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Abstract

When learning, such as classification, is used
in adversarial settings, such as intrusion de-
tection, intelligent adversaries will attempt
to evade the resulting policies. The literature
on adversarial machine learning aims to de-
velop learning algorithms which are robust to
such adversarial evasion, but exhibits two sig-
nificant limitations: a) failure to account for
operational constraints and b) a restriction
that decisions are deterministic. To overcome
these limitations, we introduce a conceptual
separation between learning, used to infer at-
tacker preferences, and operational decisions,
which account for adversarial evasion, enforce
operational constraints, and naturally admit
randomization. Our approach gives rise to
an intractably large linear program. To over-
come scalability limitations, we introduce a
novel method for estimating a compact par-
ity basis representation for the operational
decision function. Additionally, we develop
an iterative constraint generation approach
which embeds adversary’s best response cal-
culation, to arrive at a scalable algorithm
for computing near-optimal randomized op-
erational decisions. Extensive experiments
demonstrate the efficacy of our approach.

1 Introduction

Success of machine learning across a variety of domains
has naturally led to its adoption as a tool in security
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settings, including intrusion detection, biometric iden-
tity recognition, and spam filtering. Unlike traditional
uses of machine learning, however, these domains in-
volve an adversary, who is likely to adapt to the use
of such techniques, potentially reducing their effective-
ness. Of particular interest in many such application
domains is adversarial classification, or the task of de-
termining whether a given input (email, system access,
user behavior) is benign or “normal”, or malicious (a
phishing email or a system compromise). In such set-
tings, we start with a training data set of labeled in-
stances {(x1, y1), . . . , (xm, ym)}, where xi are feature
vectors (e.g., whether or not specific spam/phish in-
dicators are present in an email) and yi are labels,
which we can code as 0 corresponding to benign and 1
to malicious instances. This data set is used to train
a classifier, h, that would presumably predict whether
an arbitrary unseen instance x is malicious. The phe-
nomenon of adversarial evasion puts a damper on this
seemingly clean solution: if an adversary wishes, say,
to send an email with features x, but h(x) classifies
it as malicious, an intelligent attacker would attempt
to choose another email, corresponding to x′, which
would be classified as benign, and achieve the same,
or nearly the same, ends.

The literature on adversarial machine learning tack-
les the problem of adversarial evasion in two ways:
first, by trying to understand its feasibility and effec-
tiveness [1, 2, 3, 4, 5], and second, by attempting to
design machine learning algorithms which account for,
and are robust to, evasion [1, 3, 6, 7, 8, 9, 10].

Past literature on algorithm design for adversarial
classification suffers from two important limitations.
First, previous approaches make no attempt to ac-
count for resource constraints involved in operational-
izing the algorithms: in particular, it is the false
positives, rather than false negatives, which are crit-
ical to adoption of intrusion detection systems, in
large part because overabundance of “alerts” makes
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such a system operationally unusable [11]. Second,
there is, to date, no principled way of embedding ran-
domization into adversarial classification, even though
stochasticity in defense is often highly effective in se-
curity [12, 13, 14]. Indeed, the use of randomization
in adversarial classification has previously been sug-
gested [15], but the proposed approach is ad hoc, sim-
ply adding “random noise” to the classifier output.

We address both of these limitations by rethinking the
conceptual model of adversarial classification. Specif-
ically, we separate the task of learning, which uses
training data to predict attack preferences, and the
task of operational decisions, which uses the resulting
predictor, together with an evasion model, in comput-
ing optimal randomized operational policy that explic-
itly abides by operational constraints. The intuition for
this separation is that the training data can be inter-
preted as revealed preferences of the attackers, in the
sense that the attacks captured by it can be viewed
as “ideal” attack vectors at that point in time. As an
indirect consequence, our model enables one to use off-
the-shelf machine learning packages, allowing progress
in machine learning and adversarial decision making to
be decoupled. On the technical side, we present a nat-
ural generalization of a commonly used evasion model
(see, e.g., [4]) to randomized classification settings. We
show that computing an optimal evasion is NP-Hard,
but also exhibit an optimal branch-and-bound search
method and two polynomial-time approximation al-
gorithms, one with worst-case performance guaran-
tees, and both shown to be “near-optimal” in experi-
ments. On the operational side, we introduce a linear
programming (LP) formulation for computing optimal
randomized classification. While the baseline LP in-
volves an exponential number of variables and con-
straints, we propose a collection of techniques which
make use of a Fourier representation of Boolean func-
tions [16], as well as constraint generation, to arrive at
scalable approximation.

In all, we make the following contributions: 1) a gen-
eral framework for optimizing operational decisions
based on machine learning predictions; 2) a linear pro-
gramming formulation to compute optimal random-
ized operational decisions under budget constraints;
3) an approach for scalable parity-basis approxima-
tion of operational decision function; 4) a model of
attacker evasion and methods approaches for approx-
imating optimal evasion; and 5) an extensive evalua-
tion of our approach, which we show to significantly
outperform the state of the art.

