
Iterative Classification for Sanitizing Large-Scale
Datasets

Bo Li, Yevgeniy Vorobeychik, and Muqun Li
Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN

{bo.li.2,yevgeniy.vorobeychik,muqun.li}@vanderbilt.edu

Bradley Malin
Biomedical Informatics
Vanderbilt University

Nashville, TN
b.malin@vanderbilt.edu

Abstract—Cheap ubiquitous computing enables the collection
of massive amounts of personal data in a wide variety of domains.
Many organizations aim to share such data while obscuring fea-
tures that could disclose identities or other sensitive information.
Much of the data now collected exhibits weak structure (e.g.,
natural language text) and machine learning approaches have
been developed to identify and remove sensitive entities in such
data. Learning-based approaches are never perfect and relying
upon them to sanitize data can leak sensitive information as a
consequence. However, a small amount of risk is permissible
in practice, and, thus, our goal is to balance the value of
data published and the risk of an adversary discovering leaked
sensitive information. We model data sanitization as a game
between 1) a publisher who chooses a set of classifiers to apply
to data and publishes only instances predicted to be non-sensitive
and 2) an attacker who combines machine learning and manual
inspection to uncover leaked sensitive entities (e.g., personal
names). We introduce an iterative greedy algorithm for the
publisher that provably executes no more than a linear number
of iterations, and ensures a low utility for a resource-limited
adversary. Moreover, using several real world natural language
corpora, we illustrate that our greedy algorithm leaves virtually
no automatically identifiable sensitive instances for a state-of-the-
art learning algorithm, while sharing over 93% of the original
data, and completes after at most 5 iterations.

I. INTRODUCTION

Vast quantities of personal data are now collected in
a wide variety of domains [1]. It is anticipated that such
data can enable significant improvements in the quality of
services provided to individuals and facilitate new discoveries
for society. At the same time, the data collected is often
sensitive, and regulations, such as the Privacy Rule of the
Health Insurance Portability and Accountability Act of 1996
(when disclosing medical records) [2], Federal Rules of Civil
Procedure (when disclosing court records) [3], and the Eu-
ropean Data Protection Directive [4] often recommend the
removal of identifying information. To accomplish such goals,
the past several decades have brought forth the development
of numerous data protection models [5]. These models invoke
various principles, such as hiding individuals in a crowd (e.g.,
k-anonymity [6]) or perturbing values to ensure that little can
be inferred about an individual even with arbitrary side infor-
mation (e.g., ε-differential privacy [7]). All of these approaches
are predicated on the assumption that the publisher of the
data knows where the identifiers are from the outset. More
specifically, they assume the data has an explicit representation,

such as a relational form [8], where the data has at most a small
set of values per feature [9], [10].

However, it is increasingly the case that the data we
generate lacks a formal relational (or explicitly structured)
representation. A clear example of this phenomenon is the
substantial quantity of natural language text which is created
in many different arenas, ranging from field reports of in-
telligence agencies [11] to clinical notes in medical records
[12] to microblogging over social media platforms [13]. To
protect such data, there has been a significant amount of
research into natural language processing (NLP) techniques
to detect (and subsequently redact or substitute) identifiers
[14], [15]. The most scalable versions of such techniques
are rooted in machine learning methods [16], in which the
publisher of the data annotates instances of identifiers in the
text, and the machine attempts to learn a classifier (e.g., a
grammar) to predict where such identifiers reside in a much
larger corpus. Unfortunately, no learned classifier is perfect,
and some sensitive information will invariably leak through to
the data recipient. This is clearly a problem if, for instance,
the information leaked corresponds to direct identifiers (e.g.,
personal name) or quasi-identifiers (e.g., ZIP codes or dates
of birth) which may be exploited in re-identification attacks,
such as the re-identification of Thelma Arnold in the search
logs disclosed by AOL [17] or the Social Security Numbers
in Jeb Bush’s emails [18].

