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Abstract
Stackelberg game models of security have received
much attention, with a number of approaches for
computing Stackelberg equilibria in games with
a single defender protecting a collection of tar-
gets. In contrast, multi-defender security games
have received significantly less attention, particu-
larly when each defender protects more than a sin-
gle target. We fill this gap by considering a multi-
defender security game, with a focus on theoretical
characterizations of equilibria and the price of an-
archy. We present the analysis of three models of
increasing generality, two in which each defender
protects multiple targets. In all models, we find
that the defenders often have the incentive to over-
protect the targets, at times significantly. Addition-
ally, in the simpler models, we find that the price
of anarchy is unbounded, linearly increasing both
in the number of defenders and the number of tar-
gets per defender. Surprisingly, when we consider
a more general model, this results obtains only in
a “corner” case in the space of parameters; in most
cases, however, the price of anarchy converges to a
constant when the number of defenders increases.

1 Introduction
With terrorism and cyber threats ever on people’s minds,
developing and refining our understanding of both security
threats and responses to these is both an important research
area, and of great practical value. Game theory has come
to play an important role in the security domain, with con-
siderable modeling and algorithmic advances, as well as ac-
tual deployment of security systems in practice that are based
on such models and algorithms, including LAX Airport [Jain
et al., 2008; Pita et al., 2009], US Coast Guard [Shieh et
al., 2012], and the Federal Air Marshals Service [Jain et al.,
2010a; 2010b; Kiekintveld et al., 2009], among others.

A popular game theoretic model of security that has re-
ceived much attention both in the research and in practice is as
a Stackelberg game between a single defender and a single at-
tacker, in which the defender commits to a randomized strat-
egy, while the attacker, upon learning this strategy, chooses
an optimal target or a subset of targets to attack [Conitzer

and Sandholm, 2006]. In most of the associated literature, it
is assumed that a single defender is responsible for all the
targets that need protection, and that she has control over
all of the security resources. However, there are many do-
mains in which there are multiple defender agencies who are
in charge of different subsets of all targets. While some-
times such agencies can be aligned to follow the same set
of goals, in general different defender entities exhibit at least
some disparities in goals. In particular, a defender is typi-
cally responsible (financially, politically, or legally) for tar-
gets in their direct charge, rather than other targets that may
have social importance. This is certainly the case for the pri-
vate sector, where different corporations secure their own re-
sources without necessarily much concern for those of others,
but is also common for the public sector, with different gov-
ernment agencies held accountable for their own assets, and
not for those of others. In such non-cooperative security sce-
narios, the typical single-defender Stackelberg game model
is clearly inadequate. Instead, we must consider the conse-
quences of strategic interactions among multiple defenders,
each charged with protecting their assets from common ad-
versaries. An important consideration in such games is the
negative externalities that security decisions impose on oth-
ers: specifically, when a defender chooses a high level of
security investment, budget-constrained attackers are more
likely to choose others to attack. The resulting dynamics is
likely to lead to over-investment in security, a phenomenon
observed in several related efforts [Bachrach et al., 2013].

We consider a problem with multiple defenders protecting
a collection of homogeneous targets. Each defender chooses
a probability distribution over protection levels for all tar-
gets in their charge. A single attacker then best responds to
the defenders’ action by attacking the target with the lowest
probability to be protected, breaking ties uniformly at ran-
dom. Our analysis is focused on three models of such multi-
defender games, with defenders acting non-cooperatively in
all of these. We show that a Nash equilibrium among de-
fenders in this two-stage game model need not always exist,
even when the defenders utilize randomized strategies (i.e.,
probability distributions over target protection levels); this is
distinct from a model in which the attacker moves simulta-
neously with the defenders, where a mixed strategy equilib-
rium is guaranteed to exist. When an equilibrium does ex-
ist, we show that the defenders protect all of their targets



with probability 1 in all three models, whereas the socially
optimal protection levels are generally significantly lower.
When no equilibrium exists, we characterize the best approx-
imate Nash equilibrium (that is, one in which defenders have
the least gain from deviation), showing that over-investment
is substantial in this case as well. Our price of anarchy
(PoA) analysis, which relies on the unique equilibrium when
it exists, and the approximate equilibrium otherwise, demon-
strates a surprising finding: whereas PoA is unbounded in
the simpler models, increasing linearly with the number of
defenders, the more general model shows this to be an atypi-
cal special case achieved when several parameters are exactly
zero. More generally, PoA tends to a constant as the number
of defenders increases.
Related Work Although most work in Stackelberg models
of security concerns computing a Stackelberg equilibrium in
a single-defender single-attacker scenario, there are several
exceptions. [Jiang et al., 2013] consider (mis)-coordination
in cases where there are multiple defenders who are responsi-
ble for different sets of targets and share the common util-
ity function over all targets. In this work, the defenders
are fundamentally cooperative (sharing identical goals), how-
ever, making it distinct from our contribution. [Bachrach et
al., 2013] examined non-cooperative security games among
many defenders, in a two-stage model, but imposed strong as-
sumptions on the model structure, and only considered one-
dimensional continuous “security investment” strategies for
the defender (departing significantly from the typical struc-
ture of Stackelberg security games, in which defensive strate-
gies are discrete protection choices). [Smith et al., 2014]
extend the standard computational Stackelberg game frame-
work to analyze games with multiple defenders, but offer no
theoretical analysis. [Chan et al., 2012] propose interdepen-
dent defense (IDD) games, to study aspects of the interde-
pendence of risk and security in a natural extension of inter-
dependent security (IDS) games previous proposed by Heal
and Kunreuther [Heal and Kunreuther, 2002] to consider at-
tackers as explicit players in the game. In IDD games, unlike
our setting, defenders and the attacker move simultaneously.
To our knowledge, no previous work considers a theoretical
analysis of multi-defender games with defenders protecting
multiple targets, making previous literature on the subject
qualitatively distinct from the typical practical considerations
of single-defender settings, where resource allocation among
multiple targets is a fundamental concern.