2 Model

We consider the adversarial binary classification prob-
lem over an input space X , where each input feature
vector x ∈ X can be categorized (labeled) as benign
or malicious. The defender D, collects a data set of
labeled instances, I = {(x1, y1), . . . , (xm, ym)}, which
we assume to accurately represent the current distribu-
tion of input instances and corresponding categories.
D then applies an algorithm of choice, such as Naive
Bayes, to obtain a probabilistic classifier which assigns
to an arbitrary input x vector a probability p(x) that
it is generated by a malicious actor assuming such an
actor does not change their behavior. In traditional ap-
plications, one would then use a threshold, θ, and clas-
sify an instance x as malicious if p(x) ≥ θ, and benign
otherwise. This decision (and the choice of the thresh-
old) are often motivated by overall tolerance for false
positives, as well as operational considerations, for ex-
ample, to ensure that the number of alerts does not
exceed what can reasonably be inspected by security
professionals. To consider operational decisions in gen-
eral, as well as allow for randomization, we introduce a
function q(x, p(·)) ∈ [0, 1] which prescribes a possibly
randomized operational decision (e.g., the probability
of filtering an email or manually investigating an ob-
served network access pattern) for an instance x given
a prediction p(x). To simplify notation, we simply
use q(x) where p(·) is clear from context. Through-
out, we assume that features are binary, a common
case in adversarial classification settings (e.g., features
could correspond to specific words or phrases being
present in email, or specific sequences of system calls
executed).

We model adversarial classification as a Stackelberg
game between a defender and a population of attack-
ers. In this game, the defender D moves first, choos-
ing q(·). Next, the attackers learn q(·) (for exam-
ple, through probing), and each attacker subsequently
chooses an input vector x (e.g., a phishing email) to
maximize their expected return (a combination of by-
passing defensive countermeasures and achieving a de-
sired outcome). Our assumption that the operational
policy q(·) is known to attackers reflects threats that
have significant time and/or resources to probe and re-
spond to defensive measures, a feature characteristic
of advanced cyber criminals [17].

2.1 Attacker Model

We interpret the data set I and the resulting predic-
tions p(x), as representing revealed preferences of a
sample of attackers, that is, their preference for input
vectors x. Our rationale is that if an attacker pre-
ferred some other input x′, this attacker would have
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chosen x′ instead of x in I. Consequently, p(x) can
be interpreted as an “ideal” attack, if only it were to
succeed in bypassing defensive measures. If q(x) is suf-
ficiently close to 1, x is likely to fail, and the attacker
will have an incentive to evade by choosing another
instance x′. When decisions q(x) are deterministic, a
common approach in related literature is to assume
that the attacker will find x′ which is closest to x (in
some distance metric, such as l1 norm) of all alterna-
tives classified as benign [18, 4, 7, 8, 9]. We now offer
a natural generalization of this model to account for
randomized q(x). Specifically, if the attacker with a
preference for x chooses an alternative attack vector
x′, we model his utility from successfully bypassing
defenses as V (x)Q(x, x′), where Q(x, x′) = e−δ||x−x

′||,
with || · || a norm (we use Hamming distance), V (x)
the value of the attack, and δ the importance of being
close to the preferred x. The full utility function of an
attacker with preference x for choosing another input
x′ when the defense strategy is q is then

µ(x, x′; q) = V (x)Q(x, x′)(1− q(x′)), (1)

since 1− q(·) is the probability that the attacker suc-
cessfully bypasses the defensive action.

While the above attacker model admits considerable
generality, we assume that attackers fall into two
classes: adaptive, as described above, and static, cor-
responding to the limiting case of δ →∞. Let vt(x; q)
be the value function of an attacker with type t and
preference for x, when the defender chooses a policy
q. vt(x; q) represents the maximum utility that the at-
tacker with type t can achieve given q. For a static at-
tacker, the value function is vS(x; q) = V (x)(1−q(x)),
that is, a static attacker always uses his preferred input
x, and receives his corresponding value for it when-
ever the defender does not take action upon observ-
ing x. For an adaptive attacker, the value function is
vA(x; q) = maxx′ µ(x, x′; q), that is, the maximum util-
ity that the attacker obtains from using an arbitrary
input x′. Finally, let PA be the probability that an
arbitrary malicious input was generated by an adap-
tive adversary; the probability that the adversary was
static is then PS = 1− PA.

2.2 Defender Model

A natural goal for the defender is to maximize ex-
pected value of benign traffic that is classified as be-
nign, less the expected losses due to attacks that suc-
cessfully bypass the operator. To formalize, we assume
that the defender gains a positive value G(x) from a
benign input x only if it is not inspected. In the case
of email traffic, this is certainly sensible if our action
is to filter a suspected email. More generally, inspec-
tion can be a lengthy process, in which case we can
interpret G(x) as the value of time lost if x is, in fact,
benign, but is carefully screened before it can have

its beneficial impact. We define the defender’s utility
function UD(q, p) as follows:

UD(q, p) = Ex [(1 − q(x))G(x)(1− p(x))−
p(x)(PSvS(x; q) + PAvA(x; q))] .

