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ABSTRACT
The quantity of personal data gathered by service providers
via our daily activities continues to grow at a rapid pace.
The sharing, and the subsequent analysis of, such data can
support a wide range of activities, but concerns around pri-
vacy often prompt an organization to transform the data
to meet certain protection models (e.g., k-anonymity or ε-
differential privacy). These models, however, are based on
simplistic adversarial frameworks, which can lead to both
under- and over-protection. For instance, such models often
assume that an adversary attacks a protected record ex-
actly once. We introduce a principled approach to explicitly
model the attack process as a series of steps. Specifically,
we engineer a factored Markov decision process (FMDP)
to optimally plan an attack from the adversary’s perspec-
tive and assess the privacy risk accordingly. The FMDP
captures the uncertainty in the adversary’s belief (e.g., the
number of identified individuals that match the de-identified
data) and enables the analysis of various real world deter-
rence mechanisms beyond a traditional protection model,
such as a penalty for committing an attack. We present
an algorithm to solve the FMDP and illustrate its efficiency
by simulating an attack on publicly accessible U.S. census
records against a real identified resource of over 500,000 in-
dividuals in a voter registry. Our results demonstrate that
while traditional privacy models commonly expect an adver-
sary to attack exactly once per record, an optimal attack in
our model may involve exploiting none, one, or more indi-
viduals in the pool of candidates, depending on context.

Categories and Subject Descriptors
K.4.1 [Computing Milieux]: Computers and Society—
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1. INTRODUCTION
The quantity, quality, and diversity of personal data we

shed through our daily activities continues to grow at a rapid
pace. This data is collected by a wide range of organizations
to assist in the optimization and refinement of the services
they provide [1, 13]. At the same time, it is increasingly
recognized that personal data has substantial worth beyond
its initial use, such that it can be repurposed for a variety of
endeavors, ranging from transparency in operations to basic
research [23]. Despite the recognized value of personal data,
organizations worry about how best to protect the rights of
their constituents while maximizing the benefits [29].

One such right that our society tends to focus on is per-
sonal privacy. While privacy is an overloaded term that
takes on many different forms [25], one quantitative, broadly
concerned definition centers on the notion of anonymity.
There are various regulations that encourage organizations
to suppress identifying information from personal data prior
to its dissemination. Several examples of regulations with
explicit identity protections include the Privacy Rule of the
Health Insurance Portability and Accountability Act of 1996
(HIPAA) in the United States and the Data Protection Di-
rective in the European Union. However, there is growing
evidence that the resulting data is susceptible to intrusions
[19]. One major type of intrusion is the re-identification at-
tack, which happens when an adversary combines de-identified
records with external resources to determine the identity of
the corresponding individuals (e.g., [12, 18, 26, 27]).

While such attacks are possible, it is unclear if they are
probable. This is important because laws and regulations
do not require perfect protection, but rather that data be
shared in a manner that makes it difficult to ascertain an
individual’s identity. Organizations are thus afforded an
opportunity to achieve data protection using risk manage-
ment techniques, but they are hampered from accomplishing
this goal for several reasons. First, there is little historical
data on re-identification attacks [6]. This may be due to the
rareness of such events or that they transpired behind closed
doors. Second, prior investigations assume privacy risks can
only be managed by perturbing data according to a formal
model (e.g., k-anonymity [24] or ε-differential privacy [4]).
Yet, there are many other elements that contribute to pri-
vacy risks, such as deterrence mechanisms (e.g., data user
agreements, the time and effort to gather the external in-
formation necessary to compromise the data, or penalties



Figure 1: An example of a re-identification scenario.

for misusing data), that influence an adversary. Third, the
typical adversarial model invoked in this setting assumes an
attack is perpetrated in a pre-defined manner. For instance,
under a k-anonymity framework it is assumed the adversary
exploits an individual at random, with an expected success
rate of 1/k. Yet, an adversary could attempt to exploit all
of the individuals in this group in the hopes that one will be
the correct corresponding person. Under the ε-differential
privacy framework, the publisher limits the number of times
an adversary can query a statistical database to satisfy the
given privacy budget.

To overcome these limitations, we introduce a principled
approach to assess re-identification risk using a process frame-
work that incorporates data- and penalty-based disincen-
tives. This approach is based on a stochastic model, yielding
a quantitative evaluation of the re-identification risk.

1.1 An Orienting Example
For context, Figure 1 depicts an example of the type of

attack our re-identification risk framework is designed to
handle. Here, Bob corresponds to the de-identified data.
Now, there is a probability he is in the external dataset that
contains identifying information and a set of attributes in
common with the de-identified data. In the event the ad-
versary accesses the external dataset, he will find that the
record with a diagnosis of tuberculosis might correspond to
Alice, Bob or neither (because the corresponding individual
may not be in the dataset). The adversary will be suc-
cessful if he exploits Bob; however, it is possible the ad-
versary is not sufficiently motivated to start the attack and
the adversary may choose to terminate his attack at any
point in the process (because of insufficient expected pay-
offs). Our framework explicitly models the decisions the
adversary must make and computes the probability that the
adversary will reach a successful re-identification.

1.2 Contributions
The specific contributions of this paper include:
1. Re-identification Risk Model. This research pro-

poses a novel re-identification risk framework that formalizes
incentive and deterrence mechanisms (e.g., potential penal-
ties and information uncertainty) that are present in the real
world environments where a de-identified dataset is made
available. This framework explicitly models the adversary
as an optimal planning agent using a factored Markov de-
cision process (FMDP). Given that the state space of the
FMDP grows rapidly, we introduce a two-level linear pro-
gramming algorithm to efficiently solve it.