2 Modeling Multi-Defender Security Games
Our modeling effort proceeds in three steps, each generaliz-
ing the previous. As we see below, each generalization step
reveals new and surprising insights about the multi-defender
security setting, allowing us to appreciate the fundamental in-
centive forces.

2.1 The Baseline Model
We start with a model which most reflects the related liter-
ature: in particular, this model involves n defenders and a
single attacker, with each defender engaged in protecting a
single target. Each target has the same value to the defender

v > 0. We suppose that the defender has two discrete choices:
to protect the target, or not. In addition, the defender can ran-
domly choose among these; our focus is on these coverage
probabilities (i.e., the probability of protecting, or covering,
the target), which we denote by si for a given defender i. The
attacker is strategic and could observe the defenders’ strate-
gies to choose a target so as to maximize the damage. We
assume that attacker is indifferent among the targets, and at-
tacks the target with the lowest coverage probability, break-
ing ties uniformly at random. In a given scenario, for all
defenders, the attacker’s strategy is a vector of probabilities
P =< p1, p2, ..., pn >, where pi is the probability of attack-
ing a target i, with

∑n
i=1 pi = 1.

We assume that if the attacker chooses to attack a target
corresponding to defender i and defender i chooses to protect
the target, then the utility of the defender i is 0, and if the at-
tacker attacks the target but it is not protected, then the utility
of the defender is −v. If a defender chooses to cover a target,
it will incur a cost c > 0. Additionally, we assume that the
defender gets a utility of zero whenever another defender’s
target is attacked. We can thus define the expected utility of a
defender i as

ui = piu
a
i + (1− pi)uui ,

where uai is the utility of i if it is attacked, and uui is the utility
of i if it is not attacked. By the assumptions above,

uai = −(1− si)v − sic = −v + si(v − c)

uui = −sic.

2.2 The Multi-Target Model
Our key conceptual departure from related work is in allow-
ing each defender to protect multiple targets, aligning it bet-
ter with practical security domains. Specifically, suppose that
there are n defenders, each protecting k ≥ 1 targets. Then
the strategy of defender i will be a vector < si1, si2, ...sik >.
The strategy profile of the attacker can then be described as a
matrix of probabilities,

p11 p12 . . . p1k
p21 p22 . . . p2k

...
...

. . .
...

pn1 pn2 . . . pnk


in which

∑n
i=1

∑k
j=1 pij = 1 and pij ≥ 0 for each i and j.

The expected utility of a defender i in this model is

ui =

k∑
j=1

piju
a
ij + (1− pij)uuij ,

where uaij is the utility of target j to defender i if it is attacked,
and uuij is the utility of target j to i if it is not attacked. Using
the notation introduced earlier, we have

uaij = −(1− sij)v − sijc = −v + sij(v − c)

uuij = −sijc.



2.3 The General Model
Finally, we analyze the most general version of the model
considered. We assume that if the attacker chooses to attack a
target i and the defender i chooses to protect the target, then
the utility of the defender i is Uc, and if the attacker attacks
the target but it is not protected, then the utility of the defender
is Uu. It is reasonable to assume that Uc ≥ Uu. If the target
of defender i is not attacked, then we assume that the utility
of defender i is T ≥ Uc. Other assumptions are same as those
in the multi-target model. In the general model, therefore,

uaij = sijUc + (1− sij)Uu − sijc = (Uc −Uu − c)sij +Uu

uuij = T − sijc.

2.4 Solution Concepts
We consider a class of solutions to multi-defender secu-
rity games where the defenders’ simultaneously commit to
a probability distribution s over their pure strategies (cor-
responding to protection decisions for each target), and the
attacker subsequently chooses an optimal target to attack,
breaking ties uniformly at random. Since the attacker’s be-
havior is straightforward (given s), we will focus on the
simultaneous-move game among the defenders, and Nash
equilibria thereof (giving rise to subgame perfect equilibria
of the two-stage game of interest). As we demonstrate below,
Nash equilibria are not guaranteed to exist, in which case we
focus on ε-equilibria, in which no player gains more than ε by
deviating; in particular, we will consider ε-equilibria with the
smallest attainable ε. In fact, we could see Nash equilibrium
as a special case of ε-equilibrium in which ε = 0.

