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Abstract Stackelberg security game models have become among the leading prac-
tical game theoretic approaches to security, having seen actual deployment in the
LAX Airport, the United States Federal Air Marshals Service, and the United
States Coast Guard, among others. However, most techniques for computing op-
timal security policies in Stackelberg games to date do not explicitly account for
interdependencies among targets. We introduce a novel framework for computing
optimal randomized security policies in networked (interdependent) domains. Our
framework rests upon a Stackelberg security game model, within which we ex-
plicitly capture the indirect spread of damages due either to malicious attacks or
unintended failures. We proceed to specify a particular simple, yet natural model
of damage spread based on a graphical representation of asset interdependencies
coupled with an independent failure cascade model. For the general model, we
present an algorithm based on submodularity of the attacker’s decision problem,
in combination with local search, to approximate optimal security resource allo-
cation across the assets, and show experimentally that our algorithm is far more
scalable than an alternative exact approach, yields nearly optimal results, and
offers substantial improvement over a well-known heuristic alternative. We then
show that in a particular important special case we can compute optimal secu-
rity policies exactly and efficiently. We proceed to apply our framework to study
comparative network resilience, unifying previously disparate strands of research

Parts of this paper draw from the material previously presented at UAI 2012 (Letchford and
Vorobeychik 2012). Specifically, the model of interdependencies presented in Letchford and
Vorobeychik (2012) is a highly restricted special case of the model we present in this paper.
Sections 4.3, 6, and 7 draw upon Letchford and Vorobeychik (2012), but much of the material
in these sections is new.
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in the area, and to offer insights into other aspects of the interdependent security
problem.

1 Introduction

The revolution in communication and computing technologies has spurred un-
precedented growth in connectivity, be it technical, economic, or social. Everyone
benefits from an increasingly connected world: we can collect more information
and make better decisions about the electric power grid by communicating with
an increasingly complex network of sensors and smart devices, can lead a large-
scale project with globally dispersed participants from the comfort of an office,
and maintain active membership in a community, real or virtual, despite being ge-
ographically removed from its epicenter. The benefits are so patent, indeed, that
associated risks are often easy to overlook. The risk of connectivity is that local
failures can have global consequences. This is now well recognized in cybersecu-
rity, as viruses propagate from system to connected system, often affecting a large
fraction of businesses. Melissa virus, for example, affected more than 300 organi-
zations, causing over $80 million in damage (CERT 1999, Rosencrance 2002). As
another example, the electric power grid, which is already a complex networks of
generators, electric lines, along with businesses and households, is becoming much
more so with the increasingly sophisticated sensors and “smart” meters, and with
increasing complexity of the grid, security failures can have increasingly severe
consequences (Stamp et al 2009, Energy Sector Control Systems Working Group
2011).

Despite the importance of accounting for interdependent risks in security de-
cisions, there are few systematic approaches for empowering a decision maker to
do so. The majority of the approaches to guide security investment decisions as-
pire to do so without explicitly accounting for interdependencies. For example,
the standard approach to security risk management in the industry is to consider
consequences in terms of asset value, consequence of a threat on that value, and
frequency of threat, but either treats assets as independent, or abstracts away
the complex interdependencies in a single cost/value measure (Krutz and Vines
2001). Research in IT security management has largely been in line with this frame-
work (Yue and Bagchi 2003, Ulvila and Gaffney 2004, Cavusoglu and Raghunathan
2004, Cavusoglo et al 2004, Ogut et al 2005, Cavusoglu et al 2005, Ogut et al 2008,
Cavusoglu et al 2008, 2009, August and Tunca 2011). The strands that explicitly
model interdependent risk focus on spillover effects among many organizations or
entities, rather than policy to secure interdependent assets (Kunreuther and Heal
2003, Cremonini and Nizovtsev 2006).

Our point of departure is a class of optimization-based game theoretic ap-
proaches in security settings referred to as Stackelberg security games (Paruchuri
et al 2008). These are two-player games in which a defender aims to protect a set
of targets using a fixed set of limited defense resources, while an attacker aims to
assail a target that maximizes his expected utility. A central assumption in the
literature on Stackelberg security games is that the defender can commit to a prob-
abilistic defense (equivalently, the attacker observes the probabilities with which
each target is covered by the defender, but not the actual defense realization).
Much of the work on Stackelberg security games focuses on building fast, scalable
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algorithms, often in restricted settings (Kiekintveld et al 2009, Jain et al 2010a,
Shieh et al 2012). One important such restriction is to assume that targets exhibit
independence: that is, the defender’s utility only depends on which target is at-
tacked and the security configuration at that target. Short of that restriction, one
must, in principle, consider all possible combinations of security decisions jointly
for all targets, making scalable computation elusive. Many important settings,
however, exhibit interdependencies among potential targets of attack. These may
be explicit, as in IT and supply chain network security, or implicit, as in defending
critical infrastructure (where, for example, successful delivery of transportation
services depends on a highly functional energy sector, and vice versa), or in se-
curing complex software systems (with failures at some modules having potential
to adversely affect other modules). While in such settings the assumption of inde-
pendence seems superficially violated, we demonstrate below that under realistic
assumptions about the nature of interdependencies, we can nevertheless leverage
the highly scalable optimization techniques which assume independence.

In all, we offer the following contributions. First, we introduce a general frame-
work to modeling security decisions for interdependent assets in the presence of
both adversarial and non-adversarial threats. Second, we instantiate our general
model of interdependencies using a graph in combination with an independent fail-
ure cascade model. Third, we present a general heuristic algorithm for computing
approximately optimal security policies on networks that leverages submodularity
of the attacker’s problem in combination with a simple, yet highly effective, local
search heuristic. Fourth, we present an important special case of our model which
admits a highly scalable algorithm for computing optimal security policies exactly.
Fifth, we apply our framework to study several applications of interdependent se-
curity, using both real networks, as well as stochastic generative network models.
One of our most significant experimental contributions is an extensive study of
comparative network resilience. This is a field which has had considerable signif-
icance in the broad network science literature and, indeed, is at the focus of two
disparate strands of literature: the first comparing susceptibility of networks to
attacks or random failures when no defense is present, and second, studying inoc-
ulation strategies on networks to protect from infectious disease spread, allowing
for no targeted attacks. Our framework is the first that allows us to capture both
endogenous defense measures and targeted attacks on networks, allowing us to
unify these two strands of research. Our results, thus, provide much insight into
both of these areas, offering additional nuance and, at times, contradicting the
commonly held intuitions.

1.1 Literature Review

Our work is situated within the rapidly expanding body of literature on secu-
rity investment and policy. Topically, this literature can be grouped into several
streams. The first studies security policies from the perspective of liability consid-
erations (Cavusoglu et al 2008, August and Tunca 2011), considering, for example,
alternative ways to allocate burden or damage of security decisions (such as liabil-
ity for zero-day exploits). The second is focused on the technical capabilities side,
aiming to develop better intrusion detection systems (IDS), or IDS that are espe-
cially attuned to costs of decisions about classifying threats (Provost and Fawcett
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1997, Domingos 1999, Lee et al 2002, Anderson 2008). The third stream, which
is most closely connected to our aims, involves approaches to improve security in-
vestment decision support. Within this stream there are three general approaches:
risk-based, decision theoretic, and game theoretic.

The risk-based approach is perhaps the oldest and seems still to be the prin-
cipal approach in practice. At the crux of this approach is evaluation of specific
security risks facing an organization, perhaps through an associated assessment of
vulnerabilities, threats, and consequences (Krutz and Vines 2001, MITRE 2012,
Duggan et al 2007, Mounzer et al 2010). While much attention is paid in this
literature on risk assessment and understanding threats (e.g., attackers), it offers
relatively little quantitative guidance about mitigation, aside from the most basic
cost-benefit comparison between deploying a particular security measure, and the
expected risks and consequences it is meant to ameliorate.

The academic research community, in contrast, has aimed to shift focus on
providing specific guidance about security investments, though in many cases this
guidance is in very specific security contexts, such as whether or not to deploy
a firewall or an IDS, and how to configure it if deployed (Yue and Bagchi 2003,
Ulvila and Gaffney 2004, Cavusoglu and Raghunathan 2004, Cavusoglo et al 2004,
Cavusoglu et al 2005, 2009). The corresponding approaches are either decision the-
oretic, modeling threats as unaffected by mitigation policies (Yue and Bagchi 2003,
Ulvila and Gaffney 2004, Cavusoglu and Raghunathan 2004), or game theoretic,
accounting for the impact of security policies on attackers’ incentives (Cavusoglu
and Raghunathan 2004, Cavusoglo et al 2004, Cavusoglu et al 2005, 2009).

