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1 General feature substitution algorithm for equivalence-based cost function

Here we simulate the behavior of an adversary as running an algorithm
FindBooleanIMAC(xA, x−) to substitute features from the “ideal” instance xA based on
an arbitrary ham instance x− to generate the alternative instance x′ for the adversary. This is a gen-
eralization of the one proposed by Lowd and Meek, which is run only based on the distance-based
cost function, to support our proposed equivalence-based cost function.

Within the algorithm 1, function MatchClass(i, Cv) is used to help decide whether it is possible for
a feature i ∈ Cv to be substituted by the others from its class Fi, which leads to no cost. Here Cv de-
notes the vector contains features with different values in v and xA. We employ MatchClass(i, Cv)
to guarantee that the number of original substitutable pairs from xA would not decrease, which leads
to a cost of 0. This means we would only change features in Cy that cannot be substituted by fea-
tures within its class, which is represented as
MatchClass(i, Cv) =

∑
j∈Fi∩Cv

1 {fi ⊕ fj = 1} −
∑

j∈Fi∩Cv

1 {fi ⊕ fj = 0}.

Each time the feature is substituted successfully within one iteration, the query count q would in-
crease by 1, until it meets the query budget Bq .
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Algorithm 1 FindBooleanIMAC(xA, x−, w,Bq)

y ← x−

flag ← false
q ← 0
repeat
yprev ← y
for all i ∈ Cy do

if Fi ∩ Cy = ∅ or MatchClass(i, Cy) ≤ 0 then
toggle i in y
q+ = 1
if wT y > TH then

toggle i in y
q− = 1

end if
end if

end for
count← 0
for all i1 /∈ Cy, i2, i3 ∈ Cy do

randomly choose i1 /∈ Cy, i2, i3 ∈ Cy and i2 6= i3
if Fi2∩Cy = ∅ and Fi3∩Cy = ∅; or MatchClass(i2, Cy) ≤ 0 and MatchClass(i3, Cy) ≤
0 then

toggle i1, i2, i3 in y
q+ = 1
count← count+ 1
if wT y > TH then

toggle i1, i2, i3 in y
q− = 1
count← count− 1

end if
end if

end for
if flag and count > 0 then
flag ← false

end if
if count = 0 and flag = false then

flag ← true
for all i1 /∈ Cy, i2 ∈ Cy, i3 ∈ Cy do

toggle i1, i2, i3 in y
q+ = 1
if wT y > TH then

toggle i1, i2, i3 in y
q− = 1

end if
end for

end if
if q == Bq then

break;
end if

until yprev = y
return y

2 Comparison based on different equivalence class sizes

To demonstrate the impact of feature cross-substitution attacks, we show comparisons for NB,
SVM with linear kernel, SVM with rbf kernel and Neural Network classifiers based on the base-
line Distance-based cost function (Figure 1(a)) and the Equivalence-based cost function (Figure 1
(b)-(d)) cost function with Enron data.
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(a) (b) (c) (d)

Figure 1: Impacts of different equivalence class sizes for (a) Distance-based cost function, (b)
Equivalence-based cost function with max-2-letter substitution, (c) Equivalence-based cost function
with max-3-letter substitution, (d) Equivalence-based cost function with max-4-letter substitution.

For the equivalence-based cost function, we applied max-2,3,4-letter substitution respectively to
form equivalence classes with increasing sizes. From the comparison results in Figure 1, it is clear
that the feature cross-substitution attacks significantly elevate the test error, and such attacks have
more impact when the equivalence class size increases.

3 Supplementary algorithm for SMA

Within SMA algorithm, attacker strategies are iteratively added into the linear optimization problem
through the constraint generation algorithm. Details of algorithm computeAttack() are provided.
In essence, this algorithm calls the approximation algorithm for computing a cost-minimizing in-
stance described earlier in the Supplement (findBooleanIMAC()).

Algorithm 2 computeAttack(xA, w)

Randomly select x− from X
return FindBooleanIMAC(xA, x−, w,Bq)

4 Supplymentary feature feduction effects in adversarial classification

Figure 2 provides additional data about the effects of feature reduction in adversarial classification.
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Figure 2: Effect of adversarial evasion on feature reduction strategies. (a)-(d) deterministic Naive
Bayes classifier, SVM with linear kernel, SVM with rbf kernel, and Neural network, respectively.
1-3 correspond to Enron, Ling-spam, and UCI data sets. Top sets of figures in each case correspond
to distance-based and bottom figures are equivalence-based cost functions. For equivalence-based
cost functions equivalence classes are formed using max-2-letter substitutions.