2. Case Study. We evaluate risk in the scenario where
an adversary attempts to leverage a public voter registry in
a specific U.S. State to attack de-identified Census records.
Under the traditional adversarial model, the adversary is
assumed to randomly choose an individual from the group
of indistinguishable individuals in the external dataset that
matches the targeted record under attack. However, our
findings illustrate that the adversary’s behavior is highly
dependent on the deterrence mechanism set in place. In
particular, if the adversary’s expectation of the probabil-
ity of being detected for each exploitation of an individual
remains constant across attempts and he will always be pe-
nalized if detected, he will choose to either attack 1) all the
individuals in the correspond group or 2) none of the indi-
viduals. This result illustrates how traditional beliefs about
risk can either underprotect or overprotect the data.

3. Sensitivity Analysis. We conduct a detailed sen-
sitivity analysis on the parameters of the model to illus-
trate how the environment and policy decisions can influ-
ence the adversary’s behavior. Specifically, we demonstrate
how changes in the costs in each stage of the attack, penalty-
based deterrence mechanism, and the probability of detec-
tion influences when the adversary will cease their attack.
Our result demonstrates that the adversary’s threshold is
highly dependent on the deterrence mechanisms that are in
place. This result is notable because it suggests that ad-
versaries may be sufficiently deterred with a small amount
of data manipulation, provided appropriate detection and
penalization policies are instantiated.

We stress that our framework focuses on the application
scenarios where record-level data needs to be shared. For ex-
ample, in health care research setting, data sets containing
patient information may need to be shared. In such scenar-
ios, generalizing the data may be acceptable (e.g., instead of
reporting exact birthday of individuals, we can only disclose
the birth year) but adding noise may not be acceptable due
to the semantic errors that may be introduced. Therefore,
our proposed approach can be seen as complementary to re-
cent developments in ε-differential privacy where synthetic
data sets could be generated for preserving privacy and it
is applicable for scenarios where differential privacy based
approaches are not appropriate.

The remainder of this paper is organized as follows. In
Section 2, we review related work on adversarial modeling
and re-identification risk assessment approaches. In Sec-
tion 3, we introduce the re-identification risk quantification
framework. In Section 4 and 5, we present the FMDP and al-
gorithms to solve it and compute the re-identification prob-
ability from the Markov process efficiently. In Section 6 and
7, we present an empirical analysis. In Section 8, we discuss
the limitations of this work and provide future directions.

2. RELATED WORK
To provide context for our study, we discuss research in

privacy preserving data publishing and adversarial modeling
areas with a focus on where our work diverges.

2.1 Data Privacy Views
There are many different views on what constitutes a

privacy violation when considering data publishing. These
views argue that privacy can be compromised when a record
is linked to the individual from whom it was derived (often
referred to as identity disclosure) [10], the inference of a



sensitive value associated with the corresponding individual
(often referred to as attribute disclosure) [16], the ability to
detect if someone is a member of a dataset (often referred
to as the presence/absence problem) [9, 20], or the degree
to which viewing an individual’s contribution to a dataset
permits an adversary to gain knowledge about them (the
basis of models like ε-differential privacy) [2, 5, 8].

In this research, we focus on the identity disclosure prob-
lem because this is the primary focus of current regulation.
We note, however, that our framework is applicable to any
of the above scenarios because we are not introducing a new
method for manipulating data. Rather, we are showing how
to reason about pressures (e.g., penalties for misuse) that
are beyond the scope of what such data manipulation tech-
niques offer.

2.2 Disclosure Risk Management
It has been suggested that assessing disclosure risk re-

quires a holistic modeling of different types of adversaries
[7]. Such models should account for the motivation, means,
opportunity cost, consequence of attempt, and likelihood of
success. In this vein, a recent study [17] presented the con-
cept of a data environment that is composed of data, agents
and infrastructure. However, such investigations have not
provided a formal approach to risk quantification that ac-
counts for the elements in the data environment. Rather,
existing disclosure risk measures mainly focus on the unique-
ness of records in the dataset and in the population. For
instance, three popular disclosure risk metrics (prosecutor,
journalist and marketer) [14] assume that the adversary is al-
ways motivated to attack and the extra information required
for re-identification is always available. As a consequence,
the risk level is only dependent on the data itself.

Our disclosure risk measure explicitly formalizes the three
elements of the data environment around the adversary’s de-
cision making. We note that there have been several other
investigations in applying game theoretic frameworks to an-
alyze the adversary’s best course of action and the corre-
sponding disclosure risk [28, 31]. For instance, the adversary
in Wan et al. [31] is formalized as an opponent of the data
publisher in a Stackelberg game. To maximize payout, the
adversary decides if they should attack by comparing the po-
tential gain against the cost of committing an attack. Yet,
this model oversimplifies the adversary’s decision process of
gathering, linking, and exploiting data. Moreover, in their
formalization, there were no explicitly modeled penalties for
detecting the misuse of the data.

To mitigate the disclosure risk, the publisher can adopt
various protection methods (e.g., randomization and gener-
alization) according to given formal protection models. To
apply these formal protection models in practice, a protec-
tion threshold (e.g., the k value for kanonymity [24]) needs
to be selected and supported by risk and utility analysis.
A method based on Pareto-optimality has been proposed to
find the solutions with an optimal utility at different lev-
els of k [3]. However, the risk metric used in such methods
to determine the threshold is based solely on the protected
data. By contrast, our framework can assist in determining
what the threshold should be based on both the data set
and other elements in the data environment.