Game theoretic treatment of security is intimately connected to two sim-
ple classical models: inspection games (Avenhaus et al 2002) and colonel Blotto
games (Roberson 2006). The most basic variant of an inspection game involves an
inspectee (e.g., a tax evader) who can choose to perform an illegal or a legal action,
and an inspector, who receives a noisy signal upon which he can inspect (at some
cost), or not. One qualitative difference between this generic inspector game and
some of the models we described above, as well as our own approach, is that in
our case the defender (inspector) acts first, and the attacker (inspectee) acts af-

ter observing the defender’s decision (which may be randomized, in which case the
attacker observes the probability distribution). Moreover, here, as in the above
references, the defender’s and attacker’s action spaces are quite simple, and no
interdependencies are relevant. Colonel Blotto game, too, is a simultaneous move
game, but here two commanders are endowed with armies, and get to place a frac-
tion of their force on each of n battlefields. Whichever side has the most forces on
a battlefield wins that battle, and the winner of the game is the commander with
the most battle victories. In this game, the decision space of each player is actually
rather complex, though complex in a different way from our setting. However, the
game is zero-sum (ours is not), and here again no interdependencies are typically
modeled.

Insofar as interdependencies in security decisions have been modeled in related
literature, this has been done in the context of interdependencies among multi-
ple entities aiming to jointly defend their systems, with the focus on outcomes
of strategic interactions, rather than offering a security policy for the entire in-

terdependent system (Kunreuther and Heal 2003, Ogut et al 2005, Cremonini and
Nizovtsev 2006, Grossklags et al 2008). For example, Kunreuther and Heal (2003)
study the problem of interdependencies among players, each deciding whether or
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not to invest in better security. There is no attacker in their model, so in that
sense its scope is quite different from ours. Moreover, an individual player’s de-
cision is binary. What they aim to model are spillovers due to a decision not to
secure one’s own assets onto others, and they demonstrate that in many cases
equilibrium exhibits insufficient security overall.

While most of the work described above considers either exogenously specified
risks (e.g., natural disasters or human error), or deliberate attacks that adopt to the
security policy, Zhuang and Bier (2007) were the first to consider both in a single
comprehensive model as we do, albeit without explicitly modeling interdependent
risks.

All the work described so far on game theoretic and decision theoretic ap-
proaches to security attempts to characterize decisions by the defender, attacker,
or both using closed-form mathematical expressions. In parallel, there has been
considerable literature that aspires to compute security decisions. One such stream
involves numerous variants of network interdiction problems. At the high level, all
such approaches start with a network flow or shortest path problem, with the goal
of choosing an action (such as blocking a subset of nodes or arcs on the network)
that most effectively reduces the flow or increases shortest paths (Wood 1993,
Cormican et al 1998, Woodruff 2003, Brown et al 2006, 2009, Nehme 2009). Like
ours, these efforts all use mathematical programming formulations to compute an
optimal interdiction strategy. Unlike our work, however, these efforts are funda-
mentally restricted to zero-sum games, account for interdependencies using models
based on network flow, and in most cases do not include defense against interdic-
tion, which is our focus here. Brown et al (2006) do present a tri-level formulation
that attempts to allow one to take countermeasures against being interdicted by
an attacker, but this model is extremely difficult to scale, making its practical
utility quite limited.

Our point of departure is a class of optimization approaches for security deci-
sions referred to commonly as Stackelberg security games. The paper that provided
the computational foundations for what has become an active subfield of computa-
tional game theory was the work by Conitzer and Sandholm on computing optimal
Stackelberg commitment strategies in general finite games (Conitzer and Sand-
holm 2006). In this paper, Conitzer and Sandholm presented the first algorithm
for computing optimal randomized commitment strategies in Stackelberg games.
Paruchuri et al (2008) presented the first mixed-integer linear programming for-
mulation for computing a Stackelberg equilibrium in Bayesian Stackelberg games.
Kiekintveld et al (2009) introduce an important restricted class of Stackelberg
games specifically targeted at security settings; they refer to these as Stackelberg

security games, and demonstrate that extremely scalable algorithms can be devised
for this class of games. Since then, a number of follow-up papers have emerged,
studying, for the most part, computational aspects of the problem and aiming to
scale the algorithms to larger and larger instances (Letchford and Conitzer 2010,
Tsai et al 2010, von Stengel and Zamir 2010, Jain et al 2010a, Korzhyk et al 2010,
Jain et al 2011, Conitzer and Korzhyk 2011, Tsai et al 2012), as well as illustrating
their actual deployment in the field, such as the LAX airport (Pita et al 2009),
Federal Air Marshall Service (Jain et al 2010b), and the US Coast Guard (Shieh
et al 2012). Of these approaches, Tsai et al (2012) presents the most similar model
to ours. The principal difference is in the game structure and motivation: Tsai et
al. model both the defender and attacker as agents who aim to influence contagion
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of ideas in a simultaneous move game; thus, the two players actually have sym-
metric roles. In our model, the attacker’s goal is to start a failure cascade, but the
defender aims to minimize damages from cascading failures, not start a cascade of
his own.

2 Stackelberg Security Games

At the core of our model lies a Stackelberg security game, which consists of two
players, the leader (defender) and the follower (attacker), and a set of possible
targets. The leader can decide upon a randomized policy of defending the targets,
possibly with limited defense resources. The follower (attacker) is assumed to ob-
serve the randomized policy of the leader, but not the realized defense actions.
Upon observing the leader’s strategy, the follower chooses a subset of targets to
attack so as to maximize its expected utility. The typical solution concept for these
games is a Strong Stackelberg Equilibrium (SSE), in which the leader plays an op-
timal policy that accounts for an follower’s optimal response to it and, moreover,
presumes that the follower breaks ties in the leader’s favor.1

In past work, Stackelberg security game formulations focused on defense poli-
cies that were costless, but resource bounded, and security decisions amounted
to covering (defending) a set of targets, or not. In numerous settings such mod-
els are quite limiting. For example, in cybersecurity, protecting computing nodes
could involve configuring anti-virus and/or firewall settings, with stronger settings
carrying a benefit of better protection, but at a cost of added inconvenience, lost
productivity, as well as possible licensing costs. Indeed, costs on resources may use-
fully replace resource constraints, since such constraints are often not hard, but
rather channel an implicit cost of adding further resources. Thus, our model allows
the defender to choose among many security configurations for each valued asset,
and, additionally, security resources are only available at some cost. Furthermore,
while security games as described above naturally entail an attacker, in practice
most failures are not at all a deliberate act of sabotage, but are due entirely to
inadvertent errors. Thus, we also depart from previous literature on Stackelberg
security games by explicitly modeling both attacks and random failures.

To formalize, suppose that the defender can choose from a finite set O of
security configurations for each target t ∈ T , with |T | = n. A configuration o ∈ O
for target t ∈ T incurs a cost co,t to the defender. Let s = {o1, . . . , on} be the
(pure strategy) security configuration vector, with ot ∈ O denoting the security
configuration chosen for target t; we refer to s as the defense policy. We denote by
qs the probability that the defender chooses a security configuration vector s. The
attacker observes the randomized defense policy vector q, and chooses a subset of at
most L targets to attack; let us denote this subset by A = {t1, ..., tL}. We denote
the defender’s utility function by U(s,A) and the attacker’s by V (s,A) where s

is the defense policy and A the attacker’s response. To capture the distinction
between active attacks and “nature”, let r be the prior probability of the defender
that a failure will happen due to a deliberate attack. If no attack is involved,

1 The idea that the follower breaks ties in the leader’s favor may seem strange in the context
of security games. However, note that the leader can make the follower strictly prefer the
corresponding action by a slight change in his randomized policy.
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any target can fail; the defender’s belief that a set of targets B randomly fails
(conditional on the event that no attack is involved) is gB , with

∑
B gB = 1.

3 Modeling Asset Interdependencies

3.1 A General Model

In this section we offer a general model of interdependencies among assets. We
then present an important special case that admits a far more scalable approach
for computing optimal security policies. Throughout this section we focus on the
defender’s utilities; attacker is treated identically.