To interpret the defender’s utility function, let us first
rewrite it for a special case when V (x) = G(x) = 1
and PS = 1, reducing the utility function to Ex[(1 −
q(x))(1−p(x))−p(x)(1−q(x))]. Since p(x) is constant,
this is equivalent to minimizing

Ex[q(x)(1− p(x)) + p(x)(1− q(x))],

which is just the expected misclassification error.

The final aspect of our model is a resource constraint
on the defender. Sommer and Paxson [11] identify
the cost of false positives and the gap between the
output of machine learning algorithms and its use in
operational decisions as two of the crucial gaps that
prevent widespread use of machine learning in network
intrusion detection. In our framework, G(x) quantifies
the loss of value due to false positives. We handle the
hard constraint on defensive resources by introducing
a budget constraint that our solution inspects at most
a fraction c of events, on average.

2.3 Model Analysis

A natural sanity check that our formulation is reason-
able is that the solution corresponds to intuition when
there is no budget constraint or adaptive adversary.
We now show that in this case, the policy q(x) which
uses a simple threshold on p(x) (as commonly done)
is, in fact optimal.
Proposition 2.1. Suppose that PA = 0 and c = 1
(i.e., no budget constraint). Then the optimal policy
is

q(x) =

{
1 if p(x) ≥ G(x)

G(x)+V (x)

0 o.w.

Due to space restrictions, we leave detailed proofs in
this paper to the full version. While traditional ap-
proaches threshold an odds ratio (or log-odds) rather
than the probability p(x), the two are, in fact equiv-
alent. To see this, let us consider the generalized
(cost-sensitive) threshold on odds ratio used by the
Dalvi et al. [18] model. In their notation, UC(+,+),
UC(+,−), UC(−,+), and UC(−,−) denote the utility
of the defender (classifier) when he correctly identifies
a malicious input, incorrectly identifies a benign input,
incorrectly identifies a malicious input, and correctly
identifies a benign input, respectively. In our setting,
we have UC(+,+) = 0 (i.e., no loss), UC(+,−) = 0
(and capture the costs of false positives as opera-
tional constraints instead), UC(−,+) = −V (x), and
UC(−,−) = G(x) (note that we augment the utility
functions to depend on input vector x). The odds-
ratio test used by Dalvi et al. therefore checks

p(x)

1− p(x)
≥ UC(−,−)− UC(+,−)

UC(+,+)− UC(−,+)
=
G(x)

V (x)
. (2)
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and it is easy to verify that inequality 2 is equivalent
to the threshold test in Proposition A.1.

Consider now a more general setting where PA = 0,
but now with a budget constraint. In this context,
we now show that the optimal policy is to first set
q(x) = 0 for all x with p(x) below the threshold de-
scribed in Proposition A.1, then rank the remainder in
descending order of p(x), and assign q(x) = 1 in this
order until the budget is exhausted.

Proposition 2.2. Suppose that PA = 0. Then the
optimal policy is to let q(x) = 0 for all x with

p(x) <
G(x)

G(x) + V (x)
.

Rank the remaining x in descending order of p(x) and
set q(x) = 1 until the budget is exhausted, leaving the
remaining budget to the next instance x, and setting
q(x) = 0 for the rest.

In a nutshell, Proposition A.2 suggests that whenever
the budget constraint binds, we should simply inspect
the highest priority items. Therefore, randomization
becomes important only when there is an adversary
actively responding to our inspection efforts.1

3 Optimal Randomized Operational
Use of Classification

Given the Stackelberg game model of strategic interac-
tions between a defender armed with a classifier, and
an attacker attempting to evade it we now develop an
algorithmic approach for solving it. We begin by us-
ing a sample average approximation of the defender’s
utility function UD (e.g., using instances in the train-

ing data), denoting it ÛD. Using ÛD as the objective,
we can maximize it using the following linear program
(LP):

max
q

ÛD(q, p) (3a)

s.t. : 0 ≤ q(x) ≤ 1 ∀ x ∈ X (3b)

vA(x; q) ≥ µ(x, x′; q) ∀ x, x′ ∈ X (3c)

vS(x; q) = V (x)(1− q(x)) ∀ x ∈ X (3d)

Ex[q(x)] ≤ c, (3e)

where constraint 3c computes the attacker’s best re-
sponse (optimal evasion of q).

3.1 Scaling Up

The linear program 3 is not a practical solution ap-
proach for two reasons: a) q(x) must be defined over

1Of course, we do not suggest that the policy in Propo-
sition A.2 is easy to implement. Its purpose is entirely to
understand the nature of our approach when applied to
non-adversarial settings.

the entire feature space X , and b) the set of constraints
is quadratic in |X |. Since with n features |X | = 2n,
this LP is a non-starter.