2.3 Adversarial Modeling and MDPs
To the best of our knowledge, MDPs have not been used to

Figure 2: The re-identification attack process.

model adversaries in the privacy preserving data publication
setting. Yet it has been proven to be a useful tool in model-
ing adversary’s optimal planning in security problems. This
is because the MDP representation captures an adversary’s
uncertainty on the outcome of a security related action [15].
Similarly, the adversary focused on privacy also exhibits un-
certainty. For example, when the adversary chooses to ex-
ploit an individual, he is uncertain about whether or not
he will be detected and pulished. Also, before the adver-
sary chooses to access the external dataset, he may not be
certain about number of identified individuals to which the
de-identified record may be related. An important difference
between our adversarial model and the one in Letchford and
Vorobeychik [15] is that in the security scenario, the adver-
sary terminates once he is caught, whereas in our model, the
adversary may only pay a fine and continue to attack.

3. RE-IDENTIFICATION RISK QUANTIFI-
CATION FRAMEWORK

Our framework quantifies the re-identification risk of pub-
lishing each record in a de-identified dataset. We assume the
dataset is composed of person-level records in a relational
form. We define re-identification risk as the composite of
the probability that an adversary re-identifies a record and
the harm it causes:

risk = Preid × Lreid (1)

where Preid is the re-identification probability and Lreid is
the associated publisher loss. We assume Lreid is a prede-
fined input, and focus on Preid.

The re-identification probability is derived from the ad-
versary’s sequential decision process, outlined in Figure 2.
The adversary begins with a de-identified record r. The ad-
versary’s first decision is to access an external table De or
not. His second decision is whether to conduct a linkage at-
tack, which yields an equivalence group of records Ge. This
corresponds to the set of individuals with the same value
as the target’s published quasi-identifier (QI). At this point,
each individual α ∈ Ge has a probability that they actually
correspond to the targeted record r. This translates into
a probability that an attack (e.g., confirmation of the pa-
tient’s identity) on α will be successful. If the attack fails,
the adversary can choose to exploit another individual from
Ge. This process can repeat until the adversary decides to
stop or he exhausts all of the records in Ge.

There are several notable aspects of this attack process.
First, it should be recognized that this is a stochastic pro-
cess. For example, the adversary may not know if the in-
dividual to whom the target record corresponds is in De.
Therefore, the outcome of accessing the external dataset is



Figure 3: A general architecture of the re-
identification risk quantification framework.

uncertain. Furthermore, the result of exploiting an indi-
vidual is stochastic, with outcomes ranging from success to
failure to being detected and punished. A second notable
aspect of the attack process is that there is a cost and a
reward associated with each action, for instance, the reward
for a success, the cost of accessing De and the penalty if an
attack is detected all determine the adversary’s utility.

More precisely, we model the adversary as a planner us-
ing a factored Markov decision process (FMDP) [11]. In a
FMDP, a state of the world is characterized by a collection
of random variables (or factors). The adversary is modeled
as a rational agent computing an optimal policy; i.e., an
optimal action to choose in each state of the FMDP. Given
such a policy, we can compute risk according to Equation 1.

In Figure 3, we show the general architecture of the re-
identification risk quantification framework. The framework
is composed of three modules (the black rectangles in Figure
3): 1) the FMDP formalization of the adversary’s decision
process, 2) the FMDP solver, and 3) the re-identification
risk computation module. The FMDP formalization mod-
ule takes four inputs: i) the attack decision process, ii) the
de-identified data, iii) the external dataset profile, and iv)
the adversary’s profile. The factored MDP model is then
solved by the FMDP solver module to determine the adver-
sary’s optimal policy. Finally, the risk computation module
computes the quantified risk value given optimal attack pol-
icy and associated probability of successful re-identification
attack. In the following sections, we dive into the details of
each of the three modules.

4. RE-IDENTIFICATION AS AN FMDP
The FMDP model is a 4-tuple (X,A,R, P ), where X =
{X0, ..., Xm} is a finite set of random variables, each with a
finite domain. In this model, A is a finite set of actions; R
is the reward function R(x, a), representing the reward for
each action a taken in state X = x; and P is a Markovian
transition function P (X ′i|Xparent

i , a), which represents the
probability distribution of the state variable X ′i in the next
state given the value of a subset of state variables Xparent

i

and action a (Xparent
i is the set of variables that X ′i is de-

pendent on given the action is a). We denote the value of
a state variable Xi in state x as x[Xi]. We assume that the
FMDP has an infinite horizon, and time is exponentially
discounted with a discount factor γ.

4.1 State variables
As summarized in Table 1, the FMDP model is based on

eight state variables. Here, we take a moment to provide
intuition into each of these variables. First, Xt is a binary
variable that represents the termination of an attack. When
Xt = T (true), the corresponding state is absorbing, ef-

Table 1: The state variables of the FMDP model.
Variable Explanation
Xt, binary If T, attack is terminated
Xd, binary If T, exploit of an individual is detected
Xp, integer Number of previous exploits penalized
Xs, binary If T, target record r is successfully re-

identified
Xa, binary If T, external dataset De has been accessed
Xl, binary If T, target record r has been linked to the

external dataset De

Xg , integer The size of the equivalence group of target
record r in external dataset De

Xr, integer The remaining number of unexploited indi-
viduals in the equivalence group for record r
in external dataset De