Let wt be an intrinsic worth of a target to the defender, that is, how much
loss the defender would suffer if this target were to be compromised with no other
target affected (i.e., not accounting for indirect effects). In doing so, we assume
that these worths are independent for different targets. Moreover, suppose that
when a target t is damaged or compromised (due to a successful attack either
on t directly, or on another target which indirectly impacts t), only a fraction αt

of its worth remains. We allow αt to be a random variable if the impact of an
attack is non-deterministic. Let z(Ã, sA;A) be the probability that a subset Ã of
targets fails (or are compromised) when a subset of targets A are attacked and
the defense configuration for nodes in A is sA (that is, sA is the portion of the
defense vector s restricted to nodes in A). For example, if a failure of every node
t due to an attack is independent of security configuration of other nodes and
Ã ⊆ A, z(Ã, sA;A) =

∏
t∈Ã z(o, t), where z(o, t) is the probability that node t fails

if attacked when its security configuration is o. The defender utility when security
configuration is s and the attacker attacks a subset A of targets is

U(s,A) =
∑
Ã⊆A

z(Ã, sA;A)E

[∑
t′

αt′wt′ | s, Ã

]
=
∑
Ã⊆A

z(Ã, sA;A)
∑
t′

wt′E
[
αt′ | s, Ã

]
.

(1)
We can think of the term E

[
αt′ | s, Ã

]
as the expected damage to target t′ when the

subset of targets Ã is successfully compromised by the attacker and the security
configuration vector is s.

3.2 Cascading Failures Model

In general, one may use an arbitrary model to compute or estimate the conse-
quences of node failures due to interdependence, E [αt′ | s,A]. Here, we offer a
specific model of interdependence between targets that is simple, natural, and
applies across a wide variety of settings.

Let us fix the security policy vector s and the set A of targets that are initially
compromised. Suppose that dependencies between targets are represented by a
graph (T,E), with T the set of targets (nodes) as above, and E the set of edges
(t, t′), where an edge from t to t′ (or an undirected edge between them) means that
target t′ depends on target t and, thus, a successful attack on t may have an impact
on t′. Each target has associated with it a worth, wt, as above, although in the
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current context this worth is incurred only if t is affected (e.g., compromised, bro-
ken). We model the interdependencies between the nodes as independent cascade
contagion, which has previously been used primarily to model diffusion of product
adoption and infectious diseases (Kempe et al 2003, Dodds and Watts 2005). The
contagion proceeds starting at the attacked nodes t ∈ A, affecting each of their
network neighbors t′ with probability pt,t′(s), then spreads from each affected t′,
and so on, recursively. Contagion can only spread once along any network edge,
and if a node is affected, it remains affected through the diffusion process (note
also that in this model, the node is either affected, or not; we let αt = 0 when a
node is affected by an attack and αt = 1 when it is not2). An equivalent way to
model this process is to start with the network (T,E) and remove each edge (t, t′)
with probability (1 − pt,t′(s)). The entire connected component of each attacked
node is then deemed affected. As an important special case, we can use pt,t′(ot′)
to model the impact of inoculation on the probability of becoming infected, for
example, setting it to 0 if ot′ is the decision to administer inoculation on node t′

and to 1 if ot′ is the decision not to inoculate t′.

3.3 Computing Expected Utilities

In principle, our setup allows us to fully decouple computing or estimating ex-
pected utilities U(s,A) and V (s,A) of the defender and the attacker respectively,
and subsequently computing an optimal defense policy. In general, we can esti-
mate player utilities by simulating cascades starting at every subset of nodes Ã
of size at most L and for every (deterministic) security configuration vector s,
with expected utility of defender/attacker estimated as a sample average over K
simulated cascades to obtain estimates of E

[
αt′ | s, Ã

]
, and applying Equation 1.

Clearly, however, even estimating expected utilities for the entire game is an en-
tirely intractable process in our general setup. Consequently, in the fully general
case, we would wish to compute or approximate a Stackelberg equilibrium without
having to know the full payoff functions of both players. Below, we demonstrate
how this can be done using a combination of heuristic and submodular optimiza-
tion methods. For the moment, however, we introduce a special case which allows
us to compute an optimal security policy exactly and efficiently.

3.4 Special Case: Single-Node Attacks and Security-Independent Cascades

The most basic problem with the general setup that we described above is that in
order to estimate the defender and attacker utility functions, and ultimately com-
pute optimal security strategies, one needs to perform a set of simulations for each

defense policy vector s and attack strategy A. Clearly, this becomes intractable even
for a modest number of targets. In this section, we introduce several restrictions
on the general model that allow both a much more compact representation of the
players’ payoff functions, and, ultimately, offers an opportunity for highly scalable
Stackelberg equilibrium computation.

2 Note that it is direct to replace these choices by arbitrary different constants
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The first restriction is that the attacker can only attack a single target. Note
that under this restriction, Equation 1 simplifies to

U(s, t) = z(o, t)
∑
t′

wt′E [αt′ | s, t] . (2)

Indeed, this restriction has been operational in most related work on computing
strong Stackelberg equilibria in the context of security (Kiekintveld et al 2009, Jain
et al 2010a, Shieh et al 2012). The second restriction is captured by the following
condition on the impact of interdependencies:

Condition 1 For all t and t′, E [αt′ | s, t] = E [αt′ | ot, t] .

In words, the probability that a target t′ is affected when an initially attacked
target t fails only depends on the security configuration at the attacked target t.
Below, we use o instead of ot where t is clear from context.

There are several natural ways to think about Condition 1. The simplest is con-
sider the consequences of attacks as affecting network flows. In this case, removing
a node t and its incident edges from a network means that any flow between a pair
of other nodes s, r must take a different route and, indeed, it may even be that s
and r are now disconnected. Significantly, the utility lost in this case only depends
on the security configuration at t. An alternative way to interpret Condition 1
is that security against external threats is not very efficacious once an attacker
has found a way into the system. For example, in cybersecurity defense is of-
ten focused on external threats, with little attention paid to threats coming from
computers internal to the network. Thus, once a computer on a network is com-
promised, the attacker may find it much easier to compromise others on the same
network. This second interpretation gives rise to a very natural restriction on the
cascading failure model that satisfies Condition 1: pt,t′ do not depend on security
configurations at nodes. This restriction is very common, as argued above. There
is, however, an important setting in which it is clearly unrealistic: bioterrorism,
where inoculation decisions reduce the likelihood of an individual being infected
either by the attacker, or by another infected individual.

Under Condition 1, the defender’s utility when t is attacked under security
configuration o becomes:

U(o, t) = z(o, t)

wtE[αt|ot, t] +
∑
t′ 6=t

wt′E[αt′ |ot, t]

 .
Thus, in this special case, we can represent the game much more compactly, using
U(o, t) and V (o, t) to denote the defender’s and attacker’s utility, respectively, when
target t is attacked and the security configuration at that target is o. In a slight
abuse of notation, we denote by qo,t the probability that the defender chooses o
at target t. Note that given qs, we can compute qo,t as qo,t =

∑
s qs1(st = o),

where 1(·) is an indicator function which is 1 when its argument is true and 0
otherwise. Capturing the natural disasters in this special setting requires us (for
algorithmic reasons) to restrict nature to affect a single target at a time. Thus, we
will abuse notation again, denoting by gt the probability that target t randomly
fails (conditional on the event that no attack is involved), with

∑
t gt = 1.
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3.5 Incorporating Uncertainty about the Network

Applying our framework in real-world networked security settings requires an ac-
curate understanding of the interdependencies. Thus far, we assumed that the
actual network over which cascading failures would spread is perfectly known. A
natural question is: what if our network model is inaccurate?

Formally, we model the uncertainty about the network as a parameter ε which
represents the probability of incorrectly estimating the relationship between a pair
of targets. Thus, if there is an edge between t and t′, we now let this edge be present
with probability 1−ε. On the other hand, if t and t′ are not connected in the graph
given to us, we propose that they are, in fact, connected with probability ε. Thus,
when the graph is large, even a small amount noise will cause us to err about a
substantial number of edges.3

Note that there is a natural way to incorporate this model of uncertainty into
our framework. Let us interpret pt,t′(s) as the probability of a cascade from t to t′

conditional on an edge from t to t′. Then, if t and t′ are connected, we modify cascade
probabilities to be p̂t,t′(s) = pt,t′(s)(1− ε), whereas if they are not connected, the
cascade probability is p̂t,t′(s) = pt,t′(s)ε.