To measure how the efficiency of the game degrades due to
selfish behavior of its defenders, we consider Utilitarian So-
cial Welfare and (ε)-Price of Anarchy in our paper. Utilitar-
ian Social Welfare means the sum of all defenders’ payoffs.
For the smallest attainable ε, we define ε-Price of Anarchy
(ε-PoA) as follows:

ε-PoA =
SWO

SWE

where SWO means the optimal (utilitarian) social welfare we
can get from the game, SWE means the worst-case (utilitar-
ian) social welfare in ε-equilibrium. An underlying assump-
tion of this definition is that the value of SWO and SWE are
both positive. If they are both negative, then ε-PoA will be
the reciprocal of above equation. We should also note that
the ordinary Price of Anarchy can be seen as a special case of
ε-Price of Anarchy in which ε = 0.

3 The Baseline Model
Our first result presents necessary and sufficient conditions
for the existence of a Nash equilibrium in the baseline model,
and characterizes it when it does exist. The proofs of Baseline
Model (this section) and Multi-target Model (next section)
can be found in Appendix part of the paper.

Theorem 1. In the Baseline model, Nash equilibrium exists if
and only if v ≥ c. In this equilibrium all targets are protected
with probability 1.

Thus, if a Nash equilibrium does exist, it is unique, with all
defenders always protecting their target. But what if the equi-
librium does not exist? Next, we characterize the (unique)
ε-equilibrium with the minimal ε that arises in such a case.
We will use this approximate equilibrium strategy profile as a
prediction of the defenders’ strategies.

Theorem 2. In the Baseline model, if v < c, the optimal
ε-equilibrium is for all defenders to cover their target with
probability v

c . The corresponding ε is v(c−v)
cn .

Armed with a complete characterization of predictions of
strategic behavior among the defenders, we can now consider
how this behavior related to socially optimal protection deci-
sions. Since the solutions are unique, there is no distinction
between the notions of price of anarchy and price of stabil-
ity; we term the ratio of socially optimal welfare to welfare in
equilibrium as the price of anarchy for convenience.

First, we characterize the socially optimal outcome.

Theorem 3. In the Baseline model, the optimal social wel-
fare SWO is

SWO =

{
−cn, if v ≥ cn;
−v, if v < cn.

From this result, it is already clear that defenders system-
atically over-invest in security, except when values of the tar-
gets are quite high. This stems from the fact that the attacker
creates a negative externality of protection: if a defender pro-
tects his target with higher probability than others, the at-
tacker will have an incentive to attack another defender. In
such a case, we can expect a “dynamic” adjustment process
with defenders increasing their security investment well be-
yond what is socially optimal. To see just how much the de-
fenders lose in the process, we now characterize the price of
anarchy of our game.

If v ≥ c, it is one and only one Nash equilibrium when
all defenders have the coverage probability 1 for their targets.
And the corresponding social welfare is

SWE = −cn

Because it is the only Nash equilibrium, we could get the
Price of Anarchy as follows:

PoA =

{
1, if v ≥ cn;
nc
v , if c < v < cn.

Figure 1 shows the relationship among Price of Anarchy,
number of defenders, and ratio of cost c and value v. From
the figure we could find that when number of defenders and
ratio of c and v are small enough (e.g. n ≤ 5 and c

v = 0.2),
the price of anarchy is close to 1. Otherwise, the price of
anarchy is unbounded, growing linearly with n.

If v < c, there is no Nash equilibrium. However, we
could get the optimal ε-equilibrium when all defenders have
the same coverage probability v

c for their targets. The corre-
sponding Social Welfare is

SWE = (v − cn)v
c
− v



2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Number of Defender

P
ri
c
e

 o
f 

A
n

a
rc

h
y

 

 

c/v=0.2

c/v=0.4

c/v=0.6

c/v=0.8

c/v=1.0

Figure 1: Price of Anarchy when v ≥ c

Similarly, we could get the v(c−v)
cn -Price of Anarchy as fol-

lows,
v(c− v)
cn

-PoA =
cn+ c− v

c
,

which is, again, linear in n.

4 The Multi-Target Model
Armed with observations from the model with a single target
for each defender, we now extend the model to a case not as
yet considered in the literature in a theoretical light: each de-
fender protects a set of k targets. This gives rise to a combina-
torial set of possible decisions for each defender, so that even
computing a best response is not necessarily easy. Remark-
ably, we are able to characterize equilibria and approximate
equilibria in this setting as well.

Our first result is almost a mirror-image of the correspond-
ing result in the baseline model: when a Nash equilibrium
exists, all defenders protect all of their targets with probabil-
ity 1.

Theorem 4. In the Multi-Target model, Nash equilibrium ex-
ists if and only if v ≥ kc. In this equilibrium all targets are
protected with probability 1.

Next, we consider scenarios when v < kc, in which there
is no Nash equilibrium. Our next result characterizes optimal
(lowest-ε) approximate equilibria.

Theorem 5. In the Multi-Target model, if v < kc, then in the
optimal ε-equilibrium all targets are protected with probabil-
ity v

kc . The corresponding ε is v(kc−v)
cnk .

Thus, as n increases, the optimal approximate equilibrium
approaches a Nash equilibrium. Figure 2 illustrates the rela-
tionship between ε and the number of targets each defender
protects when v = 10 and c = 1. In this figure, ε = 0 when
k ≤ 10, which means that an exact Nash equilibrium exists;
ε increases with k when k > 10, but at a decreasing rate,
converging to v

n when k →∞.
Finally, we characterize socially optimal welfare, and, sub-

sequently, put everything together in describing the price of
anarchy.
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Figure 2: ε value when v = 10, c = 1

Theorem 6. In the Multi-Target model, the optimal social
welfare SWO is

SWO =

{
−cnk, if v ≥ cnk;
−v, if v < cnk.