Table 2: The actions of the FMDP model.
Action Explanation
terminate Abort the attack
access Access the external dataset De

link Link the de-identified record ri to the ex-
ternal dataset De

exploit Exploit a random individual in the equiv-
alence group of record r in the external
dataset De

fectively ending the decision process. Next, we assume the
existence of an attack detection mechanism, and the state of
detection is indicated by a binary variable Xd. The following
variable, Xs, indicates whether the exploit is successful (in
which case the adversary obtains a positive reward). The
next two variables are associated with data manipulation.
Xa is a binary indicator of whether the external dataset De

has been accessed, while Xl is a binary indicator of whether
it has been linked to the published target record r. Xp main-
tains the number of times the exploitation has been detected
and penalized. The final two variables, Xg and Xr keep
track of the size of the equivalence group and the remaining
unexploited individuals in the group. Thus, as the adversary
attempts (unsuccessful) attacks on matched records, Xr de-
creases while Xg remains constant. This is because the orig-
inal group size associated with linking is fixed. To keep our
presentation compact, we represent each state x as a vector
[x0, ..., xm] in the FMDP model, where xi denotes the value
of the ith variable in the list [Xt, Xd, Xp, Xs, Xa, Xl, Xg, Xr].

4.2 Action set
There are four classes of actions in our system, which are

summarized in Table 2. The adversary has the option of
aborting the attack at any time by choosing the terminate
action. The other three actions represent the adversary’s op-
eration in three different phases of the attack. The access
action represents the accessing of the external dataset De.
The link action represents the linking of the de-identified
record r to the external dataset De. The exploit action rep-
resents a potentially harmful exploitation of an individual
that is deemed to be related to the record r under attack.
The particular type of exploitation may differ under vari-
ous circumstances. For example, if the adversary’s goal is
to demonstrate the vulnerability of the system, the exploit
may be to prove they can contact the individual and con-
firm the record is really associated with them [30]. Or, the
adversary’s goal may be to conduct direct marketing to the
individual based on the sensitive information in the record
(e.g., for a particular pharmaceutical). Regardless, an ex-
ploit is assumed to be successful if it is conducted against
the individual to whom the record corresponds.



Figure 4: The dynamic Bayesian network (DBN) for
each action of our FMDP model.

4.3 Reward
Reward functions are determined by several factors: the

cost of taking an action, the loss to the adversary from detec-
tion (both negative rewards), and the gain from a successful
attack. We formally define the reward function as:

R(x, a) = Rg(x[Xs], x[Xt]) +Rp(x[Xd], x[Xp])− Ca (2)

where Ca is the cost of action a (denoted by Cd, Cc, and Ce

for access, link, and exploit actions, respectively). Ca = 0
for the terminate action. Rg(x[Xs], x[Xt]) represents the
gain from a succussful exploitation. Rg(x[Xs], x[Xt]) = G,
if Xs = T and Xt = F and 0 otherwise.

We assume there is a maximum number of times, nf , that
the adversary will be subject to a penalty (e.g., a fine for
law or contract violation) if he is detected. Note that this
permits an analysis on the special case of nf = 1, where
the adversary is only penalized once. This is notable be-
cause it represents the real scenario where a data user is
penalized for violating a contract, but is not prevented from
continuing to exploit the data they have already received.
We denote the cost related to the fine as Rp(x[Xd], x[Xp]).
Rp(x[Xd], x[Xp]) = −Cp, if Xd = T ∧Xp < nf and 0 other-
wise.

4.4 State transition dynamics
We use a dynamic Bayesian network (DBN) τa = 〈Ga, Pa〉

for each action a (except action terminate), as shown in Fig-
ure 4, to represent the transition function P (Xi|Xparent

i , a).
We denote the current state and the next state as x and x′,
respectively. If the action is to terminate, x′[Xt] = T .

If the action is to access, as the DBN shows in Figure 4(a),
there are 3 state variables that may change in the following
step: Xa, Xg and Xr. We highlight that if the external
dataset De has not yet been accessed (i.e., x[Xa] = F ),
the adversary’s belief of the equivalence group size in the
next state x′[Xg] is a probability distribution over a set of
values, represented as P (Gr,De). Our experiments simulate
P (Gr,De) under different levels of certainty and its influence
on the adversary’s behavior and re-identification risk.

In Figure 4(b), the link action sets x′[Xl] = T when
x[Xa] = T (i.e., external dataset is available for linkage).

The prerequisite condition for the exploit action is x[Xl] =
T , x[Xs] = F , and x[Xr] > 0. In other words, we can only
exploit a record if 1) the equivalence group is non-empty,
2) the dataset has been linked to the record, and 3) the
record has not already been re-identified. In this case, the
number of remaining candidates in the equivalence group is
decremented (x′[Xr] = x[Xr]− 1).

Moreover, the probability that the exploited individual
is associated with the record is the probability of select-

ing an individual at random from the set of individuals in
the population (with the same quasi-identifier) who have
not been exploited. The number of individuals with the
same quasi-identifier in the population who have not been
exploited is the sum of the number of individuals outside

(i.e.,
1−priorr,De
priorr,De

×x[Xg]) and inside (i.e.,x[Xr]) the external

dataset de. Thus, the success probability of an exploitation
can be formally represented as:

Psuc(x[Xg], x[Xr], priorr,De)

=
(1− priorr,De

priorr,De

× x[Xg] + x[Xr]
)−1 (3)

where priorr,De is the probability that the individual corre-
sponding to the data is in the external dataset De.
P (x′[Xd] = T ) (i.e., the probability of being caught) de-

noted as Pdet can be modeled in a number of ways. Since
the probability an exploit is detected is very likely to in-
crease with repeated attempts due to various factors (e.g.,
increased vigilance), we model the detection probability us-
ing a sigmoid function:

Pdet = (1 + e−(h0+h1×(x[Xg ]−x[Xr ])))−1 (4)

where x[Xg] − x[Xr] corresponds to the number of exploit
attempts the adversary has committed against records in
the equivalence group. Note that this formulation allows us
to model the special case, where the probability of detection
does not increase over time by setting h1 = 0.