4 Computing Optimal Randomized Security Configurations

4.1 The General Case: Exact Solution

Previous formulations of Stackelberg games for security involved a fixed collection
of defender resources, and in most cases a binary decision to be made for each tar-
get: to cover it, or not. To adapt these to our domains of interest, we first modify
the well-known multiple linear program (henceforth, multiple-LP) formulation to
incorporate an arbitrary set of security configurations, together with their corre-
sponding costs of deployment. In the multiple-LP formulation, each linear program
solves for an optimal randomized defense strategy given that the attacker attacks a

fixed subset of targets Â, with the constraint that Â is an optimal choice for the
attacker. The defender then chooses the best solution from all feasible LPs as his
optimal randomized defense configuration. The LP formulation for a representative
subset of targets Â is shown in Equations 3a-3d.

max r

(∑
s

U(s, Â)qÂs

)
+ (1− r)

∑
B,s

gBU(s,B)qÂs

−∑
t

∑
o

co,tq
Â
o,t. (3a)

s.t.

∀s qÂs ∈ [0, 1] (3b)∑
s

qÂs = 1 (3c)

3 We assume here that both the defender and attacker share the same uncertainty about the
network. An alternative model could consider an attacker that has more (or exact) information
about the network. The resulting defender problem would become a Bayesian Stackelberg
game.
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∀A
∑
s

V (s,A)qÂs ≤
∑
s

V (s, Â)qÂs (3d)

The intuition behind the multiple-LP formulation is that in an optimal defense
configuration, the attacker must (weakly) prefer to attack some subset of targets,
and, consequently, one of these LPs must correspond to an optimal defense policy.

4.2 Approximating Security Policy in the General Case

There are two significant problems with the LP formulation for computing optimal
defender policies we described above. First, the LP itself becomes intractably large
when we have a sufficient number of network nodes and defense configuration
options. Perhaps a far more significant problem, however, is that the LP requires
us to first compute or estimate the expected utilities for each joint strategy of
the defender and attacker based on our model of interdependencies. It is this
bottleneck, as much as any other, that renders the exact approach intractable in
practice.

In this section, we offer an alternative that takes advantage of the special
structure in the independent failure cascades model. This alternative approach
allows us to avoid estimating the entire payoff matrix, interleaving optimization
and estimation steps instead in a manner analogous to simulation-based game
theoretic analysis (Vorobeychik and Wellman 2008). To simplify the problem, we
restrict attention here to deterministic defense policies; generalization is immediate
if we discretize randomized policies.

We begin by focusing on the attacker’s best response problem, an algorithmic
challenge in its own right, and subsequently proceed to propose a local search
heuristic to obtain a defender’s policy in which the attacker’s optimization prob-
lem is a subroutine. We assume henceforth that the interdependencies among the
targets are modeled using the dependency graph and independent failure cascades.

4.2.1 Approximating an Optimal Attack

The attacker’s problem is to choose a subset of L targets to attack so as to max-
imize his expected utility V (s,A). This problem is a generalization of the well-
known problem of influence maximization (Kempe et al 2003), in which a decision
maker aims to maximize the expected number of individuals (rather than utility)
affected by a cascade started from the chosen nodes. Kempe et al. showed that
the problem of choosing an optimal subset of L nodes to seed when subsequent
influence spreads according to an independent cascades model is NP-Hard. In our
setting, the attacker’s problem is a slight generalization of this model, and NP-
Hardness of the attacker’s problem is therefore immediate (setting wt = 1 for all
nodes recovers the original influence maximization problem).

Theorem 1 Computing an optimal attack strategy is NP-Hard.

An important algorithmic insight by Kempe et al. is that while solving the in-
fluence maximization problem optimally is hard, the objective function is submodu-

lar. Consequently, a simple greedy heuristic yields a constant factor approximation
and, in practice, gives nearly optimal solutions. While our setting is slightly more
general, we can readily extend this submodularity result.
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Theorem 2 The attacker’s objective function is submodular.

Proof Note that the cascade process can be equivalently formulated by first flipping
the biased coins for each edge, keeping the edge between t and t′ with probability
pt,t′(ot, ot′) and deleting it otherwise. The total utility to the attacker given such a
realization is the sum of the worths of all targets affected by the attacker’s decision
A. Let Tt be the set of targets with a finite path from a particular target t, and let
TR = ∪r∈RTr be the set of targets reachable from any target in a set R. Finally,
for any set of targets R ⊆ T , define U(R) =

∑
r∈R wr, that is, the total worth of

all targets in R.
Suppose R ⊆ S ⊆ T be targets of initial attack and consider attacking an

additional target t′. The attacker’s utility when the set R of targets is attacked is
U(TR), while the utility from attacking targets in R ∪ t′ is U(TR∪t′). Then,

U(TR∪t′)− U(TR) =
∑

r∈TR∪t′

wr −
∑
r∈TR

wr =
∑

r∈TR∪t′−TR

wr.

Now, observe that if R ⊆ S, TS∪t′ − TS ⊆ TR∪t′ − TR, which implies that∑
r∈TR∪t′−TR

wr ≥
∑

r∈TS∪t′−TS

wr = U(TS∪t′)− U(TS),

which in turn implies that for every realization of the random cascade graph,
the attacker utility is submodular. Since submodularity is preserved under linear
transformations, the attacker expected utility is also submodular. �

The implication is that for a fixed defense policy s we can approximate the optimal
attack to a factor of 1− 1/e with an iterative greedy algorithm which chooses, in
each iteration, the target to attack that attains the highest increase in expected
utility with respect to previously chosen targets (Nemhauser et al 1978).

4.2.2 Computing a Defense Policy

Thus far we have shown that we can compute a near-optimal strategy for the
attacker reasonably fast. We now come to the main problem: computing a defense
policy. First, we observe that while the attacker’s problem is submodular, this
is not the case for the defender: defense decisions have complementarities. These
arise because targets are interdependent and, therefore, defending one target may
have little effect until other targets connected to it are also defended. The presence
of such complementarities would in principle make the combinatorial optimization
problem faced by the defender extremely difficult. However, we offer a simple local
search heuristic and show empirically that it is highly effective, particularly when
combined with random restarts.

To begin, let us make several basic structural observations. First, suppose that
the cascade probabilities pt,t′(s) only depend on the security configuration at t and
t′, which we refer to as o and o′. To make this restriction explicit, we can denote
the corresponding cascade probabilities by pt,t′(o, o

′). In this very natural special
case, if a particular security configuration o is less effective than another, o′, and
is at the same time more expensive than o′, we can prune it from consideration,
since it is dominated by o′, a notion which we now formally define.
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Definition 41 A security configuration r is stronger than o if z(o, t) ≥ z(r, t) for all

t ∈ T , pt,t′(r, r) ≤ pt,t′(r, o), pt,t′(r, r) ≤ pt,t′(o, r), and pt,t′(r, r) ≤ pt,t′(o, o) for all

t, t′ ∈ T , with at least one inequality being strict.

In words, we say that a security configuration r is stronger than o if both the
probability of failure due to a direct attack is smaller under r, and using o′ instead
of o reduces the indirect exposure to cascades.

Definition 42 A security configuration o is dominated if ∃r ∈ O with cr,t ≤ co,t ∀ t ∈
T that is stronger than o (i.e., r is both stronger and cheaper).

Second, suppose that cascade probabilities do not depend on security configura-
tions (a special case of our model). In this case, increasing the amount of defense
(formally, choosing a stronger security configuration that is more expensive) at a
particular target has no value to the defender unless either this target is attacked,
or the defender simultaneously increases defense at another target that is. The
reason is that since the attacker’s decision is not affected, the only consequence is
the increased cost to the defender. While this observation is no longer true when
cascade probabilities depend on defense, we nevertheless base our local search on
it, and view it as a heuristic in the general case.

We propose a simple local search algorithm (Algorithm 1) that iteratively
chooses a single target at a time, distinguishing between those that are currently
attacked and those that are not based on the second observation above, and chooses
a locally optimal security configuration for that target.

Data: Starting defense policy s0, number of iterations I
Result: Final defense policy s
s← s0;
prune all dominated o ∈ O;
for i = 1 to I do

A← computeAttack(s) // targets attacked under s;
for t ∈ A do

// fix all other decisions
// compute the local optimum at target t
ot ← computeBest(t);
s← {s1, . . . , ot, . . . , sn};

end
for t /∈ A do

// compute local optimum, considering only decreasing security
ot ← computeBestDecrease(t);
s← {s1, . . . , ot, . . . , sn};

end

end

Algorithm 1: Local search for a defense policy.