Our first step towards addressing the scalability issue
is to represent q(x) using a set of normalised basis func-
tions, {φj(x)}, where q(x) =

∑
j

αjφj(x). This allows

us to focus on optimizing αj , a potentially tractable
proposition if the set of basis functions is small. With
this representation, the LP now takes the following
form (to simplify exposition below, we assume that
PA = 1; generalization is direct):

min
α≥0

∑
j

αjE[G(x)φj(x)(1− p(x))] + E[V (x)p(x)Q(x, α)]

(4a)

s.t : Q(x, α) ≥ e−δ||x−x
′||(1−

∑
i

αjφj(x
′)) ∀x, x′ ∈ X

(4b)∑
j

αjE[φj(x)] ≤ c (4c)

∑
j

αj ≤ 1. (4d)

While we can reduce the number of variables in the
optimization problem using a basis representation φ,
we still retain the intractably large set of inequalities
which compute the attacker’s best response. To ad-
dress this issue, suppose that we have an oracle O(x; q)
which can efficiently compute a best response x′ to
a strategy q for an attacker with an ideal attack x.
Armed with this oracle, we propose a constraint gener-
ation aproach, termed Adaptive Adversary based Scal-
able classification (AAS), to iteratively compute an
(approximately) optimal operational decision function
q (Algorithm 1 below).

Algorithm 1 AAS(X)

φ =ConstructBasis()
X̄ ← X
q ← MASTER(X̄ )
while true do
for x ∈ Xbad do
x′ = O(x; q)
X̄ ← X̄ ∪ x′

end for
if All x′ ∈ X̄ then

// If no new x′ generated
return q

end if
q ← MASTER(X̄ )

end while

The input to the AAS algorithm (Algorithm 1) is the
feature matrix X in the training data, with Xbad de-
noting this feature matrix restricted to “bad” (ma-
licious) instances. At the core of Algorithm 1 is
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the MASTER linear program which computes an at-
tacker’s (approximate) best response using the modi-
fied LP 4, but using only a small subset of all feature
vectors as alternative attacks, which we denote by X̄ .
The algorithm begins with X̄ initialized to only include
feature vectors in the training data X. The first step
is to compute an optimal solution, q, with adversarial
evasion restricted to X. Then, iteratively, we com-
pute each attacker’s best response x′ to the current
solution, q, adding it to X̄ (the preferences of each at-
tacker are parameterized by the attacks they executed
in the original training data), rerun the MASTER lin-
ear program to recompute q, and repeat. The process
is terminated when we cannot generate any new con-
straints (i.e., the available constraints already include
best responses for all attackers). The following result
is a direct consequence of a) finiteness of feature space,
and b) the fact that at termination the attacker is play-
ing an actual best response to the computed strategy
q.

Theorem 3.1. The AAS algorithm computes an op-
timal solution q given a fixed basis φ in finite time.

The approach described so far in principle addresses
the scalability issues, but leaves two key questions
unanswered: 1) how do we construct the basis φ, a
problem which is of critical importance to good quality
approximation (the ConstructBasis() function in Algo-
rithm 1), and 2) how do we compute the attacker’s best
response to q, represented above by an oracle O(x, q).
We tackle these in turn.

3.1.1 Basis Construction

Our basis representation relies on harmonic (Fourier)
analysis of Boolean functions [16, 19]. In partic-
ular, it is known that every Boolean function f :
{0, 1}n → R can be uniquely represented as f(x) =∑
S∈BS

f̂SχS(x), where χS(x) = (−1)S
T x is a parity

function on a given basis S ∈ {0, 1}n, BS is the set con-
taining all the bais S, and the corresponding Fourier

coefficients can be computed as f̂S = Ex[f(x)χS(x)]
[20, 19]. Our goal will be to approximate q(x) using
a Fourier basis. Our core task is to compute a set of
basis functions to be subsequently used in optimizing
q(x). The first step is to uniformly randomly select
K feature vectors ~xk. Then use a traditional learning
algorithm, say Naive Bayes, to obtain the p(x) vector
and solve the linear program 3 to compute q(x) re-
stricted to these. We can now use the same set of fea-
ture vectors to approximate a Fourier coefficient of this

q(x) for an arbitrary basis S as t = 1
m

m∑
i=1

q(xi)χS(xi).

We can use this expression to compute a basis set S
with the largest Fourier coefficient using the following
integer linear program:

max
S

1

K

K∑
k=1

q(xk)rkS (5a)

s.t. : STxk = 2yk + hk (5b)

rkS = 1− 2hk (5c)

yk ∈ Z, hk ∈ {0, 1}, S ∈ {0, 1}n (5d)

Our basis generation algorithm solves this program it-
eratively, each time adding a constraint that rules out a
previously generated basis, until the optimal solution
is zero. Each basis is optimized within limited time
and then we collect the set of optimized basis func-
tions BS that are corresponding to the largest Fourier
coefficients. To consider the largest negative Fourier
coefficients, we simply change Program 5 to be min-
imization. We found, however, that negative Fourier
coefficients were rare in our problem instances.