Thus, just as in the baseline case, the defenders will gener-
ally over-invest in security.

If v ≥ kc, there is a unique Nash equilibrium with all tar-
gets protected with probability 1. The corresponding social
welfare is

SWE = −cnk

Because it is the only Nash equilibrium, the Price of Anarchy
is

PoA =

{
1, if v ≥ cnk;
nkc
v , if ck ≤ v < cnk.

If v < kc, there is no Nash equilibrium. However, we
could get the optimal approximate equilibrium when all de-
fenders have the same coverage probability v

kc for their tar-
gets. The corresponding Social Welfare is

SWE = (v − cnk) v
kc
− v

And the v(kc−v)
cnk -Price of Anarchy is

v(kc− v)
cnk

-PoA = n+ 1− v

kc

Clearly, in either case, and just as in the baseline model, the
price of anarchy is unbounded, growing linearly with n.

We now consider how PoA changes as a function of k, i.e.
the number of targets each defender has. When k ≤ v

cn , a
Nash equilibrium exists and the PoA is 1; when v

cn < k ≤ v
c ,

PoA increases linearly in k with the slope nc
v . However, when

k > v
c , a Nash equilibrium does not exist and the approximate

PoA is n + 1 − v
kc , which increases very slowly with k, and

is bounded by n + 1 when k → ∞. Figure 3 illustrates the
relationship between (approximate) Price of Anarchy and k
for n = 2. When k is very small, PoA = 1. For intermediate
k, PoA increases linearly, and when k is sufficiently large,
Nash equilibrium no longer exists, and ε-PoA increases quite
slowly, converging to 3 when k →∞.
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Figure 3: (Approximate) Price of Anarchy when c
v = 0.1

5 The General Model
Both the baseline and the multi-target models made rather
strong assumptions about the structure of the utility functions
of the players. In the general model, we relax these assump-
tions, allowing for arbitrary utilities for the players when the
target is attacked or not, and when it is protected or not (when
attacked). Quite surprisingly, our findings here are qualita-
tively different: the special case of the baseline and multi-
target models turns out to be an exception, rather than the
rule when more general models are considered.

Just as before, we start by characterizing Nash and approx-
imate Nash equilibria.
Theorem 7. In the General model, Nash equilibrium exists if
and only if Uc−Uu ≥ kc− (n−1)(T−Uc)

n . In this equilibrium
all targets are protected with probability 1.

Proof. We firstly claim that Nash equilibrium can appear only
if coverage probability of all of targets tij are identical. Oth-
erwise, there will be a target tik which has the possibility of
0 to be attacked, and defender i has incentive to decrease sik.
To find Nash equilibrium, we need only consider scenarios in
which all targets have the same coverage probability.

When all targets have the same possibility s to be pro-
tected. Then for each defender, her expected utility is

u =
(Uc − Uu − nkc)s+ Uu + (nk − 1)T

n

If s < 1, then some defender i could slightly increase s to
s + δ (δ is a very small positive real number) for all of her
targets to make sure them not be attacked and get the value
u′ = kT − k(s+ δ)c,

u′ − u =
(Uc − Uu)(1− s) + (T − Uc)− nkcδ

n

As Uc ≥ Uu, T ≥ Uc, and δ can be very small, u′ −
u > 0 when s < 1. We could know that the defender has
incentive to improve s when s < 1. So the Nash equilibrium
can appear only if sij = 1 for all defenders’ targets sij . When
all targets have the same possibility s = 1 to be covered, for
each defender, her expected utility is

u =
Uc − nkc+ (nk − 1)T

n

We claim that, if a defender i has incentive to deviate,
the “optimal” deviation could appear only if defender i has
the same protection probability s′ for all her targets. Oth-
erwise, for some target tik which has the probability 0 to
be attacked, she could always decrease s′ to get higher util-
ity. If probabilities of targets protected by defender i are
all s′ (0 ≤ s′ < 1), then her expected utility is u′ =
(Uc − Uu − c)s′ + Uu + (k − 1)(T − s′c), and

u′ − u = (Uc − Uu − kc)(s′ − 1) +
(n− 1)(Uc − T )

n

1) If Uc−Uu ≥ kc, then u′−u ≤ 0, we could know that it is
a Nash equilibrium when all targets have the probability 1
to be protected.

2) If Uc−Uu < kc, the maximal value of u′−u corresponds
to s′ = 0,

max
0≤s′<1

u′ − u = −(Uc − Uu − kc)−
(n− 1)(T − Uc)

n

If kc− (n−1)(T−Uc)
n ≤ Uc − Uu < kc, u′ − u ≤ 0, it is a

Nash equilibrium; otherwise, it is not.

To sum up, Nash equilibrium exists if and only if Uc −Uu ≥
kc− (n−1)(T−Uc)

n , and the equilibrium corresponds to all tar-
gets having probability 1 of being protected.

Next, we characterize the optimal approximate equilibrium
when no Nash equilibrium exists.