Algorithm 1 requires as input an initial defense policy from which to start local
search. Two natural candidates are the weakest and strongest policies, i.e., a policy
in which every target is using a weakest (resp. strongest) security configuration, if
these exist. As an example, one usually has an option of “no security”, which is the
weakest option, and “high security”, which would be the strongest. A third natural
candidate is a well-known heuristic, choosing individuals to defend in decreasing or-
der of degree; this is commonly referred to as targeted vaccination (Pastor-Satorras
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and Vespignani 2002); since this heuristic plays an important role in the literature
on vaccination on networks, below we show experimentally that in isolation it is
significantly worse than our local search method. Finally, we can start from a ran-
dom defense policy. Ultimately, since this is only a local search, and our problem
exhibits complementarities, we would not expect it to yield optimal solutions in
general. Therefore, our full approach runs the local search from the weakest and
strongest defense policy, if these exist, then from a configuration based on targeted
vaccination, and finally runs it from P random starting policies. Below, we show
empirically that the local search often yields nearly optimal solutions even without
random restarts.

Note that local search implicitly invokes a subroutine for computing an optimal
attacker strategy; this is actually explicit in the computeAttack(s) function call and
implicit in both functions computing locally best security configuration at a given
target. If we could compute this strategy optimally, we could guarantee that our
overall approach converges to an optimal defense with probability 1 if we let the
number of random restarts grow without bound. While this is easy to guarantee
when the attacker can only attack a single target, it is no longer reasonable when
the attacks can happen on multiple targets simultaneously. Nevertheless, if the
game is nearly constant-sum (in the sense we formalize presently), computing an
approximately optimal attacker strategy suffices to guarantee convergence to an
approximately optimal defense. For convenience, suppose that both the attacker
and defender always obtain non-negative payoffs.

Definition 43 A security game is ε-constant-sum if there exists c ≥ 0 such that c−ε ≤
Us,a + Vs,a ≤ c+ ε for all s, a.

Theorem 3 Suppose that the game is ε-constant-sum. Additionally, suppose that Â(s)
is an α-approximation of an optimal attacker strategy A∗(s) for a given defense policy

s. Let ŝ be an optimal defender policy if the attacker response is measured according

to Â, and let s∗ be the true optimal policy. Then U(ŝ, A∗(ŝ)) ≥ U(s∗, A∗(ŝ)) − (α −
1)V (s∗, A∗(ŝ))− 2ε(α+ 1).

Proof Choose an arbitrary defense policy s. Since Â(s) is an α-approximation (for
α ≥ 1),

αV (s, Â(s)) ≥ V (s,A∗(s)).

Using c− ε ≤ U(s,A) + V (s,A) ≤ c+ ε for all s,A, this implies that

α(c− U(s, Â(s)) + ε) ≥ c− U(s,A∗(s))− ε,

or, equivalently,

U(s,A∗(s)) ≥ αU(s, Â(s))− c(α− 1)− ε(α+ 1).

Since this is true for every s,

U(ŝ, A∗(ŝ)) ≥ αU(ŝ, Â(ŝ))− c(α− 1)− ε(α+ 1) (4)

≥ αU(s∗, Â(s∗))− c(α− 1)− ε(α+ 1) (5)

≥ αU(s∗, A∗(s∗))− c(α− 1)− ε(α+ 1)− 2ε (6)

= αU(s∗, A∗(s∗))− c(α− 1)− ε(α+ 3), (7)

where inequality 5 follows because of optimality of ŝ for the defender under â and
inequality 6 is due to the fact that â is suboptimal for the attacker. Rearranging
and letting c ≤ U(s∗, A∗(s∗)) + V (s∗, A∗(s∗)) + ε we get the desired result. �
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4.3 Special Case: Single-Node Attacks and Security-Independent Cascades

The multiple-LP formulation 3 for the general case requires us to have a variable
for each possible security configuration vector and requires us to solve an LP for
each subset of L targets. Since the number of possible configurations, as well as the
number of possible subsets of targets, is exponential in the number of targets, exact
security policy computation cannot scale beyond very small instances. However,
if we assume that the attacker can attack at most a single target, restrict random
failures to a single target at a time, and assume that the defender’s utility only
depends on the target being attacked or failing (Condition 1), we can obtain a far
more compact and scalable formulation. Under these assumptions, we can treat
the defense configuration for each target qo,t in isolation, as we no longer need to
randomize over joint defense schedules. Moreover, we need only solve n LPs, one
for each target t̂ of possible attack. The LP formulation for a representative target
t̂ is shown in Equations 8a-8d.

max r

(∑
o

U(o, t̂)qt̂o,t̂

)
+ (1− r)

(∑
t,o

gtU(o, t)qt̂o,t

)
−
∑
t

∑
o

co,tq
t̂
o,t. (8a)

s.t.

∀o,t qt̂o,t ∈ [0, 1] (8b)

∀t
∑
o

qt̂o,t = 1 (8c)

∀t
∑
o

V (o, t)qt̂o,t ≤
∑
o

V (o, t̂)qt̂o,t̂ (8d)

Notice that we can easily incorporate additional linear constraints. For exam-
ple, it is often useful to add a budget constraint of the form:

∀t̂,t
∑
o

co,tq
t̂
o,t ≤ C.

4.3.1 The Impact of Sampling Noise

While we can compute the expected utilities exactly in certain important special
cases (see Letchford and Vorobeychik (2012)), in general we must sample cascades
to estimate expected utilities of players, and solve the optimization problem (8a-
8d) using estimated utilities. This raises a natural question: does this approach
yield a solution close to optimal if we take sufficient samples of cascades, and
thereby obtain an arbitrarily good estimate of utilities for all outcomes? The an-
swer, it turns out, is non-trivial, because sampling noise does not merely affect the
objective functions of the LPs we solve, but also the constraints.

To appreciate what can go wrong, consider an example with two targets, 1
and 2, and suppose that there are only two security configurations: a target can
either be covered or not. Let Uu

t and Uc
t be the defender’s actual utilities if target

t is uncovered and covered, respectively, and, similarly, let V u
t and V c

t be the
corresponding utilities for the attacker, and let r = 1. Moreover, suppose that
V u
1 = V c

1 = V u
2 = V c

2 = 1, that is, the attacker is completely indifferent between
the targets and defender strategy choices. Assume that Uu

1 = −K, and Uc
1 =
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Uu
2 = Uc

2 = 0. That is, the defender prefers that the attacker attacks target 2.
Finally, let the cost of leaving a target uncovered be 0, and coverage costs be c1 =
c2 = K/2. Clearly, the optimal defender strategy is to cover nothing, because the
attacker’s indifference will result in him attacking target 2 in a strong Stackelberg
equilibrium.

Now, suppose that we add some mean-zero random noise to the attacker’s pay-
offs. With probability 1/24, the attacker’s payoffs will be perceived to be ordered
as follows: V̂ c

2 < V̂ u
2 < V̂ c

1 < V̂ u
1 . This ordering implies that the attacker will prefer

to attack target 1 no matter what the defender’s strategy is. Thus, the LP for target
2 will be infeasible, and the LP for target 1 is always feasible. The objective value
of the LP for target 1 can be written as

max
q1,q2

K

2
q1 −

K

2
q2,

where q1 and q2 are the probabilities of covering targets 1 and 2 respectively.
Clearly, the optimal solution is to have q1 = 1 and q2 = 0, yielding an actual loss
to the defender of K/2 (due to unnecessary security expenditures), compared to 0
in an optimal solution.

We now show that if we restrict the game to be strictly competitive (i.e., zero-
sum), we do indeed obtain convergence to an optimal solution if we increase the
number of samples. Let O∗ be the true optimal utility of the defender (when the
utilities are computed exactly), define q̂ as an optimal solution when the player
utilities are computed from samples, and let O(q̂) denote the actual defender utility
when the security policy is q̂. Let Û(o, t) denote the estimate of the defender’s
utility function.

Theorem 4 Suppose that the game is strictly competitive and suppose that |Û(o, t)−
U(o, t)| ≤ ε for all o, t. Then O(q̂) ≥ O∗ − 2ε.

Proof When the game is zero-sum, an optimal solution can be computed using the
following simpler, single-LP formulation:

max r

(
min
t

∑
o

U(o, t)qo,t

)
+ (1− r)

(∑
t,o

gtU(o, t)qo,t

)
−
∑
t

∑
o

co,tqo,t (9a)

s.t.

