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Abstract— Monitoring large areas using sensors is fundamen-
tal in a number of applications, including electric power grid,
traffic networks, and sensor-based pollution control systems.
However, the number of sensors that can be deployed is
often limited by financial or technological constraints. This
problem is further complicated by the presence of strategic
adversaries, who may disable some of the deployed sensors
in order to impair the operator’s ability to make predictions.
Assuming that the operator employs a Gaussian-process-based
regression model, we formulate the problem of attack-resilient
sensor placement as the problem of selecting a subset from
a set of possible observations, with the goal of minimizing
the uncertainty of predictions. We show that both finding an
optimal resilient subset and finding an optimal attack against a
given subset are NP-hard problems. Since both the design and
the attack problems are computationally complex, we propose
efficient heuristic algorithms for solving them and present
theoretical approximability results. Finally, we show that the
proposed algorithms perform exceptionally well in practice
using numerical results based on real-world datasets.

I. INTRODUCTION

Our ability to dynamically control any system hinges on
having accurate information about its evolving state, obtained
through persistent system monitoring. In many applications,
such as electric power grids or traffic networks, the system to
be monitored can extend over a vast area, with many possible
points of observation. Although these areas can be very large,
the number of sensors that can be deployed is limited by
financial and/or technological constraints. Consequently, we
are faced with a problem of finding locations for placing a
limited number of sensors so as to minimize our posterior
uncertainty about the quantities being monitored. Due to
its importance, this problem of sensor placement (or, more
generally, observation/feature selection) and associated pre-
dictions about unobserved state variables has received con-
siderable attention, particularly when variables of interest are
modeled using a Gaussian process regression. For example,
Gaussian process regression models have been successfully
applied to a wide range of problem, such as traffic volume
forecasting [23], [5], spatial modeling of extreme snow
depth [2], wind power forecasting [13], estimation of water
chlorophyll concentration [1], and spectrum sensing [18].

Despite considerable attention, however, little past re-
search has investigated the problem of sensor placement or
observation selection in adversarial settings. For example,
while this problem was briefly considered by Krause et
al. [15], their approach requires one to define different
adversarial objectives for every possible attack, clearly not a
scalable proposition as we increase the attacker’s capabilities
(that is, increase the number of sensors that can be attacked).

In many applications, however, the sensors are not physically
well protected, since they can be widely geographically dis-
tributed. Moreover, cyber attacks on sensors may circumvent
physical security, particularly since in many applications
sensor readings are transmitted over the internet [20], [10].
Hence, an adversary may mount a denial-of-service (DoS)
attack, such as wireless jamming, or flooding the VPN’s
external interface to disrupt SCADA communications in
the electric power grid [10], potentially causing significant
financial losses or even physical damage.

We address the problem of finding a sensor deployment
that is resilient against denial-of-service attacks on a subset
of sensors. More formally, we consider the problem of
finding an observation selection scheme which minimizes un-
certainty, accounting for a DoS attack on a subset of sensors.
We show that, in general, both the problem of optimal DoS
attack and that of resilient observation selection are NP-hard.
On the positive side, we develop efficient approximation
algorithms for both problems, and exhibit approximability
guarantees for the resilient observation selection algorithm.
Additionally, we develop efficient optimal attack and resilient
observation selection algorithms in the special case when
the covariance matrix among variables has a tree structure.
Clearly, by selecting a subset of observations that differs
from that optimal in the “no-attack” case, we may increase
resilience, but at the cost of increased uncertainty about
unobserved variables under normal system operations. We
use real data to demonstrate that the increase in uncertainty
under normal operations due to resilient observation selection
scheme is quite small, whereas the resulting system is
substantially more resilient to attacks than the baseline.

The remainder of this paper is organized as follows. In
Section II, we give a brief summary of related work. In
Section III, we formulate the resilient observation selection
problem. In Section IV, we present theoretical results. In Sec-
tion V, we present numerical results. Finally, in Section VI,
we conclude the paper.

II. RELATED WORK

A. Observation Selection

The problem of selecting a subset of observation variables
has been studied in the context of both linear regression and
Gaussian process regression. Here, we summarize the most
relevant previous work.

Das and Kempe study the problem of selecting a subset
of random variables to observe from a large set, in order
to obtain the best linear predictor of another variable of
interest. In [6], they introduce exact and approximation



algorithms for several special cases of practical interest. In
[7], they obtain strong approximation guarantees on widely-
used greedy heuristics by introducing the submodularity
ratio, which captures how close to submodular an objective
function is.

