lent to reducing a total coverage rate of 1−r from all targets
in the attack set, then adding a coverage rate of 1−r to a cer-
tain target in the attack set, which is j. If |Γ(c)| > 1, when
the total coverage rate of all targets in the attack set reduces
1− r, the coverage rate of i reduces less than 1− r. If j = i,
adding a coverage rate of 1 − r will increase the defender
utility of j as long as cj is less than 1.

We have conducted initial experiments to evaluate the per-
formance of P1, R-ORIGAMI and ORIGAMI. Except oth-
erwise specified, there are one real security resource, 2 tar-
gets, and the budget is 2. Payoffs are randomly generated.
U cd and Uua are drawn uniformly from the range [100, 200].
Uud and U ca are drawn uniformly from the range [0, 100]. The
costs of achieving a fake resource (βF ) and converting a real
resource into a secret one (βSe) are both 1. The results were
averaged over 100 trials.

Figure 1 shows the solution quality of ORIGAMI and R-
ORIGAMI when the value of success rate changes. The x-
axis indicates the value of 1− r while the y−axis indicates



Figure 2: Solution quality against varying budget

Figure 3: Runtime

the optimal defender utility. As the success rate increases
(namely, r decreases), the advantage of R-ORIGAMI over
ORIGAMI increases. Figure 2 shows the solution quality of
ORIGAMI and R-ORIGAMI when the success rate is fixed
at 0.8 (r = 0.2) and the budget varies. The x−axis indicates
the value of budgets, the y−axis indicates optimal defender
utility. Figure 3 shows the runtime of P1 and R-ORIGAMI.
R-ORIGAMI significantly outperforms P1.

Conclusions And Extensions
In this paper, we consider that the defender can perform de-
ceptive protections on targets. Our contributions include: 1)
We introduce a model of security games, in which the de-
fender’s strategies can include deceptive protections. The
deceptive protections succeed with a certain rate. 2) We pro-
vide algorithms for computing the optimal defender strategy
when the attacker surveils unlimitedly before attacking, and
analyze the advantage of using deceptive resources. 3) We
conduct some experiments to evaluate the performance of
our methods.

Our security game model with deception can be extended
in different ways. For example, the attacker may surveil the
defender’s strategies for a limited number of times as in (An
et al. 2013; 2012). An et al (An et al. 2013) has studied
the equilibrium when the attacker conducts limited surveil-
lance and the defender has no deceptive resources. They as-
sume that the attacker has a prior over the distribution of
defender strategies, surveils the defender’s strategies for a
limited number of times, then updates the prior based on the
observation results. Finally, the attacker chooses the opti-

mal target based on his postior belief of the distribution of
defender strategies. If the defender can perform deceptive
protections, the attacker’s prior belief of the distribution of
defender strategies depends on whether the attacker knows
the existence of deceptive resources or not. Therefore, the
defender needs to consider the distribution of types of the
attacker when computing the optimal strategies.

In addition, the assumption made in our model that the
attacker does not reason about the deceptions can be re-
laxed in future work. We can also consider that the bud-
get is not limited, but the defender’s objective is to maxi-
mize the utility while minimizing the cost. The model can
be further expanded by considering robustness issues as
in (An et al. 2011b; Yin and Tambe 2012; Pita et al. 2010;
Jiang et al. 2013a; 2013b) or the human-agent interaction as
in (An et al. 2011a).

Appendix
Assume that if a fake resource fails, the attacker observes
a fake protection; if a secret resource fails, the attacker ob-
serves a secret protection. Thus the coverage observed by
the attacker can be represented as e′ = 〈eRi , eFi , eSei 〉, where
eRi represents the probability of target i being covered by
a real resource observed by the attacker; eFi represents the
probability of target i being covered by a fake resource; eSei
represents that of a secret resource. Next, we show that given
the defender strategy, this assumption leads to the same at-
tacker strategy as is in our model.

Assume that the defender strategy is to perform coverage
c corresponding to a mixed strategy x = 〈xs〉, while the
attacker observes coverage e′. As the proof of Proposition
2, we can prove that the relationship between e′ and c is as
follows.

eRi =
∑
s∈S

xs1R(si) +
∑
s∈S

(1− r)xs1f (si) (16)

= cRi + (1− r)cFi (17)

eFi =
∑
s∈S

r × xs1f (si) (18)

= rcFi (19)

eSei =
∑
s∈S

r × xs1Se(si) (20)

= rcSei . (21)

Thus the attacker utility of attacking target i from his
perspective can be represented as Ua(e′, i) = (eRi +
eSei )U cd(i) + (1 − eRi − eSei )Uud (i) = (cRi + (1 − r)cFi +
rcSei )U cd(i) + (1 − cRi − (1 − r)cFi − rcSei )Uud (i). This is
the same as is in our model (In our model, if a fake resource
fails, the attacker observes no protection; if a secret resource
fails, the attacker observes a real protection). Thus the best
attacker response is the same as in our model.
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