∀o,t qo,t ∈ [0, 1] (9b)

∀t
∑
o

qo,t = 1. (9c)

First, note that the solution q̂ obtained when utilities are estimated is feasible for
program 9 where actual utilities are used. Thus, we can focus just on the objective
value. Then,

O(q̂) = r

(
min
t

∑
o

U(o, t)q̂o,t

)
+ (1− r)

(∑
t,o

gtU(o, t)q̂o,t

)
−
∑
t

∑
o

co,tq̂o,t

≥ r

(
min
t

∑
o

Û(o, t)q̂o,t

)
+ (1− r)

(∑
t,o

gtÛ(o, t)q̂o,t

)
−
∑
t

∑
o

co,tq̂o,t − ε
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≥ r

(
min
t

∑
o

Û(o, t)q∗o,t

)
+ (1− r)

(∑
t,o

gtÛ(o, t)q∗o,t

)
−
∑
t

∑
o

co,tq
∗
o,t − ε

≥ r

(
min
t

∑
o

U(o, t)q∗o,t

)
+ (1− r)

(∑
t,o

gtU(o, t)q∗o,t

)
−
∑
t

∑
o

co,tq
∗
o,t − 2ε

= O∗ − 2ε.�

Since the number of security configurations o and targets t is finite, we can obtain
the uniform bound required by Theorem 4 directly from the law of large numbers.
Thus, the theorem implies that as we take more samples, the resulting solutions
converge to optimal in terms of the defender’s utility.

5 Illustrations

In this section we illustrate our framework on two simple examples. The first is an
artificial supply chain example that we constructed. The second uses a graph of
interdependencies among critical infrastructure and key resource sectors obtained
from the DHS and FEMA websites. For both these examples, we use the exact
approach in the restricted setting with an attacker only attacking a single node
and cascades that do not depend on security decisions.

5.1 A Simple Supply Chain

Consider a seven-node supply chain (directed acyclic graph) shown in Figure 1. We
suppose that the entire supply chain (or at least the relevant security decisions) is
controlled by a single firm which is primarily concerned with manufacturing two
types of cars, one more profitable than the other. The actual components that
ultimately comprise the cars are not intrinsically valuable to the manufacturer
(or are valued so low relative to the final product as to make them effectively
unimportant in this decision). All parts of the supply chain may be inspected at
some cost c, or not (in which case no cost is incurred).

!"#$%&'()
'*'&+"#,-&)&#./#,',+()

!"#$%&'()
',0-,')&#./#,',+()
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Fig. 1 A simple supply chain example.
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The first step in our framework is to compute (or estimate) the expected utility
for each node in the supply chain. To do this, we first specify the probability that
an attacked node is affected (in this case, becomes faulty), z(o, t). We let z(o, t) = 1
when node t is not inspected and z(o, t) = 0 when it is. Next, we must specify the
contagion probabilities for each edge. We use pt,t′ = 0.5 for all edges here, and
assume that they are independent of security decisions. Moreover, we assume that
the attacker only attacks a single target.

Expected	  U*lity	  (defender)	   Solu*on	  (c=0.14)	   Solu*on	  (c=0.02)	  

Solu*on	  (c=0.14)	  Expected	  U*lity	  (a=acker)	  Target	  values	  (a=acker)	  

zero-‐sum	  

general-‐sum	  

Fig. 2 Solutions for the zero-sum (top) and general-sum (bottom) variants of the simple
supply chain example.

The results are color coded in Figure 2: the darker colors correspond to more
valuable nodes. Note that while intrinsic worth is only ascribed to the final prod-
ucts, all components carry some value, due to their indirect impact on the final
product (for example, a faulty part will, with some probability, make the compo-
nent which uses it faulty as well). First, suppose that the game is zero-sum. We
show the results for two different inspection costs, chigh = 0.14 and clow = 0.02
in Figure 2 (top). The higher cost setting (Figure 2, top, middle solution) yields
a security configuration in which five of the seven nodes incur some probability of
inspection, with the heavier colors corresponding to a higher inspection probabil-
ity. The low-cost setting (Figure 2, top, solution on the right) yields a solution in
which every node is defended with probability 1. Next, consider a non-zero-sum
variant in which the defender’s utility is as before, while the attacker has uni-
form valuations (worths) over targets. The solution for this case with cost 0.14 is
shown in Figure 2, bottom (the figure also shows the attacker’s worths, as well
as expected utilities derived from the dependency graph). This solution would at
first sight seem quite unintuitive: the defender defends only the two targets at the
top, which have the least value to him! The reason is that these targets happen to
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Target Worths (baseline) Defense (baseline)
Energy'

Transporta.on'

Na.onal'
Monuments'and'

Icons'
Defense'Industrial'

Base'

Energy'

Transporta.on'

Na.onal'
Monuments'and'

Icons'
Defense'Industrial'

Base'

Worths (monuments) Defense (monuments)
Energy'

Transporta.on'

Na.onal'
Monuments'and'

Icons'
Defense'Industrial'

Base'

Energy'

Transporta.on'

Na.onal'
Monuments'and'

Icons'
Defense'Industrial'

Base'

Fig. 3 Defending critical infrastructure and key resources. Top: baseline, with node worths
based on rough economic impact. Bottom: an anomalous valuation function where only mon-
uments and icons sector has positive worth.

have the highest expected utility for the attacker, since they result in the greatest
utility from cascades, because the attacker’s worths are identical for all targets.
The defender will partially defend these targets, and given the defender’s strategy,
the attacker will still prefer to attack one of these, but will now be caught with
positive probability.

5.2 Defending Critical Infrastructure: The Lobby Effect

Our second illustration of the framework developed above is on a graph repre-
senting dependencies between the critical infrastructure and key resource sectors
listed on the DHS and FEMA websites. We used these websites to also infer the
dependencies between the sectors, as well as the relative strengths of these de-
pendencies. We then grouped these into “high” and “low” strength, with cascade
probability set to 0.5 in the former and 0.1 in the latter cases. Defense cost is fixed
at c = 0.2, and when a target is defended, it is assumed that no direct attack on
it can succeed, while an attack on an undefended target succeeds with probability
1.

Figure 3 offers a view of the defense configuration in two cases: first (top),
the baseline case in which importance of nodes is roughly representative of its
economic value, and second (bottom), a comparative example in which only the
monuments and icons sector is deemed valuable. One motivation for this particular
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contrast is to illustrate a lobby effect which makes the value of a particular sector
appear “out-of-whack” with economic considerations.

One interesting observation is that in the baseline case, even though every
node has positive worth, not all nodes are defended with positive probability. For
example, the defense industrial base sector is left undefended, as is the monuments
and icons sector. In contrast, if there is a highly effective lobby on behalf of mon-
uments and icons, to one’s surprise nearly all nodes are fully defended, and defense
expenditures are much higher than in the baseline case. This difference is due to the
nature of dependencies: monuments and icons has either direct, or indirect but
strong dependencies on almost all other sectors. The broader policy insight we
may glean is that lobbying can have compounding effects on the budget, and a
global impact well beyond what is intended by the direct lobbying effort due to
systemic interdependencies.

6 Experiments

The goal of this section is to illustrate the value of our framework as a computa-
tional tool for designing security in interdependent settings. Specifically, we aim to
demonstrate that our approach clearly improves on state-of-the-art alternatives,
and offers a scalable solution for realistic security problems. We pursue this aim by
randomly constructing dependency graphs using Erdos-Renyi (ER) and Preferen-
tial Attachment (PA) generative models (Newman 2010), as well as using a graph
representing a snapshot of Autonomous System (AS) interconnections generated
using Oregon routeviews (of Oregon Route Views Project 2013); this graph con-
tains 6474 targets and 13233 edges and thus offers a reasonable test of scalability.
In the ER model, every directed link is made with a specified and fixed probability
p; we refer to it as ER(p). The PA model adds nodes in a fixed sequence, starting
from an arbitrary seed graph with at least two vertices. Each node i is attached to
m others stochastically (unless i ≤ m, in which case it is connected to all preceding
nodes), with probability of connecting to a node j proportional to the degree of j,
dj .

For the randomly generated networks, all data presented is averaged over 80-
100 graph samples. Since we generate graphs that may include undirected cycles,
we obtain expected utilities for all nodes on a given graph using 1000-10,000 sim-
ulated cascades (below we show that this is more than sufficient). Intrinsic worths
wt are generated uniformly randomly on [0, 1]. Cascade probabilities pt,t′ (when in-
dependent of security strategies) were set to 0.5 unless otherwise specified. Except
where otherwise specified, we restrict the defender to two security configurations
at every target, one with a cost of 0 which stops attacks with probability 0 and
one with a cost of c which prevents attacks with probability 1.