Krause et al. study the problem of selecting observa-
tions which perform well when evaluated with an objective
function chosen by an adversary [14], [15]. They present
an algorithm, called the Submodular Saturation algorithm,
which has strong theoretical approximation guarantees when
the objective functions exhibit submodularity.

Krause et al. also study the problem in non-adversarial
settings in [16], where they consider the problem of maxi-
mizing the mutual information between the chosen variables
and the variables that are not selected. The authors show that
the problem is NP-hard, propose efficient greedy heuristics,
and finally consider random node failures and uncertainties
in the model.

B. Sensor Placement

The problem of sensor placement has been extensively
studied, especially in the context of sensor networks (for a
comprehensive review of the literature, we refer the reader to
the survey of Younis and Akkaya [24]). However, most of the
previous work on sensor placement focuses primarily on area
coverage and network connectivity. For example, Dhillon
and Chakrabarty [9] propose two algorithms for the efficient
placement of sensors. These algorithms maximize either the
average or the minimum coverage of grid points, respectively,
under the constraints of uncertain sensor readings and terrain
properties. Wang et al. [21] consider the problem of placing
the least number of sensors in a field to achieve sensing
coverage and network connectivity. Kar and Banerjee [12]
address the problem of optimal sensor placement to ensure
connected coverage, by considering two scenarios: providing
connected coverage for a certain set of regions and for a
given set of points.

Nevertheless, a number of papers have considered resilient
node placement; however, most of these are either concerned
with tolerance against random faults or with resilient network
structures. For example, Ishizuka and Aida [11] study the
tolerance of various non-deterministic node placement strate-
gies against non-adversarial battery exhaustion and random
failures; however, the authors do not consider deliberate
attacks, which cause worst-case failures. As another example,
Bredin et al. [3] consider the problem of deploying a sensor
network to guarantee a specified level of k-connectivity.
Such approaches, which consider the connectivity of the
network, are complementary to our work, which focuses on
the information gathered by the sensors.

Finally, several papers are concerned with sensor place-
ment for specific applications. For example, Carr et al. [4]
study the problem of placing sensors in municipal water
networks to detect contaminants. The authors formulate
a series of sensor placement problems as mixed-integer
programs, whose objective coefficients are not known with
certainty. Watson et al. [22] consider a similar problem,

sensor placement in contaminant warning systems for water
distribution networks. They introduce several robust formu-
lations of the sensor placement problem, which focus strictly
on a subset of high-impact contamination events, and propose
both integer programs and efficient heuristics for solving
them. As another example, Meo and Zumpano [17] study the
problem of placing sensors on a bridge structure with the aim
of maximizing the data information. The authors consider
various placement techniques, such as techniques based on
maximizing the Fisher information matrix; however, they do
not consider resilience to attacks.

III. PROBLEM FORMULATION

NOTATION

Let σ2
Y denote the variance of a random variable Y , σ2

Y |S
denote the variance of a random variable Y given the values
of variables in a set S, ΣYX denote the covariance between
random variables Y and X , ΣST denote the submatrix
formed by the rows in set S and the columns in set T .

A. Gaussian Process Regression

Here, we summarize the basics of Gaussian process regres-
sion that are necessary for our paper. For a comprehensive
discussion of Gaussian processes in machine learning, we
refer the reader to [19].

We model both the possible observations and the predictor
as random variables, whose joint distribution is a Gaussian
process. As an example, in the traffic monitoring application,
each random variable could represent the traffic density on a
given road segment. Then, given observed values xS at set
S, the predictor variable Y follows a Gaussian distribution
N
(
µY |S , σ

2
Y |S

)
, where

µY |S = µY + ΣYSΣ
−1
SS (xS − µS) (1)

σ2
Y |S = σ2

Y −ΣYSΣ
−1
SSΣSY , (2)

where Σ is the (prior) covariance matrix of all the variables,
while µY and µS are the (prior) means of the variables.

The value of σ2
Y |S , which we will call the posterior

variance of Y , is of interest to us for multiple reasons. First,
suppose that we have to predict the value of Y based on
observations at S such that we minimize the mean squared
error of the prediction. Then, it is easy to see that the
error is minimized at µY |S and the minimal error value
is σ2

Y |S . Second, suppose that we are interested in the
uncertainty of Y given observations at S, which we measure
using entropy. Then, it is well-known that this entropy is
logarithmically proportional to σ2

Y |S ; more specifically, its

value is 1
2 ln

(
2πeσ2

Y |S

)
.