Rather than attempt to detect and redact every sensitive
piece of information, our goal is to guarantee that even if
sensitive entities remain in the published data, the adversary
cannot easily find them. Fundamental to our approach is the
acceptance of non-zero privacy risk, which we view as un-
avoidable. This is consistent with most privacy regulation, such
as HIPAA, which allows expert determination that privacy risk
is sufficiently small [2], and the EU Data Protection Directive,
which “does not require anonymisation to be completely risk-
free” [19]. Our starting point is a threat model in which an
attacker uses published data to first train a classifier to predict
sensitive entities (based on a labeled subset of the data),
prioritizes inspection based on the predicted positives, and
inspects (and verifies the true sensitivity status of) B of these in
a prioritized order, where B is the budget available to inspect
(or read) instances. An illustration of such a setting is depicted
in Figure 1. In this threat model, we consider an idealized
adversary with several elements of omniscience. First, we
assume that the adversary can always correctly assess the

Fig. 1. An example of sensitive and non-sensitive instances that need to be
distinguished via manual inspection.

true sensitivity for any manually inspected instance. Second,
we assume that the adversary computes an optimal classifier
(that is, a classifier with maximum accuracy within a given
hypothesis class).

We use this threat model to construct a game between
a publisher, who 1) applies a collection of classifiers to an
original data set, 2) prunes all the positives predicted by any
classifier, and 3) publishes the remainder, and an adversary
acting according to our threat model. We show that, in any
locally optimal publishing strategy, when the risk associated
with exploited sensitive entities is high, an adversary cannot
learn a classifier with a high true positive count. When these
conditions hold, we say that sensitive data is hiding in plain
sight—even though it may be leaked, it is difficult for a
motivated adversary to discover. Moreover, we exhibit a greedy
publishing strategy which is guaranteed to converge to a local
optimum (and consequently guarantees the above two proper-
ties) in a linear (in the size of the data) number of iterations.
Our experiments on four distinct data sets demonstrate the
power of our approach, showing that 1) the number of residual
true positives is always quite small, and 2) demonstrating that
most (> 93%) of the original data is nevertheless published.

II. MODEL

TABLE I. TABLE OF NOTATIONS

n , number of total instances
H , hypothesis class of the publisher
H , the subset of classifiers chosen by the publisher
S , sensitive instances
N , non-sensitive instances

TP (h, P) , number of true positives by h on P
TN(h, P) , number of true negatives by h on P
FP (h, P) , number of false positives by h on P
FN(h, P) , number of false negatives by h on P

α , percent of identifiers in data
hA , the attacker’s classifier

T (H) , loss function of data publisher for H

Table I summarizes all the notation used in this paper.
Imagine that a publisher’s dataset consists of a set of n entities
(or words), X = {x1, . . . , xn}, of which he will publish a
subset P ⊆ X . The publisher may have an additional data
set for training a classifier to predict whether an entity x is
sensitive. We let α denote the fraction of the original n entities
that are sensitive. A learning algorithm is designed to select a
hypothesis that best supports the data. Here we consider the
hypothesis to be a function f mapping from the data space D
to the response space E ; i.e., f : D → E . Of course there are
many such hypotheses. We assume f belongs to a family of

all possible hypotheses H, and assume this hypothesis class H
is known to the public, including the publisher and attackers.
This is a natural assumption, considering that state-of-the-art
machine learning algorithms are well known and typically have
multiple high-quality open source implementations. Specifi-
cally, the response space E = {0, 1} within our problem
indicates whether the entity x is sensitive (S, f(x) = 1) or
non-sensitive (N , f(x) = 0), and H represents a set of binary
classifiers.

We use h to denote a classifier chosen from the hypothesis
class H. For a classifier h and a data set Y , we introduce the
following notation:

• FP (h, Y) = | ∪x∈Y {x ∈ N |h(x) = 1}|: the number
of false positive instances of h on Y ,

• TP (h, Y) = | ∪x∈Y {x ∈ S|h(x) = 1}|: the number
of true positive instances of h on Y ,

• FN(h, Y) = | ∪x∈Y {x ∈ S|h(x) = 0}|: the number
of false negative instances of h on Y , and

• TN(h, Y) = | ∪x∈Y {x ∈ N |h(x) = 0}|: the number
of true negative instances of h on Y .

Clearly, if |Y | = m, FP (h, Y) + TP (h, Y) + FN(h, Y) +
TN(h, Y) = m ∀h ∈ H. Finally, we define FP (h, ∅) =
FN(h, ∅) = TP (h, ∅) = TN(h, ∅) ≡ 0.