Theorem 8. In the General model, in the optimal ε-
equilibrium all targets are protected with probability T−Uu

kc .
The corresponding ε is (T−Uu)(kc−Uc+Uu)

cnk .

Proof sketch. When all targets have the same probability s of
being protected, the expected utility of each defender is

u =
(Uc − Uu − nkc)s+ Uu + (nk − 1)T

n

Assume 0 ≤ s < 1. If some defender i slightly increases s
to s + δij for target tij , then she would obtain utility u′ =∑k
j=1 T − (s+ δij)c,

u′ − u =
T − (Uc − Uu)s− Uu

n
−

k∑
j=1

δijc

≤ T − (Uc − Uu)s− Uu
n

(1)

Then we consider scenarios in which a defender i could get
higher utility by decreasing protection probability. We claim
that the “optimal” deviation could appear only if defender i
has the same protection probability s′ for all of her targets.
Otherwise, for some target tik which has the probability 0 to
be attacked, she could always decrease coverage probability
of tik to get higher utility.

Then we need only consider cases in which a defender de-
viates by decreasing probabilities of all her targets to s − δ.
And her utility will be u′′ = (Uc − Uu − kc)(s− δ) + Uu +
(k − 1)T ,



As Uc − Uu < kc, when δ = s (the maximal value of δ),
we could get maximal value of u′′ − u,

max
0<δ≤s

u′′−u =
T − (Uc − Uu)s− Uu

nk
+kcs+Uu−T (2)

By comparing the value of equation (1) and equation (2), we
could get different value of ε for for ε-equilibrium as shown
below:

ε =

{
T−(Uc−Uu)s−Uu

n , if 0 ≤ s ≤ T−Uu

kc ;
T−(Uc−Uu)s−Uu

n + kcs+ Uu − T, if T−Uu

kc < s ≤ 1.

When s = T−Uu

kc , we could get the minimal ε =
(T−Uu)(kc−Uc+Uu)

cnk .
We claim that the (T−Uu)(kc−Uc+Uu)

cnk -equilibrium can ap-
pear only if all targets have the same coverage probability
s. We prove this by contradiction. Suppose that targets have
different coverage probabilities. This gives rise to two cases:
1) Each defender uses an identical coverage probability for
each target she owns (these may differ between defenders);
2) There exists a defender, who has a different probability to
protect her own targets.

In case 1), there exist β defenders (1 ≤ β < n) who have
the same minimal probability s′ to protect all of their targets.
The expected utility for each defender among these β defend-
ers is:

u =
(Uc − Uu − kβc)s′ + Uu + (kβ − 1)T

β

When T−Uu

kc < s′ ≤ 1, some defender i among these β
defenders could decrease probability of all her targets to 0 to
get value u1 = Uu + (k − 1)T ,

u1 − u =
T − (Uc − Uu)s′ − Uu

β
+ kcs′ + Uu − T

>
T − (Uc − Uu)s′ − Uu

n
+ kcs′ + Uu − T

When 0 ≤ s′ ≤ T−Uu

kc , some defender i among these β de-
fenders could slightly increase probabilities of all her targets
to s′ + δ3 to get the utility u2 = kT − k(s′ + δ3)c

u2 − u =
T − (Uc − Uu)s′ − Uu − kβcδ3

β

>
T − (Uc − Uu)s′ − Uu

n

The above inequality holds because δ3 can be arbitrar-
ily small. Thus, no profile in case 1) can be a
(T−Uu)(kc−Uc+Uu)

cnk -equilibrium.
In case 2), for defenders who have different coverage prob-

ability for their own targets, they could always increase pay-
off by decreasing some of their targets’ probability to get
a corresponding profile in case 1). Then we could know
that any profile in case 2) cannot be a (T−Uu)(kc−Uc+Uu)

cnk -
equilibrium.

As the final step towards characterizing the Price of Anar-
chy, we derive optimal social welfare in this model.

Theorem 9. In the General model, the optimal social welfare
SWO is

SWO =

{
Uc − nkc+ (nk − 1)T, if Uc − Uu ≥ nkc;
Uu + (n− 1)T, if Uc − Uu < nkc.

Proof sketch. We firstly claim that we could get optimal so-
cial welfare only if all targets have the same probability s to
be protected their. Otherwise, some target tij has the proba-
bility of 0 to be attacked. Then we could decrease sij to get a
better social welfare. Consequently, we need only to consider
an optimal identical coverage probability s to obtain optimal
social welfare, which can be done in a relatively straightfor-
ward way.

If Uc − Uu ≥ kc − (n−1)(T−Uc)
n , the Nash equilibrium

is unique, with all targets protected with probability 1. The
corresponding social welfare in equilibrium is

SWE = Uc − nkc+ (nk − 1)T.

So far we have not yet added any constrains to value of
T , Uc, and Uu (except that T ≥ Uc ≥ Uu). In order to make
Price of Anarchy well-defined, we need to add constraints that
values of T , Uc, and Uu are all non-positive (just as in the
previous two models) or all non-negative. To be consistent
with previous models, we add constraints that Uc, Uu and T
are all non-positive (little changes if all are non-negative).