Where relevant, we run local search starting from 20 random starting points
in addition to the three described above, unless specified otherwise. Finally, unless
otherwise specified, we consider games with 50 targets for the general setting,
and 100 targets for the restricted setting with security-independent cascades. We
note that even with only 50 targets the running time of local search with random
restarts on a given game instance was on the order of hours for large L. A single
data point in many experiments below is therefore a product of as much as 400
processor-hours.
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6.1 Scalability

An important question given the complexity of our framework is whether it can
scale to realistic defense scenarios. To test this, we ran our restricted framework
(i.e., a single target of attack and security-independent cascades) on the AS graph
consisting of 6474 targets and 13233 edges. Since this is a large undirected graph
containing cycles, a sampling approach was required, but the total running time
(including both sampling and solving linear programs) amounted to less than 1
hour on a single 64 bit Linux 2.6.18-164.el5 computer with 96 GB of RAM and two
quad-core hyperthreaded Intel Xeon 2.93 GHz processors. Given the importance of
security, and the fact that distributions of security settings are computed once (or at
least infrequently, as long as significant changes to the interdependency structure
are not very frequent), this seems a relatively small computational burden.

6.2 Comparison to State-of-the-Art Alternatives

There are two prime computational alternatives to our framework. The first is
to assume that targets are independent. While it is not difficult to show that in
the worst case this can be quite a poor approximation, we offer empirical support
to the added value of our approach below. The second is to use a well-known
heuristic developed in the context of vaccination strategies on networks. This latter
heuristic would in our case defend nodes in order of their connectivity (degree),
until the defense budget is exhausted. Figure 4 (left) compares our approach in
the restricted setting (single-target attack and security-independent cascades) to
the former, while Figure 4 (middle, right) compares it to the latter. In both cases,
computing optimal defense strategies using our framework yields much higher
utility to the defender than the alternatives.

In the general case, one trivial way to compute an optimal solution is to search
all possible defender (leader) actions, compute the best response of an attacker,
and choose the action for the defender maximizing his utility. This trivial approach
is linear in the size of the game. The problem is that the game size grows expo-
nentially with the number of targets. Here we compare our simple local search
routine with no random restarts to the optimal search in terms of running time
and expected attained utility for the defender. The comparison is done in a sim-
plified setting where we generate networks of interdependencies according to an
Erdos-Renyi generative model with edge probability 0.4. We fix cascade proba-
bilities to be pt,t′ = 0.2 whenever there is an edge between t and t′ and t′ is not
defended; when t′ is defended, we set pt,t′ = 0. We also fix defense costs at c = 0.2
and limit attacks to a single target (L = 1). Figure 5 (left) shows that local search
is dramatically more scalable; indeed, optimal search quickly becomes intractable.
Figure 5 (right) demonstrates that there are no (statistically significant) differ-
ences between the optimal objective value and that of the local search solution
(confidence intervals omitted for clarity).

Since our model of security is partly motivated by epidemic spread (e.g., bioter-
rorism), it is natural to compare our approach to targeted vaccination on networks
(widely recognized as state-of-the-art when initial infections are random (Pastor-
Satorras and Vespignani 2002, Miller and Hyman 2007, Gallos et al 2007)), where
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nodes are defended in decreasing order of degree.4 Figure 5 (right) shows that the
targeted vaccination heuristic performs significantly worse than local search, even
when we completely remove inoculated nodes from the network.

4 There are a plethora of minor variations on this general heuristic, but the performance of
the best tends to be similar to this baseline.
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7 Applications to Interdependent Security Analysis

In this section we apply our framework to several network security domains. For
simplicity, we restrict attention to zero-sum security games. As above, we consider
ER and PA generative models, although we utilize a generalized version of PA. In a

generalized PA model, connection probabilities are (di)
µ∑

j(dj)
µ , such that when µ = 0

the degree distribution is relatively homogeneous, just as in ER, µ = 1 recovers
the “standard” PA model, and large values of µ correspond to highly inhomoge-
neous degree distributions. Throughout, we use µ = 1 unless otherwise specified.
All parameters are set as in the experiments section, unless otherwise specified. In
addition to the generative models of networks, we explore two networks derived
from real security settings: one with 18 nodes that models dependencies among
critical infrastructure and key resource sectors (CIKR), as inferred from the DHS
and FEMA websites, and the second with 66 nodes that captures payments be-
tween banks in the core of the Fedwire network (Soramaki et al 2007). For the
CIKR network, each node was assigned a low, medium, or high worth of 0.2, 0.5,
or 1, respectively, based on perceived importance (for example, the energy sector
was assigned a high worth, while the national monuments and icons sector a low
worth). Each edge was categorized based on the importance of the dependency
(gleaned from the DHS and FEMA websites) as “highly” or “moderately” signifi-
cant, with cascade probabilities of 0.5 or 0.1 respectively. For the Fedwire network,
all nodes were assigned an equal worth of 0.5, and cascade probabilities were dis-
cretely chosen between 0.05 and 0.5 in 0.05 increments depending on the weight
of the corresponding edges in Soramaki et al (2007).

7.1 The Impact of Marginal Defense Cost

Our first analysis deals with the impact of marginal defense cost c on total defense
expenditures (total costs), total losses due to failure cascades (or simply total loss),
and total expenses incurred (or simply total expense, corresponding to negative
defender utility, or the sum of total costs and total loss). The results for ER and
BA (both with 100 nodes and average degree of 2), as well as CIKR and Fedwire
networks are shown in Figure 6. All the plots feature a clear pattern: expected loss
and (negative) utility are monotonically increasing, as expected, while total costs
start at zero, initially rise, and ultimately fall (back to zero in 3 of the 4 cases).
It may at first be surprising that total costs eventually fall even as marginal costs
continue to increase, but this clearly must be the case: when c is high enough,
the defender will not wish to invest in security at all, and total costs will be zero.
What is much more surprising is the presence of two peaks in PA and Fedwire
networks. Both of these networks share the property that there is a non-negligible
fraction of nodes with very high connectivity (Newman 2010, Soramaki et al 2007).
When the initial peak is reached, the network is fully defended, and as marginal
costs rise further, the defender begins to reduce the defense resources expended
on the less important targets. At a certain point, only the most connected targets
are protected, and since these are so vital to protect, total costs begin increasing
again. After the second peak is reached, c is finally large enough to discourage the
defender from fully protecting even the most important targets, and the subsequent
fall of total costs is no longer reversed.
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18-node critical infrastructure, and (d) 66-node core of the Fedwire networks as defense cost
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networks.

7.2 Changing the Number of Attacked Targets

Our next analysis concerns an important extension that traditional Stackelberg
security game approaches cannot handle in a scalable way: allowing an attacker to
attack more than a single target. Specifically, we study the impact of the number
of targets L an attacker can attack on total defense expenditures, total losses
due to failure cascades, and total expenses incurred. We do this while keeping
cascade probabilities pt,t′ independent of defense configuration; we set all of these
to p = 0.2. Moreover, we generate the dependency graphs based on the Erdos-
Renyi generative model with edge probabilities fixed at 0.05.

Total defense expenditures (costs) are shown in Figure 7 (left) for three differ-
ent values of cost per target defended, c (we also call this marginal defense cost).
The difference between the three cost regimes is negligible when only a single
target can be attacked, yet the behavior of defense expenditures as L increases
exhibits striking qualitative differences, and techniques that only consider L = 1
would therefore be blind to these. In all three cases, there is a critical threshold
Lc of the number of attacked targets. When L < Lc, defense expenditures remain
very low and relatively stable, but when L ≈ Lc, expenditures rise sharply, ulti-
mately leveling off at a much higher value which again remains relatively stable
for L > Lc. Surprisingly, increasing marginal defense cost c causes Lc to increase:
it takes greater attacker capability to stimulate the defender to invest more in
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Fig. 7 Total defense expenditures (left) and losses due to cascading failures (right) as the num-
ber of attacked targets increases for three different defense cost values (i.e., cost of defending
a single target): 0.05, 0.1, and 0.2.

security; however, the rise in security investment is greater for higher c once the
threshold Lc is reached.

Figure 7 (right) shows the total loss as a function of the attacker’s capability
L. The result is somewhat counter to initial intuition: the total losses are non-
monotonic. The reason comes from the observation we had already made about
total expenditures: until a threshold Lc is reached, few defense resources are de-
ployed, and total losses rise, but after the threshold, defense expenditures ramp
up substantially, and, as long as c is sufficiently low, the defender will ultimately
come to defend every target. The pattern of total defender expenses (the sum of
losses and total expenditures; not shown) is largely predictable: expenses increase
monotonically with L, and are higher for higher c.