3.1.2 Computing Adversary’s Best Response

The constraint generation algorithm AAS described
above presumes the existance of an oracle O(x; q)
which computes (or approximates) an optimal evasion
of q (we call this a best response to q) for an attacker
that would prefer to use a feature vector x. We now
address this problem in detail. Note that since V (x)
is fixed in the attacker’s evasion problem (because x is
fixed), it can be ignored.

We begin by addressing the computational complexity
of computing an optimal evasion. Informally, given
an arbitrary set of bases φ and the adversary’s pref-
erence feature vector x, the attacker wishes to modify
as few features as possible to obtain a binary vector
x′ that minimizes q(x′). To make the analysis cleaner,
we compute the bases φj as mapping to {0, 1}, where
φj(x) = 1

2 (χSj
(x) + 1). A formal decision problem

faced by the attacker is whether there exist a feature
vector x′ satisfying the following constraints:∑

j

αjφj(x
′) ≤ λ (6a)

‖x− x′‖ ≤ k, (6b)

where λ and k are fixed given thresholds. This prob-
lem, which we call EVASION, can be shown to be com-
putationally hard by reducing it from 3DM (details are
in the extended version of the paper).

Theorem 3.2. EVASION is NP-complete.

Since adversarial evasion is NP-Hard, it is natural to
develop an approximation algorithm to solve the fol-
lowing derived optimization problem:

min
x′

∑
j

αjφj(x
′) (7a)

s.t. : ||x− x′|| ≤ k (7b)

Define ∆(x′) = q(x)− q(x′) =
∑
j αj(φj(x)−φj(x′)),

so that our objective can equivalently be stated as
maximizing ∆(x′) so that at most k features in x are
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modified. Let ∆∗ be the optimal solution to this prob-
lem. We present Algorithm 3 to compute x′ which
yields a provably near-optimal solution.

Algorithm 2 ApproxEvasion(F, q, k, ε)

n← |F |
D0 ← {(∅, 0)} // tuple di = (feaSet, value) ∈ D
G = GenFeaGroup(F, S)
l← 0
for i ← 1 to |G| do

for j ← 1 to |gi| do
l← l+ 1 // merge two tuple-lists by di.value
Dl ←MergeTuple(Dl−1, AddFea(Dl−1, fij , k))

end for
Dl ← Trim(Dl, ε/2n)
remove elements from Dl that dl.value > q(x)

end for
let d∗ correspond to the maximum d.value in Dn

return d∗

Theorem 3.3. Suppose that the number of inputs in
any basis is bounded by a constant c. Then Approx-
Evasion (Algorithm 3) computes a solution x′ to prob-
lem 7 which achieves ∆̂ ≥ ∆∗

1+ε , where ∆̂ = ∆(x′) in

time poly(n, 1
ε , 2

c).

While the complete algorithm and proof are in the ex-
tended version, below we offer some intuition. The key
issue in Algorithm 3 is that the length of Di can be
2i, making the merge algorithm take exponential time.
To fix this, we employ a Trim function to shorten the
list length. The idea is that if some combinations of
features have similar effect on q(x), only one combi-
nation is considered. This means that with a trim-
ming parameter δ, for any element di removed from
Di, there is an element dj that approximates di, that

is, Retrieve(di)
1+δ ≤ Retrieve(dj) ≤ Retrieve(di). Notice

that the Trim action can only be done for features
that have no common bases to avoid missing qualified
feature combination. Therefore, GenFeaGroup algo-
rithm is applied to group the features that need to
be added as a whole before Trim. AddFea algorithm
then helps to form different feature combinations and
guarantees that at most k features are considered.

In addition to the approximation algorithm above,
we consider two others: an optimal branch-and-bound
search with worst-case exponential running time, and
a greedy heuristic (Greedy). In the branch-and-bound
scheme, we search in the space of feature changes to x.
At any node with height l, we have thereby changed
l features in x, and the utility of the attacker in
this subtree is therefore bounded above by e−δl (since
1 − q(x′) ≤ 1). This bound is used in pruning much
of the search tree once a good solution using relatively
few modifications is found. In the greedy heuristic, we

start with x and iteratively flip features one at a time,
flipping a feature that yields the greatest decrease in
q(x′) each time.

Figure 1: Comparision of expected adversary utility
(left) and algorithm runtime (right), for the three ad-
versrial evasion algorithms. Top: δ = 1, ε = 0.01.
Bottom: δ = 3, ε = 0.01

We used TREC spam corpora to experimentally com-
pare the three approaches to computing adversarial
evasion: the ApproxEvasion algorithm,2 branch-and-
bound, and greedy heuristic. The results, shown in
Figure 1, suggest (somewhat surprisingly) that the
simple greedy heuristic offers a good balance between
running time and quality: it is faster, usually quite
significantly, than branch-and-bound, and loses less
in solution quality than the approximation algorithm.
Consequently, our implementation of AAS features the
evasion oracle O which runs the greedy heuristic.