In the case of a unique Nash equilibrium, the price of anar-
chy is

PoA =


1, if Uc − Uu ≥ nkc;
Uc−Uu−nkc
Uu+(nk−1)T + 1, if kc− (n−1)(T−Uc)

n ≤
Uc − Uu < nkc.

If Uc − Uu < kc− (n−1)(T−Uc)
n , there is no Nash equilib-

rium. However, we could get the optimal approximate Nash
equilibrium when all defenders use the same coverage proba-
bility T−Uu

kc for all targets. The corresponding Social Welfare
is

SWE = (Uc − Uu − nkc)
T − Uu
kc

+ Uu + (nk − 1)T,

and the (T−Uu)(kc−Uc+Uu)
cnk -Price of Anarchy is

(T − Uu)(kc− Uc + Uu)

cnk
-PoA

=
(Uc − Uu − nkc)(T − Uu)
kcUu + (nk − 1)kcT

+ 1

We now analyze the relationship between (ε-)PoA and the
values of n and k. Here are the key differences from Multi-
Target Model. First we consider (ε-)PoA as the function of n.
If T = 0, then we could find that the result is same as that
in Multi-Target Model and (ε-)PoA linearly increases in n,
which is unbounded. However, if T 6= 0, PoA and ε-PoA are
increasing in n, and as n→∞, approach 1− c

T and 1+Uu−T
kT ,

respectively. In other words, PoA (exact and approximate) is
bounded by a constant, for a constant k!

Consider now approximate price of anarchy as a function
of k. If T = 0, it is bounded by n + 1. However, if T 6= 0,
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Figure 4: (Approximate) Price of Anarchy when c = 1, T =
−1, Uc = −2 and Uu = −10

when kc− (n−1)(T−Uc)
n ≤ Uc −Uu, it is an increasing func-

tion of k. When kc− (n−1)(T−Uc)
n > Uc−Uu, it may at first

increase or decrease in k, depending on the the values of the
model parameters. However, when k is large enough, price
of anarchy will invariably be decreasing in k, and as k →∞,
ε-PoA→ 1. Figure 4 provides an example of the relationship
between ε-PoA and k. Observe that all the curves begin to
decrease when k > 10; they all approach 1 as k →∞. Thus,
price of anarchy in the general model is only unbounded in
the special case when T = 0, whereas when T 6= 0, price of
anarchy is always bounded by a constant. This observation
is particularly surprising and significant considering the fact
that the baseline and simplified multi-target models are quite
natural, and seemingly innocuous, restrictions of the general
case.

6 Conclusion
We examined a non-cooperative multi-defender security
game in which defenders may protect multiple targets, offer-
ing complete characterization of Nash and approximate equi-
libria, socially optimal solutions, and price of anarchy. Our
results show that defenders generally over-protect the targets
in this model, but different modeling assumptions give rise to
qualitatively different outcomes: a simpler model gives rise
to an unbounded price of anarchy, whereas a more general
model sees PoA converge to a constant when the number of
defenders increases.

There are a number of directions for further work. Firstly,
in our work we assume that strategy spaces of defenders are
symmetric, and the impact of asymmetry is far from clear.
Secondly, defenders in our model always have incentive to
over-invest for their targets. Some public policies such as
taxation and penalties may be helpful to improve the overall
efficiency. Finally, it would be important to consider how
interdependence among targets affects the levels of security
investment and the price of anarchy.
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Appendix
Theorem 1. In the Baseline model, Nash equilibrium exists if
and only if v ≥ c. In this equilibrium all targets are protected
with probability 1.

Proof. Firstly, we claim that Nash equilibrium among de-
fenders can appear only if all targets have the same coverage
probability s to be protected. Otherwise, some defender j
who has the possibility of 0 to be attacked has the incentive
to decrease her sj . To find the Nash equilibria, we need only
consider strategy profiles in which all targets have the same
coverage probabilities to be protected.

When all defenders have the same possibility s to cover
their targets. For each defender, her expected utility is

u =
(v − cn)s− v

n

If s < 1, some defender i could slightly increase s to s+ δ (δ
is a very small positive real number) to make sure herself not
be attacked and get utility u′ = −(s+ δ)c,

u′ − u =
v(1− s)− ncδ

n

As δ can be very small, u′ − u > 0 when s < 1. We could
know that the defender has incentive to improve s when s <
1. So the Nash equilibrium can appear only if si = 1 for all
defender i.

When all defenders have the same possibility s = 1 to
cover their targets. For each defender, her expected utility is

u = −c

If a defender i decreases her coverage probability to s′ < 1,
then her target will have the probability of 1 to be attacked,
and she gets expected utility u′ = −v + s′(v − c),

u′ − u = (v − c)(s′ − 1)

If v ≥ c, then u′ − u ≤ 0, all defenders do not have in-
centive to deviate, so it is a Nash equilibrium. If v < c, then
u′ − u > 0, defender has incentive to deviate, so it is not a
Nash equilibrium. To sum up, Nash equilibrium exists if and
only if v ≥ c, in which all defenders have the same probabil-
ity 1 to protect their targets.

Theorem 2. In the Baseline model, if v < c, the optimal
ε-equilibrium is for all defenders to cover their target with
probability v

c . The corresponding ε is v(c−v)
cn .