Finally, regardless of the action, the transition of variable
Xt is determined as follows (see Figure 4(d)): x′[Xt] = T if
x[Xt] = T ∨ x[Xs] = T ∨ (x[Xl] = T ∧ x[Xr] = 0).

5. ALGORITHMS

5.1 Solving the MDP
Solving an infinite-horizon discounted MDP amounts to

computing an optimal policy, π(x), which prescribes an op-
timal action to take in each state [22]. Equivalently, it suf-
fices to compute a value function, V (x), which is the optimal
discounted sum of rewards of an optimal policy.

A number of methods exist for solving an MDP. Linear
programming (LP) is one such method, which computes the
value function, V (x), for every state x. An important limi-
tation of the standard methods, including LP, is scalability.
In particular, if we do not take advantage of problem struc-
ture, the runtime is polynomial in the number of states,
which itself grows exponentially in the number of state vari-
ables. Approaches exist that leverage the structure of the
factored MDP, but they are approximate, and require the
pre-specification of a fixed set of basis functions over the
state space. Next, we present a special-purpose method,
which we call Two-Level LP, that takes advantage of our
problem structure (including the factored state) and reports
an exact answer.

5.1.1 Two-level Linear Programming
We designed the Two-level LP algorithm under the princi-

ple of removing all the “well-known” parts from the FMDP
structure to save space and runtime. The algorithm con-
structs a two-level structure from the state space. The states
in the FMDP model form a sink cluster sub-structure, which
satisfies the following properties: a) there is no outbound
and b) there is only one inbound state (i.e., xstart has only



one inbound edge). Based on the property of the FMDP,
each sink cluster can be solved independently. The bottom-
level of the Two-Level LP algorithm solves a LP and stores
the value of the state xstart for each sink cluster. The top-
level algorithm then constructs and solves a LP of the entire
state space by replacing each sink state with its correspond-
ing xstart and assigns the pre-computed V (xstart) to it.

Specifically, each sink cluster contains the descendant states
of a state xstart in which the adversary has taken the ac-
tion of access and link, but has not yet started exploitation,
i.e., xstart = [F, F, 0, F, T, T, si, si], si ∈ (0,max(Gr,De)).
Given two different group sizes s1 and s2, the two sink
clusters with xstart = [F, F, 0, F, T, T, s1, s1] and xstart =
[F, F, 0, F, T, T, s2, s2] do not overlap because the value Xg

remains constant when Xa = T and Xl = T . The resulting
values of all the xstart states are used in the top-level LP to
solve the values for the remaining states, such as the state
in which the adversary is attempting to access the external
dataset (i.e., x = [F, F, 0, F, F, F, 0, 0)]).

We make two performance improvements for Two-Level
LP. First, we introduce a pruning strategy which leverages
the fact that the value of the starting states for each cluster
(i.e., V (xstart = [F, F, 0, F, T, T, s, s])) decreases as the size
of the equivalence group Xg = s increases. We omit the
proof of this property due to brevity.

Thus, we sort the sink cluster by the value of xstart[Xg]
in ascending order. Specifically, if V (xstart) = 0 given
xstart[Xg] = s, then all of the sink clusters with xstart[Xg] >
s will be pruned. Second, we use a result caching strategy.
In doing so, the result from the bottom-level LP is cached
and reused with multiple records. This happens when there
is an overlap in the adversary’s belief of the probability dis-
tribution interval of the equivalence group size Xg.

5.2 Computing Re-identification Probability
The re-identification probability Preid is the sum of the

probability of reaching each of the states with x[Xs] = T
and x[Xt] = F in 1 to tmax time steps. Formally, Preid is
computed as:

Preid =

t=tmax∑
t=0

∑
x∈xsuc

M t[x0, x] (5)

In equation 5, x0 = [F, F, 0, F, F, F, 0, 0] represents the state
in which the adversary has not accessed the external dataset
yet, xsuc is the set of states with x[Xs] = T and x[Xt] = F ,
x is an arbitrary state. M is the state transition N × N
matrix of a Markov chain, where N is the number of states.

The state transition matrix M is obtained by replacing the
action a in the transition dynamics function of the FMDP
with policy(x), i.e., P (X ′i|Xparent

i , policy(x)). However, there
is one exception. Given the current state is x0, in the FMDP
model, x′[Xg] is a probability distribution over a range of
values due to the uncertainty of the adversary’s belief, while,
in the risk computation Markov chain, P (x′[Xg] = gr,De) =
1, gr,De is the actual group size in De. This is because
the Markov chain already embed’s the adversary’s optimal
policy, and consequently the adversary’s belief in the group
size no longer matters. Instead, what matters is the actual
group size. We assume that gr,De is an input to the risk
framework.

The value tmax is the maximum number of time steps it
takes for all the states to transit into a state where Xt =
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Figure 5: Runtime (log10) of the FMDP solving al-
gorithms for a dataset of 5000 de-identified records.

T (i.e., an absorbing sink state). Formally: ∃tmax > 0
∀xi, xj ∈ xi, i ∈ [0, N ], if xj [Xt] 6= 0,M tmax [xi, xj ] = 0.