4 Experiments

To evaluate the efficacy of the proposed AAS algorithm
for approximating optimal randomized operational de-
cisions in adversarial classification settings, we com-
pare the optimized utility of defender with the state
of the art. The results below use 100 features, with
additional results (using 500 features over the same
domain) presented in the extended version of the pa-
per.

In the experiments, we use the TREC spam corpora
from 2005-2008.3 First, we evaluate the performance

2Whie ApproxEvasion cannot be used directly, it can
be adapted using a linear search in the space of thresholds
k along with the same bound as used in branch-and-bound
to truncate the search.

3Our choice of TREC corpora for this evaluation is due
primarily to its longitudinal nature, which is key for a sub-
set of our experiments.
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of AAS as a spam filtering task to compare the classi-
fication accuracy with the state of the art alternatives
[21, 8]. In this first set of experiments, which are used
to test robustness to naturally observed spam evolu-
tion, we apply a fold of TREC 2005 data as training
and evaluate and test on the test fold for the TREC
2005 and 2006-2008 corpora (in other words, we train
on “current” data, and observe performance on “fu-
ture” data). We compare our approach against us-
ing a static classifier it is based upon, where the pair
of the form {C,AAS(C)}, consists of a static clas-
sifier C which is used to learn p(x) for our model,
and AAS(C) corresponding to our AAS algorithm
that utilizes C. Here we use the normalized util-
ity as UD = 1 − w|X+|+|X−|

w|XTN |+|XTP | , where |XTN | is the

number of true negatives, while |XTP | the number
of true positives. |X−| =

∑
x y(x)(1 − q(x)) repre-

sents the expected number of false negatives, while
|X+| =

∑
x(1−y(x))q(x) the expected number of false

positives; w = G
V .

(a) (b)

(c) (d)

Figure 2: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 1, V (x) =
G(x) = 1, PA = 1 (a) c=0.1; (b) c=0.3; (c) c=0.5; (d)
c=0.9.

Figure 2 shows that when the budget constraint is
tight, our approach significantly outperforms the base-
lines. From Figure 3 it can also be observed how the
cost of adversary matters. When we fix G(x) = 1 and
vary V (x) = V (keeping it constant for all x), our
approach still consistently outperforms alternatives.

In the next set of experiments, we simulated a counter-
factual of sophisticated evasion attacks, deployed ac-

(a) (b)

(c) (d)

Figure 3: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 1, G(x) = 1,
PA = 1 (a) V (x) = 2, c=0.1; (b) V (x) = 10, c=0.1;
(c) V (x) = 2, c=0.3; (d) V (x) = 10, c=0.3.

cording to our model, drawing the same comparisons
as above, but now treating each year in the TREC
data as distinct (in other words, we consider each year
as “current”, and then simulate an evasion attack in-
dependently for each year). From Figure 4 and 5 we
can see that our proposed method significantly out-
performs the alternatives on different datasets across
both alternative budget constraints and value models.

(a) (b)

Figure 4: Comparison of the expected utility assuming
PA = 1, V (x) = G(x) = 1; (a) c = 0.1; (b) c = 0.3.

It is, of course, not surprising that our proposed ap-
proach outperforms alternative methods in terms of
the objective it tries to optimize. A natural question,
however, is whether this approach is robust to errors
which would be inevitable in its practical deployment.
To evaluate the robustness of our algorithm, we intro-
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(a) (b)

Figure 5: Comparison of the expected utility assuming
PA = 1; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.

duce errors into our attacker model. First, we intro-
duce an error ϕ = 0.2 into the attacker model, so that
δ̂ = δ + ϕ, where δ̂ is the “observed” and δ the ac-
tual model parameter. Figure 6 and 7 show that our
approach still outperforms the state of the art alterna-
tives even when harmed by very substantial inaccuracy
in the model parameter estimates.

(a) (b)

Figure 6: Comparison of the expected utility assuming
PA = 1, introducing parameter error with 0.2 for δ; (a)
c = 0.1; (b) c = 0.3.

(a) (b)

Figure 7: Comparison of the expected utility assuming
PA = 1, introducing parameter error with 0.2 for δ; (a)
V (x) = 2; (b) V (x) = 10. c = 0.3.

Next, we consider robustness to a qualitative rather
than quantitative error in adversarial model. To sim-
ulate this, we solve our model as before, but evaluate

the solutions q(x) by assuming an adversary’s utility
model actually decays polynomially as

Qpoly(x, x′) =
1

1 + δ‖x− x′‖
.

The results, shown in Figure 8, demonstrate that our
model is robust even when the assumption about the
adversary utility model is fundamentally incorrect.

(a) (b)

Figure 8: Comparison of the expected utility assuming
PA = 1, introducting adversarial model error; (a) c =
0.1; (b) c = 0.3.