7.3 Resilience to Targeted Attacks: The Impact of Network Structure

One of the important streams in the network science literature is the question of
relative resilience of different network topologies to failures, random or targeted.
One feature of network topology, the distribution of degrees (number of node
neighbors) has received particular attention. There is, in particular, one measure
of degree distribution—its homogeneity—that plays an especially important role.
(For example, an Erdos-Renyi network has a homogeneous degree distribution,
while a heavy-tailed distribution, such as Pareto, is inhomogeneous.) Two very
disparate streams of literature tie homogeneity of the degree distribution to net-
work resilience. The first of these features a widely replicated finding that networks
with an inhomogeneous (e.g., scale-free) degree distribution exhibit poor tolerance
to targeted attacks as compared to Erdos-Renyi graphs (Albert et al 2000, New-
man 2010). On the other hand, when failures are random (no attacks), scale-free
graphs have been found to be more resilient than Erdos-Renyi counterparts. The
second stream of literature demonstrates that scale-free graphs are particularly
easy to defend against epidemic spread, as inoculating high-degree nodes dramat-
ically reduces the expected number of infections; however, this stream does not
model targeted attacks.

Our framework allows us to cleanly unify both these streams of literature and
present a much more refined analysis of the relationship between the homogeneity
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of the degree distribution and network resilience to cascading failures. Specifically,
we undertake here a study of the total losses and costs incurred by the defender
under a variety of network regimes.

As a starting point, consider Figure 8 (left), which shows the defender’s utility
for three different network topologies, PA, ER, and Fedwire as a function of cost
c. The results presented in this figure are generated based on our special case
when cascade probabilities pt,t′ are independent of security decisions, and when
the attacker can only attack a single target (through the rest of this paper, we
focus only on the impact of deliberate attacks and fix the probability of “nature”
to 0). In light of the previous discussion, what we can readily observe in Figure 8
(left) would appear quite remarkable: network topology seems to play little role
in resilience. A superficial difference here is that we consider a cascading failure
model, while most of the previous work on the subject involving targeted attacks
focused on diminished connectivity due to attacks. We contend that the most
important distinction, however, is that previous work studying resilience did not
account for a simple observation that most important targets of potential attacks
are also most heavily defended; indeed, to the best of our knowledge, none of the
previous work on resilience in the face of attacks allows for endogenous defense
decisions. Indeed, we can observe from the figure that once defense costs c are
sufficiently high, PA leads to substantially higher losses (greater disutility to the
defender), confirming previous results in this rather extreme setting.
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To investigate the impact of network topology on resilience further, we consider
the generalized PA model in which we systematically vary the homogeneity of
the degree distribution by way of the parameter µ. Figure 8 (middle) shows the
results for the special case of security-independent cascades with the attacker
restricted to attack only one target. In this graph, we do observe clear variation
in resilience as a function of network topology, but the operational factor in this
variation is homogeneity in the distribution of expected utilities, rather than degrees:
increasing homogeneity of the utility distribution lowers network resilience. This
seems precisely the opposite of the standard results in network resilience, but the
two are in fact closely related, as we now demonstrate. Superficially, the trend
in the figure seems to follow the common intuition in the resilience literature: as
the degree distribution becomes more inhomogeneous (more star-like), it becomes
more difficult to defend. Observe, however, that ER is actually more difficult to
defend than PA with µ = 0. The lone difference of the latter from ER is the
fact that nodes that enter earlier are more connected and, therefore, the degree
distribution in the PA variant should actually be more inhomogeneous than ER!
The answer is that random connectivity combined with inhomogeneity of degrees
actually makes the distribution of utilities less homogeneous in PA with µ = 0, and,
as a result, fewer nodes on which defense can focus as compared to ER. On the
other hand, as the graph becomes more star-like, the utilities of all nodes become
quite similar; in the limiting case, all nodes are only two hops apart, and attacking
any one of them yields a loss of many as a result of cascades.

Our final exploration in this vein considers a more general setting where se-
curity decisions have some (varying) effect on the likelihood of cascade spread.
Specifically, define the parameter pd as the probability that a cascade spreads to
a node which is defended, and fix the probability that a cascade spreads to an un-
defended node at 0.2. Thus, if pd = 0, we have an instance of perfect inoculation:
if a node is defended (inoculated), it is equivalent to removing that node from
the network entirely. At the other end of the spectrum, pd = 0.2 will imply that
defense has no impact on the probability of cascades. Figure 8 (right) presents the
total defender disutility (losses due to cascading failures + defense costs incurred)
as a function of pd for two extreme cases of µ, one (µ = 0.01) corresponding to
a highly homogeneous degree distribution, while the other (µ = 10) to a highly
inhomogeneous one. The two classes of graphs exhibit dramatically different re-
silience behavior as a function of pd which paints a more complete picture than
the literature on network resilience to date. When pd = 0.2 (equal to the cascade
probability when a node is not defended), hub-like structures are far less resilient
to targeted attacks as compared to a graph with a homogeneous degree distribu-
tion; this is inline with previous results, which suggest that inhomogeneous graphs
are less resilient (Albert et al 2000). With pd = 0, on the other hand, hub-like net-
works are highly resilient, since it suffices for the defender to target the few hubs;
this is similar to the observation that targeted vaccination is more effective on
scale-free graphs (Pastor-Satorras and Vespignani 2002), although in that stream
of literature failures are assumed to arise randomly, rather than in a targeted
manner. At the high level, the resilience of the hub-like network decreases with
increasing pd, whereas a homogeneous network remains relatively unaffected by
pd. The reason is that when pd is high, a hub-like structure implies low diameter.
Unless the hub itself is actually removed from the network by the defense action,
it can serve as the conduit for failure cascades started at other nodes; therefore,
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when pd is high the defense of the hub is insufficient to make the network resilient,
and vastly greater defense expenditures are required. In contrast, a homogeneous
network has no such hubs with global connectivity, and is therefore less sensitive
to pd.

There is another aspect of network topology that has an important impact on
resilience: network density. Figure 9 (left) shows a plot of an Erdos-Renyi network
with the probability of an edge varying between 0.0025 to 0.08 (average degree
between .25 and 8) and cost c fixed at 0.04. Clearly, expected utility and loss of the
defender are increasing in density, but it is rather surprising to observe how sharply
they jump once the average degree exceeds 1 (the ER network threshold for a large
connected component); in any case, network density has an unmistakable impact.
The reason is intuitive: increased density means more paths between targets, and,
consequently, greater likelihood of large cascades in the event that a target is
compromised. Total cost initially increases in response to increased density, in
part to compensate for the increased vulnerability to attacks, but eventually falls,
since it is too expensive to protect everything, and anything short of that is largely
ineffective.

7.4 Interaction Between Cascade Probabilities and the Number of Targets
Attacked

In this section we study the impact of the cascade probability to a defended node,
pd, while at the same time varying the attacker’s capability L. As in the previous
section, we maintain the probability that a failure cascades to an undefended node
at 0.2. We generate the dependency graphs based on the Erdos-Renyi generative
model with edge probabilities fixed at 0.05.

Figure 9 (right) shows the total defense expenditures (cost per target defended
fixed at 0.1). While the differences are relatively small, there is a clear pattern:
when the number of targets attacked is low (below Lc), increasing the impact
of defense on cascade probability prompts the defender to increase investment in
security (defense has an increasing marginal value), but once attacker capabilities
are high, defense expenditures fall when pd falls (i.e., defense has higher impact).
In the latter case, making the network sufficiently resilient to attacks requires
relatively fewer protected nodes and, therefore, lower defense expenditures. Indeed,
decreasing pd systematically reduces total defender expenses (sum of losses due to
cascades and defense costs).

8 Conclusion

We presented a framework for computing and approximating optimal security
policies in network domains. Our framework involves a general model of asset in-
terdependencies, which we instantiate using a dependency graph between assets
and a cascading failures model based on a common epidemiological model of dis-
ease contagion. In the general case, we offer an effective approximation technique
based on a combination of submodular optimization and a local search heuristic.
Moreover, we show that in an important special case which restrict the attacker’s
capabilities to only attack one target and restricts the cascade probabilities to
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be independent of security decisions, we can effectively decouple simulations that
estimate player expected utilities from a linear programming formulation which
subsequently computes an optimal security policy. Our results demonstrate the
value of our approach as compared to alternatives, and show that it is scalable
to realistic security settings. Furthermore, we used our framework to analyze four
models of interdependencies: two based on random graph generation models, a
simple model of interdependence between critical infrastructure and key resource
sectors, and a model of the Fedwire interbank payment network.
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