Finally, observe that the value of posterior variance σ2
Y |S

depends only on the set of observations S and the (prior)
covariances Σ, but not on the actual observed values xS .
This observation is important, since it will allow us to define
the objective of the observation selection problem as a set
function of S parametrized by Σ.



B. Observation Selection

We now introduce the observation selection problem,
which was studied in [6] and [7].1 Note that we will some-
times refer to this problem as the non-resilient observation
selection problem to emphasize the distinction between this
problem and the resilient observation selection problem,
which we will define in the following section.

In the observation selection problem, our goal is to select
an N -sized set of observations S from a set of possible
observations V so that the posterior variance of a target
variable Y that we wish to predict is minimized. Formally,
given N , V , and Y , we have to find

argmin
S⊆V:|S|=N

σ2
Y |S . (3)

To study the computational complexity of the observation
selection problem, we can reformulate it as a decision
problem as follows.

Definition 1: Observation Selection Problem [decision
version]: Given a predictor variable Y , a set of variables
V , the covariance matrix Σ of these variables, a selection
size N ∈ N+, and a threshold variance T ∈ R+, determine
if

T ≥ min
S⊆V:|S|=N

σ2
Y |S . (4)

Unfortunately, the observation selection problem is NP-
hard in general [6]. This is true even for such restricted cases
as deciding whether zero posterior variance is attainable [8].

C. Resilient Observation Selection

In this paper, we study the problem of resilient observation
selection in adversarial environments. More specifically, our
goal is to find efficient algorithms for selecting a set of
observations that minimize the posterior variance of the
predictor variable, given that some of the observations will
be removed by a strategic adversary.

We assume that a set of possible observations (formally,
a set of random variables) are given to a designer, who can
select N of these. In practice, the set of possible observations
can model, for example, the set of possible locations at
which sensors can be placed, and the cardinality constraint
is due to budget or technological constraints. We assume
that a strategic adversary can remove K of the selected
observations.2 In practice, removing a node can model all
forms of denial-of-service type attacks, such as physical
destruction, wireless jamming, or battery exhaustion, and the
cardinality constraint is again due to budget or technological
constraints, now on the adversary. The goals of the designer
and the adversary are opposed: the designer’s goal is to
minimize the posterior variance of the predictor variable
given the set of selected but non-removed observations, while
the adversary’s goal is to maximize the same value.

1Note that, in [6] and [7], the problem was motivated by a linear
regression based on features that were modeled as random variables.

2Note that we can assume K < N . Otherwise, the problem is trivial.

Formally, the resilient observation selection problem is
defined as

argmin
S⊆V:|S|=N

(
max

A⊆S:|A|=K
σ2
Y |(S\A)

)
, (5)

where V is the set of possible observations, N is the
number of observations selected, and K is the number of
observations removed by the adversary. Notice that the order
of argmin and max in the above formulation models the
order in which the designer and the adversary make their
choices. Specifically, we assume that the defender moves
first, placing the sensors S, while the adversary subsequently
observes the placement of sensors and chooses to remove a
subset A of them (e.g., through a denial-of-service attack).

IV. ANALYSIS

In this section, we present computational complexity re-
sults, propose efficient heuristic and approximation algo-
rithms, and study a special case of the resilient selection
problem. First, in Section IV-A, we consider the subproblem
of finding an optimal attack against a given selection. Then,
in Section IV-B, we study the problem of resilient observa-
tion selection. Finally, in Section IV-C, we focus on a special
case of the problem, for which the optimal solution can be
found in polynomial time.

A. Attack Problem for a Given Selection

We begin our analysis with studying the problem faced
by the adversary: finding an optimal attack against a given
selection of observations. This problem is of interest to us
because finding an optimal attack is necessary to quantifying
the resilience of a given observation subset. Formally, for a
given selection S, the attacker aims to solve

max
A⊆S:|A|=K

σ2
Y |(S\A) . (6)

To study the computational complexity of this problem, we
define a decision version of it as follows.

Definition 2: Optimal Attack Problem [decision version]:
Given a predictor variable Y , a set of variables S, the
covariance matrix Σ of these variables, an attack size K ∈ N,
and a threshold variance T ∈ R+, determine if

T ≤ max
A⊆S:|A|=K

σ2
Y |(S\A) . (7)

The following theorem shows that, in general, finding an
optimal attack is a computationally challenging problem.