5 Conclusions

We presented a general approach for computing op-
timal randomized decisions in adversarial classifica-
tion settings. We solve the resulting intractably large
problem by applying a finite set of basis functions
and using constraint generation which leverages high-
quality approximation of optimal adversarial classifier
evasion. The proposed method outperforms than the
state of the art alternatives on several metrics, is ro-
bust to errors (including qualitative mistakes in mod-
eling assumptions) and its advantages are more appar-
ent when operational decisions are costly. Moreover,
by conceptually separating the problem of prediction
(of adversary’s preferences) and optimal operational
decisions, the approach can both make use of off-the-
shelf machine learning techniques, and naturally em-
bed randomization. While the use of machine learning
in adversarial settings, such as network intrusion de-
tection, is still quite limited, our approach may pave
the way for bridging the gap between algorithmic ad-
vances and operational deployment of such systems.
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Appendices

A Model Analysis

Proposition A.1. Suppose that PA = 0 and c = 1 (i.e.,
no budget constraint). Then the optimal policy is

q(~x) =

{
1 if p(~x) ≥ G(~x)

G(~x)+V (~x)

0 o.w.

Proof. Since we consider only static adversaries and there
is no budget constraint, the objective becomes

max
~q

∑
~x∈X

[(1− q(~x))G(~x)(1− p(~x))− p(~x)vS(~x)] ,

and the only remaining constraint is that q(~x) ∈ [0, 1] for
all ~x. Since now the objective function is entirely decoupled
for each ~x, we can optimize each q(~x) in isolation for each
~x ∈ X . Rewriting, maximizing the objective for a given ~x
is equivalent to minimizing q(~x)[G(~x)−p(~x)(G(~x)+V (~x))].
Whenever the right multiplicand is negative, the quan-
tity is minimized when q(~x) = 1, and when it is posi-
tive, the quantity is minimized when q(~x) = 0. Since
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p(~x) ≥ G(~x)
G(~x)+V (~x)

implies that the right multiplicand is

negative (more accurately, non-positive), the result fol-
lows.

Proposition A.2. Suppose that PA = 0 and c|X | is an
integer. Then the optimal policy is to let q(~x) = 0 for all ~x
with

p(~x) <
G(~x)

G(~x) + V (~x)
.

Rank the remaining ~x in descending order of p(~x) and set
q(~x) = 1 for the top c|X | inputs, with q(~x) = 0 for the rest.

Proof. The LP can be rewritten so as to minimize∑
~x

q(~x)[G(~x)− p(~x)(G(~x) + V (~x))]

subject to the budget constraint. By the same argument
as above, whenever p(~x) is below the threshold, the op-
timal q(~x) = 0. Removing the corresponding ~x from the
objective, we obtain a special knapsack problem in which
the above greedy solution is optimal, since the coefficient
on the budget constraint is 1.

B Computing Adversary’s Best
Response

Theorem B.1. EVASION is NP-complete.

Proof. This adversary evasion problem is in NP, as we
can non-deterministically pick a ≤ k features and verify
if q(~x′) ≤ λ.

We prove that the problem is NP-hard via a reduction from
3-dimensinal matching (3DM). For an arbitrary instance of
3DM, W , Y , and Z are finite, disjoint sets with the same
number of d elements. T is a subset of W × Y × Z, which
means T consists of triples (w, y, z) such that w ∈ W, y ∈
Y , and z ∈ Z. M ⊆ T (|M | = d) is a 3-dimensional
matching if for any two distinct triples (w1, y1, z1) ∈ M
and (w2, y2, z2) ∈M , w1 6= w2, y1 6= y2, and z1 6= z2.

Each triple (wi, yi, zi) ∈ T corresponds to one feature,
which controls a set of basis (swi , sd+yi , s2d+zi). There
are n = |T | features and m = |W | + |Y | + |Z| = 3d
basises, which forms the basis matrix as the figure 9 be-
low. Each elements within the matrix bji = 1 denotes
that the jth basis is controlled by the ith feature; other-
wise 0. As each feature controls exactly one basis from
each part, we have for any feature i(1 ≤ i ≤ n) and ba-

sis j(1 ≤ j ≤ m),
d∑
j=1

bji = 1,
2d∑
d+1

bji = 1,
3d∑

2d+1

bji = 1,

(d = 1
3
m). Let k = d, λ = q(x) − 3d/D, (D ≥ 3d),

∆ = q(~x)−q(~x′). If q(x′) ≤ λ, we have ∆ = q(~x)−q(x~x′) ≥
3d/D. Let α1 = α2 = ... = αm = 1

2D
, and x is a vec-

tor with all 0. Therefore φj(x) = αj(−1)sjx = 1
2D

for

1 ≤ j ≤ m. Consequentially, let xl
′

denotes the modi-
fied instance x′, which only differs in feature l with x. If
bhl = 1, the corresponding basis function would flip the

sigh, thus φh(xl
′
) = αl(−1)shx

l′
= − 1

2D
. Suppose there

are J bases that have been flipped the sign,

∆ =q(~x)− q(~x′) =
m∑
j=1

αj(−1)sjx −
m∑
j=1

αj(−1)sjx
′

=

∑
j∈J

αj(−1)sjx +
∑
j∈S\J

αj(−1)sjx

−
∑
j∈J

αj(−1)sjx
′

+
∑
j∈S\J

αj(−1)sjx
′

 .