6. EXPERIMENTS

6.1 Dataset
Our experiments make use of three resources. First, we

use the freely available North Carolina voter registration
(NCVR) list [21] as the identified external dataset. This
consists of 6,018,999 records without missing values over
18 fields. These include explicit identifiers (e.g., personal
name and phone number), as well as quasi-identifiers (e.g.,
age, gender, race, and ethnic group). For the purposes of
this study, we restricted the dataset to a set of four quasi-
identifying attributes, {Age, Race, Gender, 5-Digit ZIP Code}.

Second, we use the Adult dataset from the UCI Machine
Learning Repository, as the de-identified dataset. This con-
sists of 32,561 records with 14 fields each, based on a sample
of the U.S. Census, without missing values. This dataset
contains Age, Race, and Gender, but not 5-Digit ZIP Code.
As such, for each record in the Adult dataset, we synthesize
and append a 5-digit NC ZIP code based on the population
distribution in the US Census Bureau’s 2010 Census Tables
PCT12A-G. We also replaced a topcoded age value [90+] by
a random value in the range of [90, 120].

Third, we assume that both the de-identified and identi-
fied datasets are sampled from the entire population of NC.
In this case, it should be noted that the total size of the NC
population, according to the census is 9,553,967.

6.2 Equivalence Group Size Distribution
In the experiments, the probability distribution of the

value Xg after the adversary takes the action to access the
dataset P (Gr,De) is derived from the adversary’s knowledge
about the external dataset De or the population statistics.
Here, we consider two scenarios. In the first scenario the
adversary knows the target’s equivalence group size when
starting the attack. Specifically, P (Gr,De = gr,De) = 1. We
refer to this scenario as the known group model.

However, the adversary may not have such knowledge be-
fore accessing De. In this case, we assume the adversary
knows only the total size of the external dataset, n, and the
probability density of the target’s record, i.e., the joint prob-
ability of the target’s quasi-identifying values P (r[QI]), in
the population. Assuming that the external dataset is sam-
pled uniformly at random from the population, P (Gr,De)
can be represented as a binomial distribution defined in
Equation 6:

P (Gr,De = k) = B(k, n, P (r[QI])) (6)

We refer to this mechanism as the unknown group model.
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Figure 6: The equivalence group size for the
target record in the NCVR dataset and the re-
identification risk under the known group scenario.

7. RESULTS

7.1 Performance Analysis
We evaluated the runtime of the framework with 5000 ran-

domly selected Adult records. In this analysis, we consider
the unknown group scenario with a P (Gr,De) computed as
Equation 6 in which the size of the external dataset is set
to 3 different values: 5K, 50K, and 500K. We present the
result of the unknown group scenario because the known
group scenario yield FMDP with constant size state space,
while unknown group scenario leads to increasing state space
when the external dataset size n increases simply because of
the interval of P (Gr,De) increase with n. The detection and
penalty mechanism is set to h0 = −4.59, h1 = ∗, nf = 1 (i.e.,
penalize only once and the probability of detection is 0.01
based on equation 4). The other parameters of the model
were set to priorr,De = 0.63, Cd = 100, Ce = 10, G = 8000
and Cp = 10000.

The algorithms were implemented in Python and all ex-
periments were run on an Ubuntu server with 24 Intel(R)
Xeon(R) CPUs at 2.4 GHz and 64 GB of RAM. The LP
solver was the IBM ILOG CPLEX optimizer.

Figure 5 reports the runtime for the LP and Two-level
LP algorithms. It can be seen that, as expected, the Two-
level LP is always faster than the standard LP algorithm.
The difference in speed is accentuated as the size of the
external dataset grows. By the time there are 500K records
in the external dataset, the runtime of the Two-level LP is
approximately 21x faster (616 seconds vs. 13,444 seconds).

7.2 Case study
To perform a case study, we assume the Adult and NCVR

records are random samples of the NC population. Thus,
the prior probability that the individual corresponding to
an Adult record is in the NCVR is the sample ratio, or
priorr,De = 6, 018, 999/9, 553, 967 = 0.63. The NCVR data
is free; however, considering the effort to obtain it, we set
the cost of accessing the external dataset Cd to $100.

The cost to exploit, gain and penalty values were set to
Ce = $10, G = $8000 and Cp = $10000 for each record, re-
spectively. We acknowledge these values may vary in prac-
tice. The goal is to simulate a case in which the adversary
will attack at least a subset of the records. This allows us
to examine how different deterrence mechanisms and un-
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Figure 7: The equivalence group size of of the target
record in the NCVR dataset and the adversary’s
expected payoff under the known group scenario.

0 10 20 30 40 50

Target Record Equivalence Group Size in NCVR

−2

0

2

4

6

8

10

12

14

M
ax

im
al

N
um

be
r

of
In

di
vi

du
al

s
E

xp
lo

it
ed

B
ef

or
e

Te
rm

in
at

io
n

h1 = 0.18, nf = ∞

Figure 8: The size of the equivalence group of the
target record in the NCVR dataset and the actual
number of individuals the adversary exploits before
terminating under the known group scenario.

certainty about the equivalence in the external datasets af-
fects the adversary’s behavior and the re-identification risk.
Therefore, these parameters are selected from a range in
which the adversary will attack some of the records.