Theorem 1: The Optimal Attack Problem is NP-hard.
Proof: (Sketch.) We show NP-hardness by reducing a

well-known NP-hard problem, the Maximum Clique on Reg-
ular Graphs (MAXCLIQ), to the Optimal Attack Problem.
The MAXCLIQ problem is defined as follows.

Definition 3: Maximum Clique on Regular Graphs: Given
an undirected regular graph G = (V,E), and a positive
integer M , determine if G contains an M -clique (i.e., a
subset W of the nodes V such that |W | = M and, for each
pair u, v ∈W , (u, v) ∈ E).

The reduction is as follows:



• For each e ∈ E, there is a random variable with standard
Gaussian distribution. These variables are independent
of each other.

• For each v ∈ V , there is a random variable whose
value is equal to the sum of the random variables
corresponding to its edges.

• The predictor variable Y is equal to the sum of the
random variables corresponding to the edges.

• The set S is the set of random variables corresponding
to the vertices V of the graph.

• The attack size K is |V | −M .
• The threshold variance is |E|− M ·R2

R+M−1 , where R is the
degree of the graph.

Note that all the covariance values are implicitly given by
the above construction of the random variables.

First, suppose that the MAXCLIQ problem has a solution,
that is, an M -clique W exists. Let the attack A be the set
of observations corresponding to the vertices in V \ W .
Then, Σ−1(S\A)(S\A) is the matrix with R+(M−2)

(R−1)(R+(M−1) on
the diagonals and −1

(R−1)(R+(M−1)) everywhere else, and

ΣY (S\A)Σ
−1
(S\A)(S\A)Σ(S\A)Y is M ·R2

R+M−1 . Since the prior
variance of the predictor is |E|, the posterior variance is
|E| − M ·R2

R+M−1 ; hence, the attack A is a solution for the
Optimal Attack Problem.

Second, suppose that the MAXCLIQ problem has no
solution, that is, every set of M vertices contains at least
one pair of vertices that are not connected. Consequently,
for any attack A of size K = |V | − M , some of the
variables in the intact set V \A must be independent. Since
any such set carries more information regarding the predictor
Y than a set corresponding to a clique, it follows that the
posterior variance must also be lower for any attack of size
K. Therefore, the Optimal Attack Problem does not have a
solution.

Some of the most commonly used heuristics for the (non-
resilient) selection problem are greedy heuristics. In the
following definition, we formulate a straightforward greedy
algorithm for the attack problem.

Definition 4: Greedy Algorithm for Finding an Attack:
1: A ← ∅
2: while |A| < K do
3: X∗ ∈ argmaxX∈S\A σ

2
Y |(S\(A∪{X}))

4: A ← A∪ {X∗}
5: end while
6: return A
Unfortunately, the output of the greedy algorithm can be

arbitrarily worse than the optimal solution.
Proposition 1: For any δ > 0, there exist an instance

of the optimal attack problem such that σ2
Y |GREEDY ≤ δ ·

σ2
Y |OPTIMAL, where GREEDY is the output of the greedy

algorithm and OPTIMAL is an optimal solution.
Proof: (Sketch.) Let A, B, and C be independent

Gaussian random variables, with variances σ2
A = 1, σ2

B = ε
2 ,

and σ2
C = ε, where ε = 2δ

3−δ . Let Y = A + B + C and let
S = {X1, X2, X3}, where X1 = A, X2 = A + B, and
X3 = C. Finally, let the size of the attack be K = 2.

It is easy to see that the optimal attack removes X1 and
X2, which results in a posterior variance of 1 + ε

2 .
On the other hand, the greedy algorithm first removes X3

and then X2, which results in a posterior variance of ε+ ε
2 .

Finally,

ε ≤ 2δ

3− δ
(8)

ε(3− δ) ≤ 2δ (9)
2ε+ ε ≤ δ(2 + ε) (10)

ε+
ε

2
≤ δ

(
1 +

ε

2

)
(11)

σ2
Y |GREEDY ≤ δ · σ

2
Y |OPTIMAL . (12)

Nonetheless, we will see in Section V-B that the greedy
algorithm performs extremely well in practice.

B. Resilient Observation Selection Problem

1) Computational Complexity: Now, we tackle our main
problem of resilient observation selection. To study the
computational complexity of this problem, we formulate it
as a decision problem as follows.