Threat Model

Suppose that an adversary obtains the published data
P ⊆ X . We assume that an adversary has a fixed inspection
budget, B, which can be thought of as manual inspection of
actual instances to verify whether or not they are sensitive
(and, consequently, have value to the adversary). If a sensitive
instance is found, we assume that it is exploited by an
adversary, who gains L for every such instance, which is
identical to the publisher’s loss. Thus, when the attacker selects
a set I ⊆ P of instances for inspection, such that |I| ≤ B, his
utility is

UA(I) = L|{sensitive instances ∈ I}| = L
∑
x∈I

S(x),

where S(x) = 1 iff x is sensitive. A central aspect of the
threat model is the specific way that the attacker chooses the
set I of instances to inspect. A simple baseline is to choose
I uniformly at random from P . We use UA to denote the
utility that the attacker obtains when using this simple baseline.
Presumably, however, the attacker can do better by using a
more sophisticated strategy. In particular, we suppose that a
sophisticated attacker proceeds as follows:

1) Choose a classifier

hA(P) ∈ arg min
h∈H

FP (h, P) + FN(h, P)

|P |
.

In other words, the attacker chooses an optimal
classifier from H in terms of accuracy. From the
publisher’s perspective, this is a very pessimistic limit
of an attacker who uses a subset of P for training a
standard classification algorithm, such as an SVM.

2) Prioritize instances in P by ranking all x ∈ P with
h∗(x) = 1 first, followed by those with h∗(x) = 0.
Within each class, the order is arbitrary.

3) Choose I in this ranked order until it contains B
instances. In other words, first the attacker will
choose the predicted positives, followed by predicted
negatives (if there is any budget remaining).

We simply refer to hA where P is clear from context. We
let U∗A denote the attacker’s utility when using this more
sophisticated learning-based strategy. A technical caveat is that
depending on the quality of the classifier, U∗A is not necessarily
higher than UA; below, we provide a sufficient condition for
U∗A ≥ UA.

As an illustration, let us return to Figure 1 which presents
an example of the behavior of an attacker given a published
dataset containing sensitive and non-sensitive instances. As-
sume the circled words are classified as positives by hA.
Therefore, the attacker would inspect these words and their
surrounding context first. However, in this setting, some of the
words inspected are not sensitive instances (i.e., false positives;
shown in dashed ovals). For example, the first dashed “He” is
a pronoun, while the solid circled “He” is actually the name
of a person. Therefore, if the attacker has sufficient budget to
inspect all of the circled instances, he would gain 3 units of
utility (i.e., true positives, shown in solid ovals), and waste 3
units of budget (again, in dashed ovals).

Data Publisher Model

To develop some intuition for our publisher model, let
us first consider the typical approach for sanitizing data (we
assume that the defender is able to learn an optimal classifier):

1) Learn a classifier

h̄ ∈ arg min
h∈H

FP (h,X) + FN(h,X)

|X|
.

Let X1 = {x ∈ X|h̄(x) = 1} (i.e., X1 is the set of
predicted positives).

2) Publish the data set P = X \X1.

Essentially all of the approaches in the literature assume this,
or a similar, form. To apply our threat model above, we
consider two possibilities: a) the attacker’s classifier hA can
successfully identify residual sensitive instances, or b) the
attacker’s classifier cannot detect residual positives. If we are
in situation (b), the publisher can view the sanitization as a
success. Situation (a), on the other hand, is clearly problematic,
but it also suggests a natural solution: the publisher can apply
hA to residual data, remove the sensitive instances, and only
then publish the data. Indeed, this is where the symmetry
between the publisher and attacker, taking advantage of the
common knowledge ofH, is pivotal. Specifically, the publisher
can simulate anything that the attacker would do.

Moreover, there is no reason to stop at this point. In fact,
the publisher should continue as long as the simulated clas-
sifier that would be used by the attacker is sufficiently good.
This observation also offers the key intuition for our results.
Whenever the publisher chooses to stop, the attacker’s ability
to identify sensitive instances must inherently be relatively
weak. Of course, this will depend on the relative loss to the

publisher from correctly identified sensitive entities and the
value of publishing data.

Using the developed intuition, we model the publisher as
selecting a finite set of classifiers H ⊆ H, where H =
{h1, h2, ..., hD}. Figure 2 shows the process of applying a set
of classifiers before publishing the data. After applying each
classifier hi, the positive instances are replaced with the fake
tokens, such as “[NAME]” replacing an individual’s name.