Proof. We firstly consider strategy profiles in which all tar-
gets have the same possibility s to be protected. Then for
each defender, her expected utility is

u =
(v − cn)s− v

n

Assume 0 ≤ s < 1. If some defender i slightly increase s
to s+ δ1, then she could get utility u′ = −(s+ δ1)c,

u′ − u =
v(1− s)− ncδ1

n
<
v(1− s)

n

Assume 0 < s ≤ 1. If some defender i slightly decreases
s to s − δ2, then she could get the utility u′′ = −v + (s −
δ2)(v − c)

u′′ − u =
v(1− s)(1− n) + δ2n(c− v)

n

As δ2 ≤ s, we could get

u′′−u ≤ v(1− s)(1− n) + sn(c− v)
n

=
v(1− s)

n
+(sc−v)

Let d1 = v(1−s)
n , d2 = v(1−s)

n + (sc − v). For s = 0,
a defender could deviate to get an increased value which is
less than v

n , so it is v
n -equilibrium. For s = 1, a defender

could deviate to get an increased value which is less or equal
to (c− v), then it is (c− v)-equilibrium.

When 0 < s ≤ v
c and d2 ≤ d1, it is d1-equilibrium. When

v
c < s < 1 and d2 > d1, it is d2-equilibrium.

To sum up, for ε-equilibrium,

ε =

{
v(1−s)
n , if 0 ≤ s ≤ v

c ;
v(1−s)
n + (sc− v), if vc < s ≤ 1.

When s = v
c , we could get the minimal ε = v(c−v)

cn . And
it is the only v(c−v)

cn -equilibrium in strategy profiles of all de-
fenders having the same coverage probabilities.

We claim that the v(c−v)
cn -equilibrium could only exist in a

profile of all defenders having the same coverage probability
s. Otherwise, assume defenders have different probabilities
to cover their targets, then there are α defenders (1 ≤ α <
n) who have the same minimal probability s′ to protect their
targets. The expected utility for each defender among these α
defenders is:

ue =
(v − cα)s′ − v

α

When v
c < s′ ≤ 1, some defender i among these α defend-

ers could decrease her probability to 0 to get value u1 = −v,

u1 − ue =
v(1− s′)

α
+ (s′c− v) > v(1− s′)

n
+ (s′c− v)

When 0 ≤ s′ ≤ v
c , some defender i among these α defend-

ers could slightly increase her probability to s′+ δ3 to get the
utility u2 = −(s′ + δ3)c

u2 − ue =
v(1− s′)− αcδ3

α
>
v(1− s′)

n

The above inequation holds because δ3 can be very small.
Then we could know that it cannot be a v(c−v)

cn -equilibrium.
So we could know that it is the only v(c−v)

cn -equilibrium
when all defenders have the equal probability v

c to cover their
targets. And it is the optimal approximate equilibrium.

Theorem 3. In the Baseline model, the optimal social wel-
fare SWO is

SWO =

{
−cn, if v ≥ cn;
−v, if v < cn.



Proof sketch. We firstly claim that we could get optimal so-
cial welfare only if all defenders have the same probability s
to protect their targets. Otherwise, their coverage probabili-
ties are different, and some defender j has the probability of
0 to be attacked. Then we could decrease sj to get a better
social welfare. Therefore we just need to look for the iden-
tical coverage probability s which makes the optimal social
welfare. The function of social welfare over s is as follows:
SW (s) = −v + s(v − c) + (n− 1)(−sc) = (v − cn)s− v
Then we could get the optimal social welfare as the theorem
shown.

Theorem 4. In the Multi-Target model, Nash equilibrium ex-
ists if and only if v ≥ kc. In this equilibrium all targets are
protected with probability 1.

Proof. We firstly claim that Nash Equilibrium can be got only
if coverage probabilities of all of targets tij are identical.
Otherwise, there will be a target tik which has the possibil-
ity of 0 to be attacked, then defender i has the incentive to
decrease her sik.

When all targets have the same possibility s to be pro-
tected, for each defender, her expected utility is

u =
(v − cnk)s− v

n
If s < 1, then some defender i could slightly increase s to
s + δ (δ is a very small positive real number) for all of her
targets to make sure them not be attacked and get the utility
u′ = −k(s+ δ)c,

u′ − u =
v(1− s)− nkcδ

n
As δ can be very small, u′ − u > 0 when s < 1. We could
know that the defender has incentive to improve s when s <
1. So the Nash Equilibrium can appear only if sij = 1 for all
defenders’ targets sij .

When all targets have the same possibility s = 1 to be
protected, for each defender, her expected utility is u = −kc.
If a defender iwants to deviate, then one of her targets will be
attacked (we assume it is tir, and sir < 1). Then her expected
utility is

u′ = −v + sir(v − c) +
k∑

j=1,j 6=r

(−sijc)

Then

u′ − u = (v − c)(sir − 1) +

k∑
j=1,j 6=r

(−sijc) + (k − 1)c

1) If v < c, then (v − c)(sir − 1) > 0, at the same time∑k
j=1,j 6=r(−sijc) + (k − 1)c ≥ 0, then the defender has

incentive to deviate, so it is not a Nash Equilibrium. Then
we could know there is no Nash Equilibrium when v < c.