Definition 5: Resilient Observation Selection Problem
[decision version]: Given a predictor variable Y , a set of
variables V , the covariance matrix Σ of these variables, a
selection size N ∈ N, an attack size K ∈ N, and a threshold
variance T ∈ R+, determine if

T ≥ min
S⊆V:|S|=N

(
max

A⊆S:|A|=K
σ2
Y |(S\A)

)
. (13)

Notice that the non-resilient selection problem, which
we know to be NP-hard, is the special case of K = 0.
The following proposition shows that the resilient selection
problem is also NP-hard for any fixed K > 0.

Proposition 2: The Resilient Observation Selection Prob-
lem is NP-hard for any fixed attack size K.

Proof: (Sketch.) For K = 0, the problem is equivalent
to the Observation Selection Problem; hence, it is NP-hard.
We now show that, for any fixed K > 0, the Observation Se-
lection Problem can be reduced to the Resilient Observation
Selection Problem with attack size K.

Given an instance (Y,V,Σ, N, T ) of the Obser-
vation Selection Problem we construct an instance
(Y,V ′,Σ′, N ′,K, T ) of the Resilient Observation Selection
Problem as follows:
• let V ′ = V ∪ {X1, . . . , XK},
• let each Xi be perfectly correlated with Y (formally,
σ2
Xi

= σ2
Y , Σ′XiV = ΣYV , Σ′XiXj

= Σ′XiY
= σ2

Y

for every i and j, and the principal submatrix of Σ′

corresponding to {Y } ∪ V is equal to Σ),
• let N ′ = N +K.
First, suppose that the Observation Selection Problem

has a solution S . Then, it is easy to see that S ′ = S ∪
{X1, . . . , XK} is a solution for the Resilient Observation
Selection Problem.

Second, suppose that the Resilient Observation Selection
Problem has a solution S ′. Let A′ be an optimal attack



against S ′ (i.e., A ∈ argmaxA⊆S:|A|=K σ
2
Y |(S\A)), and let

S = S ′ \ A. Clearly, S does not contain any Xi; otherwise,
the posterior variance would be zero and A would not be an
optimal attack. Then, it is easy to see that S is a solution to
the Observation Selection Problem.

2) Greedy Algorithm for Resilient Selection: In prac-
tice, the non-resilient observation selection problem is often
solved using greedy algorithms, which are indeed very good
heuristics [7]. These algorithms start with an empty set and
add observations to this set one-by-one, always picking the
one that decreases the objective function (i.e., the posterior
variance of Y ) the most.

Unfortunately, we cannot directly apply this approach to
the resilient selection problem, since its objective function is
not well-defined (or zero) as long as fewer than K+1 nodes
are selected. To address this problem, we select the first K+1
observations in a single step, picking the (K + 1)-subset
that maximally decreases the objective function. The latter
subproblem, however, poses its own challenge: if we were
to exhaustively search all (K + 1) subsets of observations,
we would face running time which is exponential in K.
Fortunately, we can use the following simple observation to
find the optimal subset efficiently: if the designer selects only
K + 1 observations, then there will only be a single obser-
vation that survives the attack. Furthermore, the adversary
will always leave intact the observation which carries the
least information regarding the predictor. In formal terms, if
|S| = K + 1, then

max
A⊆S:|A|=K

σ2
Y |(S\A) = max

X∈S
σ2
Y |X . (14)

Consequently, we can find an optimal (K + 1)-set by
selecting the K + 1 observations that each carry the most
information regarding the predictor.

Based on the above idea, we can define a greedy algorithm
for resilient observation selection as follows.

Definition 6: Greedy Algorithm for Resilient Observation
Selection:

1: S ← ∅
2: while |S| < K + 1 do
3: X∗ ∈ argminX∈(V\S) σ

2
Y |X

4: S ← S ∪ {X∗}
5: end while
6: while |S| < N do
7: X∗ ∈ argmin

X∈(V\S)
max

A∈(S∪{X}):|A|=K
σ2
Y |((S∪{X})\A)

8: S ← S ∪ {X∗}
9: end while

10: return S
Note that, in the second loop, the above algorithm uses

exhaustive search to find the optimal attack. In practice, we
can use the greedy algorithm introduced in Section IV-A
instead, since its performance is almost optimal in practice
(see Section V-B).