Let X1(H) = ∪h∈H{x ∈ X|h(x) = 1}, that is, the set of
all positives predicted by the classifiers in H , and let P (H) =
X \ X1(H); we use P with no argument where H is clear
from context. The publisher’s approach is:

1) Choose a collection of classifiers H (we address this
choice below).

2) Publish the data set P (H) = X \X1(H).

Let FN(H) be the number of false negatives of H in X ,
which we define as all residual sensitive instances in P , and
let FP (H) be the number of false positives in X , that is,
all predictive positives by any h ∈ H which are, in fact,
not sensitive. It is immediate that for any H , FN(H) ≤ αn
(the number of false negatives is at most the total number of
sensitive entities in the original data) and TN(H) ≤ (1−α)n
(the number of true negatives is at most the total number of
non-sensitive entities). If we allow the attacker to have an
infinite budget, then every false negative will be exploited,
resulting in the total loss of L ·FN(H). In addition, each false
positive costs the publisher a fixed amount C, which we can
interpret as the value of not publishing the data. Thus, we
define the (worst-case) total loss to the publisher from using
a set of classifiers H as

T (H) = L · FN(H) + C · FP (H),

where FN(H) = | ∩h∈H {x ∈ S|h(x) = 0}| and FP (H) =
|∪h∈H {x ∈ N |h(x) = 1}|, where S,N represent the sensitive
and non-sensitive instances, respectively. TN(H) and TP (H)
can be defined similarly.

III. A GREEDY ALGORITHM FOR AUTOMATED DATA
SANITIZATION

Given a formal model, we can now present our iterative
algorithm for automated data sanitization, which we term
GreedySanitize. Our algorithm (shown as Algorithm 1) is
simple to implement and involves iterating over the following
steps: 1) compute a classifier on training data, 2) remove all
predicted positives from the training data, and 3) add this
classifier to the collection. The algorithm continues until a
specified stopping condition is satisfied, at which point we
publish only the predicted negatives, as above. It is important
to emphasize that GreedySanitize is qualitatively different from
typical ensemble learning schemes in several ways. First, it is a
crucial feature of the algorithm that a classifier is re-trained in
every iteration on data which includes only predicted negatives
from all prior iterations; this is entirely unlike the mechanics of
any ensemble learning algorithm we are aware of.1 Second, our

1Typical ensemble learning algorithms will either focus on mistakes made in
prior iterations (boosting is an example of this), take no note of performance by
other members of the ensemble (e.g., bagging), or use a fixed set of classifiers
as inputs into a meta-classifier [20].

Fig. 2. The process for applying a set of classifiers H to data X .

Algorithm 1 GreedySanitize(Xt), Xt : training data.
H ← {}, k ← 0, h0 ← ∅, D0 ← Xt,
repeat
H ← H ∪ hk
k = k + 1
hk ←LearnClassifier(Dk−1)
Dk ←RemovePredictedPositives(Dk−1, hk)

until T (H ∪ hk)− T (H) ≥ 0
return H

algorithm removes the union of all predicted positives, whereas
ensemble learning typically applies a weighted voting scheme
to predict positives; our algorithm, therefore, is fundamentally
more conservative when it comes to sensitive entities in the
data. Third, the stopping condition is uniquely tailored to the
algorithm, and is critical in enabling us to provide provable
guarantees about privacy-related performance of the algorithm.

Given the iterative nature of the algorithm, it is not obvi-
ous that it is always guaranteed to terminate. The following
theorem asserts that GreedySanitize will always terminate in a
linear number of iterations.

Theorem 3.1: Algorithm 1 terminates after at most |Xt|
iterations.

We omit all proofs due to the space constraints.

IV. ANALYSIS OF GreedySanitize

Our theoretical analysis of the proposed GreedySanitize
algorithm focuses on the following questions: what kinds of
privacy guarantees does this algorithm offer? To address this
question, we abstract away the details of our algorithm behind
the veil of its stopping condition, which turns out to be the
primary driver of our results. This also allows us to state the
privacy guarantees in much more general terms.