2) If v ≥ c, because sij ≥ sir for all j 6= r, then
u′ − u ≤ (v − c)(sir − 1) + (k − 1)c− (k − 1)sirc

We could get
u′ − u ≤ (sir − 1)(v − kc)

If v ≥ kc, then u′−u ≤ 0, we could know that it is a Nash
Equilibrium. If c ≤ v < kc, then u′−u can be greater than 0,
so it is not a Nash Equilibrium. To sum up, Nash Equilibrium
exists if and only if c ≤ v < kc, in which all defenders have
the same the probability 1 to protect their targets.

Theorem 5. In the Multi-Target model, if v < kc, then in the
optimal ε-equilibrium all targets are protected with probabil-
ity v

kc . The corresponding ε is v(kc−v)
cnk .

Proof. When all defenders have the same possibility s to pro-
tect all of their targets. For each defender, her expected utility
is

u =
(v − cnk)s− v

n
Assume 0 ≤ s < 1. If some defender i slightly increase s
to s + δij for target tij , then she could get the value u′ =∑k
j=1−(s+ δij)c,

u′ − u =
v(1− s)

n
−

k∑
j=1

δijc <
v(1− s)

n

Then we will consider scenarios when a defender i could
get higher utility by decreasing protection probability. We
claim that the “optimal” deviation could appear only if de-
fender i has the same protection probability s′ for all her tar-
gets. Otherwise, for some target tik which has the probabil-
ity 0 to be attacked, she could always decrease the coverage
probability to get higher utility.

Then we need only consider cases when a defender devi-
ates by decreasing probabilities of all her targets to s − δ.
Then her utility is u′′ = (v − kc)(s− δ)− v,

u′′ − u =
δn(kc− v) + v(n− 1)(s− 1)

n

As v < kc, when δ = s(the maximal value of δ), we could
get maximal value of u′′ − u:

max
0<δ≤s

u′′ − u =
v(1− s)

n
+ kcs− v

Let d1 = v(1−s)
n , d2 = v(1−s)

n + kcs− v, then

d1 − d2 = −kcs+ v

When s ≤ v
kc , d1 ≥ d2, it is a v(1−s)

n -Nash Equilibrium;
when s > v

kc , d1 < d2, it is a ( v(1−s)n + kcs − v)-Nash
Equilibrium.

To sum up, for ε-Nash Equilibrium,

ε =

{
v(1−s)
n , if 0 ≤ s ≤ v

kc ;
v(1−s)
n + kcs− v, if v

kc < s ≤ 1.

When s = v
kc , we could get the minimal ε = v(kc−v)

cnk .
Then it is the only v(kc−v)

cnk -Nash Equilibrium in profiles of
all targets having probability s = v

kc to be protected.
We claim that the v(kc−v)

cnk -Nash Equilibrium can appear
only if all targets have the same probability s to be protected.
Assume targets have different probabilities to be protected.



There are two cases: 1)For each defender, she has the same
probability to protect her own targets; 2)There exists some
defender, who has different probability to protect her own tar-
gets.

We first consider case 1), in which targets may have dif-
ferent probabilities to be protected, but each defender has the
same probability to protect her own targets. In the case there
exist β defenders(1 ≤ β < n) who have the same minimal
probability s′ to protect all of their targets. The expected util-
ity for each defender among these β defenders is:

ue =
(v − kcβ)s′ − v

β

When v
kc < s′ ≤ 1, some defender i among these α de-

fenders could decrease probability of all her targets to 0 to get
value u1 = −v,

u1− ue =
v(1− s′)

β
+(kcs′− v) > v(1− s′)

m
+(kcs′− v)

When 0 ≤ s′ ≤ v
c , some defender i among these β de-

fenders could slightly increase probability of all her targets to
s′ + δ3 to get the utility u2 = −k(s′ + δ3)c

u2 − ue =
v(1− s′)− kcβδ3

β
>
v(1− s′)

n

The above inequation holds because δ3 can be very small.
Then we could know in profiles of case 1), it cannot be a
v(kc−v)
cnk -Nash Equilibrium.
Then we consider case 2), in which there exists a defender,

who has different probabilities for her own targets. As some
of her targets have probability 0 of being attacked, she could
get higher payoff by decreasing probabilities of all of these
targets to be as small as her target with the lowest coverage
probability. It means that for each profile in case 2), for those
defenders with different probabilities for their own targets,
they could always increase payoff by decreasing some of their
targets’ probabilities to get a corresponding profile in case 1).
Then we could know that any profile in case 2) cannot be a
v(kc−v)
cnk -Nash Equilibrium.
To sum up ,the optimal value of ε for approximate equilib-

rium is v(kc−v)
cnk , and it can be got when all targets have the

same probability v
kc to be protected.

Theorem 6. In the Multi-Target model, the optimal social
welfare SWO is

SWO =

{
−cnk, if v ≥ cnk;
−v, if v < cnk.

Proof sketch. We firstly claim that we could get optimal so-
cial welfare only if all targets have the same probability s to
be protected. Otherwise, some target tij has the probability
of 0 to be attacked. Then we could decrease sij to get a bet-
ter social welfare. Consequently, we need only to consider an
optimal identical coverage probability s to obtain optimal so-
cial welfare, which can be done in a relatively straightforward
way.