Our next step is to establish an approximation bound on
the performance of the above greedy resilient observation
selection algorithm. For this purpose, we first reformulate

our selection problem as a maximization problem by consid-
ering the decrease in posterior variance to be our objective
function. Formally, the resilient selection problem can be
formulated as

argmax
S⊆V:|S|=N

(
min

A⊆S:|A|=K
σ2
Y − σ2

Y |(S\A)

)
. (15)

Note that this problem is equivalent to Equation (5).
We begin by generalizing the concept of submodularity

ratio, which was introduced by Das and Kempe in [7].3

This generalization is necessary, since applying the original,
non-resilient definition to our adversarial objective function
(i.e., minA⊆S:|A|=K σ

2
Y − σ2

Y |(S\A)) would result in no
guarantees.4

Definition 7: Resilient Submodularity Ratio: Given a non-
negative non-decreasing set function f , the resilient submod-
ularity ratio of f with respect to a set U and parameters N
and K is

γU,N,K(f) = min
L,S:

L⊆U,|L|≥K,
|S|≤N,S∩L=∅

∑
X∈S [f(L ∪ {X})− f(L)]

f(L ∪ S)− f(L)
.

(16)
Note that, by comparing the above definition with the

definition of the (non-resilient) submodularity ratio in [7],
we can see that the non-resilient ratio is a special case of
the resilient ratio with K = 0.

Using the notion of resilient submodularity ratio, we can
now prove the following approximation bound on our greedy
resilient observation selection algorithm.

Theorem 2: Let f(S) = minA⊆S:|A|=K σ
2
Y − σ2

Y |(S\A),
let SG be the set selected by the greedy algorithm, and let
OPT = maxS⊆V:|S|=N f(S). Then,

f(SG) ≥ OPT−OPT ·
(

1−
γSG,N,K(f)

N

)N−K
. (17)

Note that, if f is a submodular function, then the submod-
ularity ratio γU,N,K(f) is equal to 1 by definition (regardless
of the parameters), which results in the lower bound

OPT−OPT ·
(

1− 1

N

)N−K
. (18)

In practice, the objective function is usually close to submod-
ular, which means that the output of the greedy algorithm can
be expected to be very close to optimal. This is confirmed
by our numerical results in Section V.

Proof: (Sketch.) Let S∗N be an optimal set of variables,
let SGi be the set of variables chosen by the greedy algorithm
in the first i iterations, and let Si = S∗N \ SGi . Since f
is non-decreasing function and Si ∪ SGi ⊇ S∗N , we have
f(Si ∪ SGi ) ≥ OPT.

3Recall from Section II that the submodularity ratio measures how close
a function is to being submodular, and it was used in [7] to establish
approximation guarantees on the (non-resilient) greedy algorithm.

4The submodularity ratio of our objective function would always be zero.



For each Xj ∈ Si, let ∆(Xj) be f(SGi ∪{Xj})− f(SGi ).
Then, for i ≥ K,∑

Xj∈Si

∆j ≥γSG
i ,|Si|,K ·

[
f(SGi ∪ Si)− f(SGi )

]
(19)

≥γSG,N,K ·
[
f(SGi ∪ Si)− f(SGi )

]
. (20)

Let Xl maximize ∆(Xl). Then, for i ≥ K,

∆(Xl) ≥
γSG,N,K

|Si|
[
f(SGi ∪ Si)− f(SGi )

]
(21)

≥
γSG,N,K

N

[
f(SGi ∪ Si)− f(SGi )

]
. (22)

Let A(i) = f(SGi )− f(SGi−1), that is, the increase in the
objective function in iteration i. Since every Xj ∈ Si was a
candidate to be chosen in iteration i+1, we have A(i+1) ≥
∆(Xj) for every Xj ∈ Si. Therefore, for i ≥ K,

A(i+ 1) ≥
γSG,N,K

N

[
f(SGi ∪ Si)− f(SGi )

]
(23)

≥
γSG,N,K

N

[
OPT−f(SGi )

]
(24)

≥
γSG,N,K

N

OPT−
i∑

j=1

A(j)

 . (25)

Since the above inequality holds for i = K,K +
1, . . . , N −1, a simple inductive proof establishes the bound

OPT−
∑i
j=1A(j) < OPT ·

(
1− γSG,N,K

N

)N−K
. Thus,

we have

f(SG) =

N∑
i=1

A(i) (26)

≥ OPT−OPT ·
(

1−
γSG,N,K

N

)N−K
. (27)

C. Special Case: Tree Covariance Graphs

In Proposition 2, we used the NP-hardness of the non-
resilient selection problem to show that the resilient selection
problem is also NP-hard in general. However, it was shown
in [6] that the non-resilient selection problem can be solved
in polynomial time for certain special cases. Consequently,
the following question arises naturally: can the resilient
observation selection problem also be solved efficiently for
these special cases?