Analysis of Locally Optimal Publishing Policies

In this section we analyze the adversary’s ability to infer
sensitive information from published data if the defender’s
choice of classifiers H to apply to original data satisfies the
following local optimality condition.

Definition 4.1: A set of classifiers H ⊆ H is a local
optimum if T (H ∪ hA)− T (H) ≥ 0.

In plain terms, a subset is a local optimum if the adversary’s
optimal classifier hA (that is, the attacker’s best classifier

choice to apply to the published data), when added to this
subset, does not improve the publisher’s utility. Under a minor
regularity condition that H contains an identity (which can
always be added), there is always a trivial local optimum of not
releasing any data. Notice that the local optimality condition is
exactly the stopping condition of GreedySanitize, which means
that when the algorithm terminates, its output set of hypotheses
H is guaranteed to be a local optimum.

We now state the primary result, which characterizes all
locally optimal solutions H .

Theorem 4.1: H ⊆ H is a local optimum if and only if
either TP (hA, P) = 0 or FP (hA,P)

TP (hA,P) ≥
L
C .

Below, we simplify notation by defining FPA ≡
FP (hA, P), and defining FNA TPA, and TNA similarly, with
H becoming an implicit argument throughout. Now, observe
that if L/C > (1 − α)n, the only locally optimal solutions
have TPA = 0, because otherwise FPA

TPA
≤ (1− α)n < L/C.

As a direct consequence of Theorem 4.1, we can bound
TPA in all locally optimal solutions.

Theorem 4.2: For any locally optimal H ⊆ H, TPA ≤
C
L (1− α)n.

The upshot of Theorem 4.2 is that when C is small relative
to L, any locally optimal H will guarantee that the attacker
cannot learn a classifier that correctly identifies more than a
few sensitive instances.

V. EXPERIMENTS

In this section, we assess the performance of GreedySan-
itize (GS) using four text data sets to protect the personal
sensitive identifiers (here we only consider the individuals’
names): 1) publicly accessible medical records from the
I2B2 corpus [21], 2) a private electronic medical records
(EMR) dataset from the Vanderbilt University Medical Center
(VUMC), 3) Enron email data, and 4) newsgroup data [22].
We used three state-of-the-art learning algorithms for sensitive
entity recognition: conditional random fields (CRF), which
consistently ranks as the best method for identifying personal
health information in electronic medical records [14], [21],
support vector machine (SVM) [23], which makes use of the
features of the word itself, part-of-speech (POS), morphologic
information, and the history class of previous features assigned
by the classifier; as well as a recently proposed ensemble
method [24], which applies CRF to classify first and then
uses SVM to reduce the false positives. All these play a dual-
role in our experiments: they serve as a comparison baseline

to prior art, as well as the core learning algorithms in our
own Algorithm 1 (GreedySanitize). In all the experiments,
the attacker first runs all three of these algorithms on the
training holdout from published data, and then chooses the
best performing classifier. Our evaluation is based on four-fold
cross-validation, with GreedySanitize running on the training
data and using the incidence of true and false negatives on
training data to determine when to stop The implementa-
tion and datasets are available at: https://www.dropbox.com/
s/aq1je9dydhiq3m0/privacy icdm.zip?dl=0.

Privacy Risk

When the budget of the attacker is small, our theoretical
results provide an upper bound on the expected number of
identified instances. While this upper bound suggests that risk
becomes arbitrarily small when the associated loss is large,
it is not tight. In Figure 3 we demonstrate that the number
of identified instances (which is equivalent to the number of
true positives for the attacker’s classifier) typically becomes
negligible even when L is quite small relative to C.

(a) (b)

Fig. 3. The number of residual true positive instances TPA (equivalently,
identified instances for an attacker with a small budget) after running
GreedySanitize for the i2b2, VUMC, Enron, and Newsgroup datasets. (a)
GreedySanitize using CRF (dashed lines, or baseline, correspond to standard
application of CRF). (b) GreedySanitize using the best classifier from {CRF,
SVM, Ensemble} (dashed lines correspond to the baseline application of the
best classifier from this collection).

Data Utility

Our next evaluation concerns whether we can still retain the
data utility with such a high privacy preserving requirement.
This is something that motivates the presented approach (as
compared to simply suppressing all data), but that we did not
explicitly consider in the theoretical analysis. Intuitively, the
proposed GreedySanitize algorithm should strike a reasonable
balance: it stops immediately after a local optimum is reached.
Here, we evaluate the data utility of the published data using
the publish ratio, which is defined as the proportion of the
original number of entities in the published data.