5 Supplementary Experiments Evaluating SMA Algorithm

In this section, we exhibit the supplementary comparison results to evaluate the effectiveness of the
two proposed methods: the equivalence-based classification heuristic (EBC) and the Stackelberg
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game multi-adversary model (SMA) solved using mixed-integer linear programming. The evalua-
tion is based on both the distance-based and equivalence-based cost functions.

We employ three datasets: the Enron data, Ling-spam data, and UCI data. Each column in Figure 3
to Figure 8 corresponds to a specific dataset. Figure 3 to Figure 5 show the comparison results for
the Stackelberg prediction game (SPG) with linear loss, SPG with logistic loss, the two proposed
methods, and each of the baseline classifier: Naive Bayes, SVM, and Neural Network respectively,
based on equivalence-based cost function. Figure 6 to Figure 8 reveal similar comparison results
for the two SPG state-of-the-art alternatives and the proposed methods with each baseline classi-
fier based on the distance-based cost function. Various cost (5, 10, 20) and query (5, 10) budget
constraints are applied to simulate the adversarial evasion.

From Figure 3 to Figure 8, it is evident that SMA outperforms other alternatives in all situations
subject to various combinations of cost and query budget constraints based on different datasets. The
performance of EBC is relatively data-dependent but still shows resilience to the adversarial feature
cross-substitution attacks compared with the traditional baseline classifiers. The comparison results
also suggest that given higher cost and query budget, the adversary is better able to perform feature
cross-substitution attacks and therefore elevate the test error for the traditional classifiers, which
fail to taken adversarial attacks into account. Furthermore, even having considered the adversarial
settings for classification tasks, the test error rate of all classifiers based on the distance-based cost
function is still higher than the corresponding one based on the equivalence-based cost function.
This implies that under estimate the adversary ability would lead to bad performance for classifiers.
However, as SMA model can apply more robust cost function (equivalence-based cost function) to
evaluate the adversary strategies accordingly during training, the test error of SMA is able to keep
relatively stable for different attacked data, which significantly increases the classifier robustness.

Figure 9 takes the insight for the nature of SMA solution vectors w as supplementary comparisons
based on both Enron and UCI datasets to the results represented in the main paper, which are based
on the Ling-spam data. From the ‖w‖0 evaluation based on the two dataset (Figure 9 (a)), we
can see the similar trend for different datasets, that as the query budget for adversary increases
the solutions become less sparse. Figures 9 (b) and (c) show the clustering effects on test error
and training time. Results from different datasets suggest that with more than 100 clusters, the
test errors already converges to a near-optimal value, while the training time turns out to be just
several seconds. This demonstrates that the SMA model can achieve a fast training process with
more accurate classification results compared with alternative classifiers, as well as an automatically
trained model to deal with the tradeoff between overfitting and adversarial attacks, including the
feature cross-substitution attack.
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Figure 3: Comparison of EBC and SMA approaches to the baseline classifier Naive Bayes and SPG
alternatives based on Equivalence-based cost function for (a) Enron data, (b)Ling-spam data, and
(c) UCI data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5, Row
4: Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 4: Comparison of EBC and SMA approaches to the baseline classifier SVM and SPG al-
ternatives based on Equivalence-based cost function for (a) Enron data, (b)Ling-spam data, and (c)
UCI data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5, Row 4:
Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 5: Comparison of EBC and SMA approaches to the baseline classifier Neural Network and
SPG alternatives based on Equivalence-based cost function for (a) Enron data, (b)Ling-spam data,
and (c) UCI data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5,
Row 4: Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 6: Comparison of EBC and SMA approaches to the baseline classifier Naive Bayes and SPG
alternatives based on Distance-based cost function for (a) Enron data, (b)Ling-spam data, and (c)
UCI data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5, Row 4:
Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 7: Comparison of EBC and SMA approaches to the baseline classifier SVM and SPG alter-
natives based on Distance-based cost function for (a) Enron data, (b)Ling-spam data, and (c) UCI
data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5, Row 4:
Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 8: Comparison of EBC and SMA approaches to the baseline classifier Neural Network and
SPG alternatives based on Distance-based cost function for (a) Enron data, (b)Ling-spam data, and
(c) UCI data. Row 1: Bc = 5, Bq = 5, Row 2: Bc = 10, Bq = 5, Row 3: Bc = 20, Bq = 5, Row
4: Bc = 5, Bq = 10, Row 5: Bc = 10, Bq = 10, Row 6: Bc = 20, Bq = 10.
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Figure 9: Left: ‖w‖0 of the SMA solution. Middle: SMA error rates, and Right: SMA running
time, as a function of the number of clusters used. Top: results based on Enron data. Bottom: results
based on UCI data.
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