In this subsection, we show that this is indeed possible for
the special case of tree covariance graphs. First, to facilitate
the characterization of this special case, we introduce the
notion of covariance graphs.

Definition 8: Covariance Graph [6]: The covariance
graph G(Σ) of Σ is the graph with node set V ∪ {Y } and
edges between any pair of variables Xi and Xj (or Y and
Xi) with ΣXiXj

> 0.
Using this definition, we can impose certain structural

constraints on the covariance matrix. In particular, we can
constrain its corresponding graph to be a tree (i.e., a graph
without simple cycles). The following lemma shows that, in
this case, we can find an optimal attack in polynomial time.

Lemma 1: If the covariance graph G(Σ) is a tree, then
removing K of the variables connected to Y in a greedy
manner is an optimal attack.

Proof: (Sketch.) First, for each variable Xi that is
connected to Y , we have that removing Xi increases the
posterior variance of Y more than removing any other
variable in the subtree rooted at Yi. To see this, observe that
the covariance matrix of the observations is a block matrix,
where each subtree corresponds to a block, and the root of
the subtree is the only variable in the block that is correlated
to a variable outside the block (i.e., to Y ). Since this block
structure of the matrix is preserved by inversion, removing
the root Yi of a subtree will also cancel the contribution of
all the variables in the subtree. Consequently, the adversary’s
optimal choice is limited to the variables that are connected
to Y .5

Second, using again that the block structure of the co-
variance matrix is preserved by inversion, we have that
the contributions of the subtrees to the posterior variance
of Y are additive. Hence, the cumulative increase in the
posterior variance of Y for removing a set variables is
equal to the sum of the increases for removing each of
these variables. Therefore, the optimal attack removes the
K variables connected to Y that each individually increase
the posterior variance of Y the most.

Building on the above lemma, we can show that the
resilient selection problem can also be solved in polynomial
time for this special case.

Theorem 3: If the covariance graph G(Σ) is a tree, then
an optimal resilient observation selection can be found in
polynomial time.

Proof: (Sketch.) From Lemma 1, we have that an
optimal attack will remove the variables connected to Y first.
Consequently, if the degree of the node corresponding to Y
is less than or equal to K, then any selection is equally good
for the designer, as they all result in a posterior variance that
is equal to the prior (i.e., σ2

Y |(S\A) = σ2
Y ).

For the remainder of the proof, assume that K is less
than the degree of the node corresponding to Y , and let
the variables connected to Y be denoted by X1, . . . , Xp.
Now, we will use again the observation that the contributions
of the subtrees are additive. In [6], it was shown for the
non-resilient problem that, for each variable Xi, the optimal
selection of ni variables from the subtree rooted at Xi can be
computed in polynomial time using dynamic programming.
Suppose that, for each Xi and ni = 0, . . . , N , the optimal
selection of ni variables from the subtree rooted at Xi has
been computed, and let P (Xi, ni) be the posterior variance
of Xi given all the other variables in this optimal selection.
Then, the optimal resilient selection S of N variables from

5Note that, if the number of variables connected to Y is less than K, then
removing these variables will obviously attain the maximum σ2

Y |(S\A)
=

σ2
Y .



V is given by the solution of

argmax
n1,...,np:

n1+...+np=N

 min
S̃⊂{X1,...,Xp}:
|S̃|=p−K

∑
Xi∈S̃

Σ2
YXi

P (Xi, ni)


 . (28)

More specifically, we can first find the n1, . . . , np values
attaining the maximum, and then compute the optimal selec-
tion S as the union of the optimal selections for each subtree
rooted at Xi using ni variables.

Finally, we show that we can find the optimal values
n1, . . . , np in polynomial time using dynamic programming.
Let S(j, n, k) be the optimal values given that the selection
is restricted to the subtrees rooted at the first j variables
connected to Y (i.e., subtrees rooted at X1, . . . , Xj), the size
of the selection is n, and the number of variables removed by
the attacker is k. First, we can obviously compute S(1, n, k)
for all n ≤ N and k ≤ n in polynomial time. Then, we can
compute S(j, n, k) from the possible contribution of the jth
subtree and the S(j − 1, n′, k′), n′ ≤ n, k′ ∈ {k − 1, k},
values by maximizing over n′ and minimizing over k′.
Consequently, we can find the optimal values S(p,N,K)
in polynomial time.