Figure 4 compares GreedySanitize to cost-sensitive vari-
ants of the baseline algorithms (CRF, SVM, and Ensemble).
GreedySanitize preserves most of the data utility even when
L/C is high. Specifically, in both of the EMR datasets over
98% of the data is published, even when L/C is quite high.
The performance for the other two data sets is lower, but
still, over 93% of the data is ultimately published, even
with large L/C ratios. In contrast, when the loss due to re-
identification is moderate or high, cost-sensitive algorithms
essentially suppress most of the data, resulting in very low

(a) (b)

(c) (d)

Fig. 4. Fraction of data published for different classifiers with cost sensitive
learning. (a)-(d) corresponds to the i2b2, VUMC, News, and Enron datasets.

utility. GreedySanitize therefore offers a far better balance
between risk and utility than the state-of-the-art alternatives.

Impact of the Size of the Hypothesis Space

One important issue in applying GreedySanitize is that
perhaps the attacker will make use of a new algorithm that
the publisher had not considered. We now explore this issue
by considering the quality of decisions when the publisher uses
a single classifier, or the best of all three that we consider, at
the core of GS.

(a) (b)

(c) (d)

Fig. 5. The ratio of average sensitive identifiers found by the attacker and
the adversarial budget, while the publisher applies different classifiers as CRF,
SVM, Ensemble, and Selection which allows the publisher to choose a learner
with highest accuracy from {CRF, SVM, Ensemble} for GreedySanitize
(L/C=10). (a)-(d) corresponds to the i2b2, VUMC, News, and Enron datasets.

Figures 5 compare these four options (the three single-

classifier options, and the last, called “Selection”, where the
most accurate of these three classifiers is chosen in each itera-
tion), evaluated when the adversary chooses the most accurate
of these. The overall observation is that while increasing the
space of classifiers to choose from does help, the difference
is relatively small, so that significant underestimation of the
attacker’s strength appears unlikely to make much impact.

Number of Greedy Iterations

The final issue we consider is the number of iterations of
GreedySanitize for the different data sets. We found that for
all four datasets (and for the entire range of L/C that we
consider) the average number of iterations is less than 5. Our
theoretical upper bound is, therefore, extremely pessimistic.
Indeed, for some datasets, such as the VUMC EMR dataset,
the average number of iterations is just above 2 even when the
loss from leaking sensitive information is quite high.

VI. CONCLUSION

Our ability to take full advantage of large amounts of
unstructured data collected across a broad array of domains
is limited by the sensitive information contained therein. We
proposed a novel framework for sanitization of such data at
scale, introducing, for the first time, a principled threat model,
a very general class of publishing strategies, and a greedy, yet
effective, data publishing algorithm. Our analysis with multiple
natural language corpora demonstrates that any locally opti-
mal solution in our general framework will suppress enough
sensitive data to make the problem of re-identification (i.e.,
uncovering identifiers leaked through) extremely challenging
even for a highly capable adversary armed with state-of-the-art
machine learning tools. Our experimental evaluation confirms
these results, and further shows that our algorithm is: a)
substantially better than existing approaches for suppressing
sensitive data, and b) retains most of the value of the data,
suppressing less than 10% of information on all four data sets
we considered in evaluation. In contrast, cost-sensitive variants
of standard learning methods yield virtually no residual utility,
suppressing most or all of the data, when the loss associated
with privacy risk is even moderately high. Since our adversarial
model is deliberately extremely strong, our results suggest
feasibility for data sanitization at scale.

VII. ACKNOWLEDGMENTS

This work was supported by the NIH (R01-LM011366,
R01- HG006844, R01-LM009989, U01-HG006478, U01-
HG006385), NSF (CCF-0424422), AFRL (FA8785-14-2-
0180), ONR (N00014-15-1-2621), Sandia National Labs (con-
tract 2191), and Symantec Labs Graduate Research Fellowship.

REFERENCES

[1] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[2] U.S. Dept. of Health and Human Services, “Standards for privacy and
individually identifiable health information; final rule,” Federal Register,
vol. 65, no. 250, pp. 82 462–82 829, 2000.