7.2.1 Known Group Model
We compare the known group model to the risk model in

[31]. This is the only available model for re-identification
based on an adversary’s optimal decision. In the baseline,
the adversary makes a single decision on when to attack
based on the total payoff:

Payoff baseline = G ∗ (
priorr,De

Gr,De

)− pdet ∗ Cp − Cd − Cl − Ce

(7)
If Payoff baseline > 0, the adversary exploits a random in-
dividual and the risk of re-identification is priorr,De/Gr,De .
Otherwise, the risk is 0. The FMDP is configured under
three detection and penalty settings: a) a constant detec-
tion probability with repeated penalties (i.e., h1 = 0 and
nf = ∞), b) a one-time penalty (i.e., h1 = ∗ and nf = 1)1

and c) an increasing rate of detection with repeated penal-
ties (i.e., h1 = 0.18 and nf = ∞). In each setting, we set
h0 = −4.59. This yields a 0.01 detection rate for the first
exploit, an increase to 0.012 for the next exploit, and so on.

The results are illustrated in Figure 6. There are three
notable findings to highlight.

1The ∗ indicates that h1 can be anything because only a
single penalty is assigned.



Finding 1: The baseline risk never exceeds the
FMDP models. This is because the baseline assumes that
the adversary can only select one random individual, which
is suboptimal. Thus, as can be seen in Figure 7, the baseline
adversary’s expected value drops at a faster rate than the
adversary who acts according to the FMDP. Moreover, the
adversary’s success rate is also lower for the baseline. This is
because the adversary only exploits one random individual
from the equivalence group. This indicates that the baseline
model often underestimates the re-identification risk.

Finding 2: When the detection probability is con-
stant (i.e., h1 = 0) and there is no upper bound on
the number of times a penalty is levied on the adver-
sary (i.e., nf = ∞), the adversary either exploits 1)
all records in the equivalence group or 2) no records.

Finding 3: When the probability of detection grows
with repeated attempts (i.e., h1 > 0) or there is an
upper bound on the number of times a penalty is
levied on the adversary (i.e., nf is a finite value),
the adversary exploits a subset of the equivalence
group. In the scenario represented by Finding 2, the ad-
versary chooses not to issue an attack when the equivalence
group size is ≥ a threshold k, but the adversary exploits all
the individuals in the equivalence group otherwise. Thus,
the re-identification risk is either equal to the prior prob-
ability priorr,De or 0. This is because when the optimal
action is to attack one individual in the NCVR equivalence
group the subsequent optimal action is always to continue
to exploit each of the remaining individuals provided that
each exploitation has the same probability of being detected
and the adversary will always be fined if detected.2

In the scenario of Finding 3, the adversary may terminate
the attack before exhausting the candidates in the equiva-
lence group. Thus, the risk can be any value between 0 and
the prior probability priorr,De . This is due to two possible
reasons. First, if h1 > 0, both the likelihood of detection
and a successful re-identification are increasing when more
individuals are exploited. Thus, the adversary stops when
the increment in the expected penalty exceeds the increment
in the expected payout, which can happen before the adver-
sary exhausts all the candidates. Second, if nf is finite, and
the adversary was not detected in the previous exploitations,
the expected payout can decrease when the number of the
remaining cadidates reduces.

Similar to Finding 2, if the group size is < k, the adversary
exploits all the individuals in the equivalence group. By
contrast, if the group size is ≥ k′, the adversary stops issuing
an attack. For the group size in the range of (k, k′), the
adversary’s optimal action is to stop before reaching the last
candidate in the group. The actual number of candidates the
adversary will exploit before termination is shown in Figure
8. In this case, k = 14 and k′ = 29.

These two findings are contradictory to what is expected
by the baseline model. In particular, the records with equiv-
alence group size< k all have the same level of risk according
to the FMDP model, while the records with smaller equiv-
alence groups have more risk than those with larger equiva-
lence groups according to the baseline model. The indication
of this finding from the data protection perspective is that
applying mechanisms, such as generalization, to increase the
equivalence group size can only effectively reduce risk if the

2We omit a proof of this claim due to brevity, but will make
it available in a longer technical report upon acceptance.
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Figure 9: The equivalence group size, population
probability density and the re-identification risk of
the record with inconsistent risk values in the known
and unknown group scenarios (nf = 1).

equivalence group size ≥ k. In other words, increasing the
equivalence group size to any value < k will only harm the
utility of the data without reducing the risk.

7.2.2 Unknown group Model
The FMDP enables us to evaluate risk when the adversary

is uncertain in the equivalence group size; i.e., the unknown
group scenario. We assume that the adversary’s belief of the
group size is as in equation 6 with n = 6018999, with pr[QI]

equal to the probability density of the corresponding target
record in the NC census population. The other parameters
are the same as defined in the known group model. Our
result illustrates the following findings.

Finding 4: The unknown group scenario can yield
lower risk than the known group scenario.

Finding 5: The unknown group scenario can yield
higher risk than the known group scenario. These
findings illustrate that uncertainty in the group size can
change the action of the adversary. To make this obser-
vation more concrete, Figure 9 depicts the risk for the 1920
records that have exhibited different risk scores. 1118 of
these records (or 58%) have a risk of 0.63 under the known
group scenario and 0 under the unknown group scenario.
The remaining 802 (or 42%) records have the exact opposite
result. The former is due to the fact that the adversary un-
derestimates the payoff by using the probability distribution
of the equivalence group size. As a result, the adversary does
not access De, while the actual group size is < the threshold
k = 48 and in the known group scenario the adversary will
access De and attack. The latter is, on the other hand, due
to adversary’s overestimation of the expected payoff based
on their inaccurate belief about the equivalence group size.
These cases are counterintuitive because one may argue that
even if the adversary decides to access De, he or she will not
exploit and there is no risk because the actual equivalence
group size is ≥ k = 48. However, this is not always true be-
cause after the adversary obtains De, the cost Cd (i.e., the
cost of accessing the external dataset) became a sunk cost.
As a consequence, the payoff is computed without consider-
ing Cd and the threshold the adversary can tolerate increases



from 48 to 51. If the actual equivalence group size is between
the two thresholds, the adversary with less knowledge (i.e.,
in the unknown group scenario) may be able to cause greater
risk, even though the adversary does not necessarily obtain
a higher payoff than the known group adversary.