V. EXPERIMENTS

Having proposed algorithms for both the denial-of-service
attack on sensors and the associated resilient sensor (i.e.,
observation) selection problems, we now proceed to evaluate
them experimentally. We aspire to answer three questions:

1) Is the greedy attack algorithm effective in practice? We
address this in Section V-B.

2) Is the greedy resilient observation selection algorithm
nearly optimal in practice? We address this question in
Section V-C.

3) Does the resilient observation selection algorithm sig-
nificantly improve resilience compared to baseline, and
does it lose much compared to baseline under normal
(no attack) conditions? We address this in Section V-C.

We focus on the performance of the outputs in terms of
posterior variance, and omit detailed results on the running
times of the algorithms. Note that, for the dataset used in
the experiments, exhaustive search for the optimal solutions
was computationally infeasible even for moderately difficult
problems (e.g., K > 10), while the running times of the
greedy algorithms were less than a minute. However, for the
problems used for illustration in this section, we were able
to find the optimal solutions using exhaustive search.

A. Datasets

We have applied our algorithms to multiple datasets (e.g.,
measurements from air quality monitoring stations in Beijing
and Shanghai6, see [25]); however, due to lack of space, we
will present results only for one particular dataset, noting
that results were consistent throughout all the datasets. This

6http://research.microsoft.com/pubs/193973/Air%
20Quality%20Data.zip
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Fig. 1. Posterior variances for optimal and greedy attacks.

particular dataset is from the Caltrans Performance Mea-
surement System (PeMS), which collects traffic information
from sensors spanning the freeway system across all major
metropolitan areas of California.7 We chose 37 stations from
the Bay Area with complete hourly data available for January
to be the set of possible observations, with each possible
observation measuring the traffic flow over a corresponding
road segment. For the predictor variable, we used the average
over all traffic flow measurements from around the Bay Area
(i.e., average traffic situation).

B. Greedy Algorithm for Attack

Figure 1 shows the posterior variance of the predictor
variable as a function of the attack size K for optimal and
greedy attacks. We can see that the variances resulting from
the optimal and greedy attacks are identical in many cases,
and there is little difference between the two in the remaining
ones. More specifically, the difference is greatest for K = 4,
but even in this case, it is less than 4%.

C. Greedy Algorithm for Resilient Observation Selection

Figure 2 shows the posterior variance of the predictor
variable as a function of the attacks size K for optimal
resilient selection (x), greedy resilient selection (o), and
optimal non-resilient selection (+) with and without an attack
(blue and red, respectively) for N = 7 (note that attacks
are found using exhaustive search in all cases). Firstly, we
can see that the output of the proposed greedy algorithm
and the optimal resilient selection are very close, and in
many cases, they are identical. Secondly, we can see that
the resilient selection performs much better than the non-
resilient selection in case of an attack: for small-sized attacks
(K = 1, 2), the posterior variance for the non-resilient
selection is 17 - 49% higher than for the resilient selection,

7http://pems.dot.ca.gov/

http://research.microsoft.com/pubs/193973/Air%20Quality%20Data.zip
http://research.microsoft.com/pubs/193973/Air%20Quality%20Data.zip
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and for larger attacks, there can be an order of magnitude
difference (e.g., 711% and 502% for K = 5 and 6). On the
other hand, there are much smaller differences between the
quality of the two selections (resilient and baseline) when
there is no attack: for K = 1, 2, the posterior variance for
the non-resilient selection is less than 9% lower than for the
resilient selection, and the difference remains less than 32%
even for higher values of K.

VI. CONCLUSION

In this paper, we considered the problem of selecting
sensor locations for monitoring a large area in an adver-
sarial setting. We formulated the problem of attack-resilient
observation selection by assuming Gaussian process regres-
sion and worst-case DoS attacks against the sensors. First,
we showed that both finding an optimal attack against a
given selection and finding an optimal resilient selection
are NP-hard problems. Then, we proposed efficient heuristic
algorithms for both problems, and established approximation
bound on the heuristic algorithm for resilient selection. Next,
we considered a special case of the problem, in which the
covariance matrix of the variables has a tree structure, and
showed that both problems can be solved in polynomial time
for this special case. Using experiments based on real-world
covariance data, we demonstrated that both of the proposed
heuristic algorithms perform exceptionally well in practice.
Finally, these numerical results also showed that the increase
in posterior variance under normal operations (i.e., without
an attack) is quite small, while the decrease in posterior
variance in the case of an attack is substantial.
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