[3] Committe on the Judiciary House of Representatives, “Federal Rules of
Civil Procedure,” 2014.

[4] European Parliament and Council of the European Union, “Directive
95/46/EC of the European Parliament and of the Council of 24 October
1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data,” Official Journal
L, vol. 281, pp. 0031–0050, 1995.

[5] B. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data pub-
lishing: A survey of recent developments,” ACM Computing Surveys,
vol. 42, no. 4, p. 14, 2010.

[6] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[7] C. Dwork, “Differential privacy: A survey of results,” in Proc. 5th
International Conference on Theory and Applications of Models of
Computation, 2008, pp. 1–19.

[8] L. Sweeney, “Achieving k-anonymity privacy protection using general-
ization and suppression,” International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, vol. 10, no. 05, pp. 571–588, 2002.

[9] G. Poulis, A. Gkoulalas-Divanis, G. Loukides, S. Skiadopoulos, and
C. Tryfonopoulos, “SECRETA: A system for evaluating and comparing
relational and transaction anonymization algorithms,” in Proc. 17th
International Conference on Extending Database Technology, 2014, pp.
620–623.

[10] Y. He and J. F. Naughton, “Anonymization of set-valued data via top-
down, local generalization,” Proc. VLDB Endowment, vol. 2, no. 1, pp.
934–945, 2009.

[11] J. Olive, C. Christianson, and J. McCary, Handbook of Natural
Language Processing and Machine Translation: DARPA Global Au-
tonomous Language Exploitation. Springer Press, 2011.

[12] P. Nadkarni, L. Ohno-Machado, and W. Chapman, “Natural language
processing: an introduction,” Journal of the American Medical Infor-
matics Association, vol. 18, no. 5, pp. 544–551, 2011.

[13] A. Ritter, Mausam, O. Etzioni, and S. Clark, “Open domain event
extraction from Twitter,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2012, pp. 1104–1112.

[14] J. Aberdeen, S. Bayer, R. Yeniterzi, B. Wellner, C. Clark, D. Hanauer,
B. Malin, and L. Hirschman, “The MITRE Identification Scrubber
Toolkit: design, training, and assessment,” International Journal of
Medical Informatics, vol. 79, no. 12, pp. 849–859, 2010.

[15] A. Benton, S. Hill, L. Ungar, A. Chung, C. Leonard, C. Freeman, and
J. H. Holmes, “A system for de-identifying medical message board
text,” BMC Bioinformatics, vol. 12 Suppl 3, p. S2, 2011.

[16] O. Ferrandez, B. R. South, S. Shen, F. J. Friedlin, M. H. Samore, and
S. M. Meystre, “BoB, a best-of-breed automated text de-identification
system for VHA clinical documents,” Journal of the American Medical
Informatics Association, vol. 20, no. 1, pp. 77–83, 2013.

[17] M. Barbaro, T. Zeller, and S. Hansell, “A face is exposed for aol searcher
no. 4417749,” New York Times, vol. 9, no. 2008, p. 8, 2006.

[18] R. Hackett, “Jeb Bush exposed 13,000 social security numbers: Here’s
where they were hiding,” Forbes, 2015 Feb 13.

[19] I. C. Office, “Anonymisation: managing data protection risk code of
practice,” 2012.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
2011.

[21] Ö. Uzuner, Y. Luo, and P. Szolovits, “Evaluating the state-of-the-
art in automatic de-identification,” Journal of the American Medical
Informatics Association, vol. 14, no. 5, pp. 550–563, 2007.

[22] E. Minkov, R. C. Wang, and W. W. Cohen, “Extracting personal
names from email: applying named entity recognition to informal text,”
in Proc. Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, 2005, pp. 443–450.

[23] S. Doan and H. Xu, “Recognizing medication related entities in hospital
discharge summaries using support vector machine,” in International
Conference on Computational Linguistics: Posters. Association for
Computational Linguistics, 2010, pp. 259–266.

[24] O. Ferrández, B. R. South, S. Shen, F. J. Friedlin, M. H. Samore, and
S. M. Meystre, “BoB, a best-of-breed automated text de-identification
system for vha clinical documents,” Journal of the American Medical
Informatics Association, vol. 20, no. 1, pp. 77–83, 2013.