Records resulting in different risk levels in the known and
unknown group scenarios are not very common in this ex-
periment setting. A majority of the records lead to the same
risk (94%, or 30641 in total). The is due primarily to the
fact that this analysis is dominated by records whose cor-
responding equivalence group size is larger than 55. Specif-
ically, 64%, or 20891 in total, satisfy this situation. This
is notable because, even if a positive payoff expected from
P (Gr,De) leads the unknown group adversary to access the
external dataset, the adversary never chooses to exploit such
records, yielding a risk of 0.

7.3 Sensitivity Analysis
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Figure 10: Sensitivity analysis on group size thresh-
old (k) as a function of (a) external dataset cost Ca;
(b) exploit cost Ce; (c) Penalty; and (d) detection
probability Pdet.

In this section, we investigate how the deterrence param-
eters influence the threshold k of the size of the equivalence
group when the adversary walks away, such that the risk is 0
when equivalence group size is ≥ k under the three scenarios
studied above. For this analysis, we assume a known group
scenario and both the de-identified and external datasets
cover the entire population, such that priorr,De = 1. We
vary 1) the cost to access data, 2) the cost to exploit the tar-
geted individual, 3) the penalty levied when re-identification
attempts are detected, and 4) the detection probability. In
the analysis, we vary one variable at a time while holding
all other variables constant to: Cp = $20000, G = $1000,
Ce = $10, Cl = $0, Ca = $100.

The result is unsurprising, but notable. Specifically, as
illustrated in Figure 10, as the deterrence mechanism is
ramped up, the expected payout is lower and the adver-
sary tolerates less risk. For example, when the penalty is
set to $10,000, the adversary always attacks when the group
size is smaller than 9 individuals. By the time the penalty
is raised to $50000, the adversary will only risk an attack if
there is one individual in the group. This result clearly indi-
cates that penalties and costs for access to data can quickly
deter an adversary from committing an attack.

8. DISCUSSION AND CONCLUSIONS
This research provides a formal process-based approach to

characterize the privacy risks for published data and opens
a novel direction in the field of data privacy. It also in-
troduces a scalable algorithm based on linear programming
to solve the attacker’s optimal planning problem. A core
contribution of this approach is that it accounts for deter-
rence mechanisms beyond data manipulation methods. We
demonstrated the feasibility through a case study in a real
world scenario, where an adversary uses a publicly available
population registry (with over 6,000,000 individuals) to at-
tack a record subject to a data obfuscation mechanism.

Our results reveal that a broadly accepted adversarial
model in which the adversary will randomly choose one indi-
vidual that matches the record to attack can be suboptimal,
and an adversary may try and exploit every individual in the
corresponding equivalence class. In addition to penalization
mechanism, our result demonstrated that the adversary’s
optimal decision depends on the information about the ex-
ternal resources they may use (e.g., voter registration lists)
before they access them to mount an attack. This work
provides strong evidence that the risk to such systems in
the real world is heavily dependent on the amount of effort
an adversary needs to exert and the expected payout they
can receive based on their attack. This investigation further
provides intuition into how data perturbation techniques can
be complemented by alternative disincentive strategies (e.g.,
charging for access to data or levying fines for malicious be-
havior) to lower the risk inherent in data sharing.

Our approach has several limitations which can provide
directions for future research in this area. First, if such a
risk estimation procedure is to be put into practice, policy
makers will need information about the nature of deterrence
mechanisms, the existence and costs of external data re-
sources, as well as the adversary’s potential gain. Moreover,
our work shows that knowing the prior probability that the
corresponding target is in an external resource is critical to
the model. Our model assumes that the external dataset is
a random sample from a large population that also covers
the protected data. Such information is not always read-
ily available to the data publisher when evaluating risk. In
the event the publisher believes they could underestimate
such parameters, they may lobby for larger fines on misuse,
thus deterring users with legitimate interests from accessing
their resource. Thus, a future direction for research is in
the development of approaches to estimate such parameters
of the attack process. This may be possible, for example,
by building a model for the detection rate based on existing
detection mechanisms.

Second, there are limitations in the scope of the adver-
sary’s goals. Consider, the process model assumed an ad-
versary targets only one record in the protected dataset at a
time. It also assumes that the adversary has access to only
one external resource to mount an attack. Perhaps more
significantly, we assume that the success of an exploit will
be confirmed. Yet, certain adversaries may be interested in
multiple records in the protected data (or even the entire
dataset) and may have access to multiple resources. Re-
moving any of these assumptions will lead to an increase in
the complexity of the adversary’s decision problem. We note
that the process model can be extended to account for these
scenarios by introducing more state variables and actions.
However, this will lead to an explosion in the state space.



Therefore, a future direction of research is to generalize the
FMDP model while improving the scalability of the solver
algorithm.

Finally, our empirical analysis was conducted on a specific
type of data, namely the demographic information within
the publicly available population registry. Such a process-
based approach to privacy risk assessments is applicable to
other types of data where the attack is not a linkage-based
exploit, but focuses rather on other definitions of privacy,
such as inferential disclosure. The adaptation of such a tech-
nique will depend on the extent to which the adversary’s
process for realizing their exploit can be represented.
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