As
∑

j∈S\J
αj(−1)sjx =

∑
j∈S\J

αj(−1)sjx
′
, ∆ = 1

2D
|J | −

(− 1
2D

)|J | = |J|
D

, which means the decrement of q(x) equals
to the number of basises that would flip the sign divided
by D. It is easy to see how this construction can be ac-
complished in polynomial time. Therefore, suppose there

Figure 9: Illustration for the problem construction

are a ≤ k features that can be modified in x to satisfy
that q(~x′) ≤ λ. It follows that ∆ = q(~x) − q(~x′) ≥ 3d/D.
Additionally, as each feature only control 3 basises, the
total number of basis that would flip the sign is ∆ =
q(~x) − q(~x′) ≤ 3a/D ≤ 3k/D = 3d/D. It derives that
∆ = 3d/D, which means there is no overlap between se-
lected basis. Accordingly, subset M (|M | = d) is chosen
and each triple (wi, yi, zi) ∈ M corresponds to the set of
controlled basises by feature i. Therefore the total num-
ber of elements within the selected subsets in M satisfies
|W |+ |Y |+ |Z| = ∆ ·D = 3d. So any two selected distinct
triples (w1, y1, z1) ∈ M and (w2, y2, z2) ∈ M , w1 6= w2,
y1 6= y2, and z1 6= z2. This means if there is a solution for
the adversary evasion problem, there exists a 3-dimensional
matching.

Conversely, suppose M is a 3DM. The d selected exclusive
triples correspond to k = d specific feature, each of which
controls 3 basis. As all the triples are non-overlapped, there
are 3d different responding basises that would flip the sign,
which means q(~x′) = q(~x)−∆ = q(~x)− 3d/D = λ. There-
fore, the adversary evasion problem can be solved if and
only if a 3DM exists.

Theorem B.2. Suppose that the number of inputs in any
basis is bounded by a constant c. Then ApproxEvasion
(Algorithm 3) computes a solution x′ to problem 6 which

achieves ∆̂ ≥ ∆∗

1+ε
, where ∆̂ = ∆(x′) in time poly(n, 1

ε
, 2c).

Proof. The operations of Trim and removing from Dl ev-
ery member that is greater than q(~x) maintain the property
that every element of Dl meets our decreasing requirement.
For every element di in Di that the corresponding retrieved
value is at most q(x), there exists an element dk ∈ Di such

that Retrieve(di)

(1+ε/2n)i
≤ Retrieve(dk) ≤ Retrieve(di). This
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must hold for the optimal ∆∗, therefore there exists an

element d ∈ Dn that ∆∗

(1+ε/2n)n
≤ Retrieve(d) ≤ ∆∗. Thus

∆∗

Retrieve(d)
≤ (1 + ε

2n
)n. As this inequality must also hold

for ∆̂, ∆∗

∆̂
≤ (1 + ε

2n
)n. Since lim

n→∞
(1 + ε/2n)n = eε/2 and

d
dn

(1 + ε/2n)n > 0, the function (1 + ε/2n)n increases with

n and we have (1+ε/2n)n ≤ eε/2 ≤ 1+ε/2+(ε/2)2 ≤ 1+ε.

Therefore, ∆̂ ≥ ∆∗

1+ε
.

Next we show that it is a polynomial-time approximation
scheme based on a restrictive feature group size c, which
is the maximum size of each feature group obtained from
Algorithm 4. To analyze the run time, we need to derive
the bound on the length of Di. After trimming between
groups of features, successive elements d and d′ of Di
must have the relationship d′/d > 1 + ε/2n. That is,
they must differ by a factor of at least 1 + ε/2n. Each
list, therefore, constraints the value 0, possibly value
δ > 0, which is a small number less than the minimal

α value, and up to blog1+ε/2n
q(x)
δ
c. Therefore we can

derive that the number of elements in each listDi is at most

2c
(

log1+ε/2n

q(x)

δ
+ 2

)
= 2c

(
ln q(x)

δ

ln(1 + ε/2n)
+ 2

)
(8)

≤2c
(

2n(1 + ε/2n) ln q(x)
δ

ε
+ 2

)
(9)

<2c
(

3n ln q(x)
δ

ε
+ 2

)
. (10)

Therefore, this bound of the list length is polynomial in
the size of the input n when c ≤ log2 n. Since the run-
ning time of ApproxAdversaryEvasion is polynomial in the
lengths of the Di, we conclude that there is a polynomial-
time approximation scheme (O(n · 2c)) with respect to the
restricted feature group size as c (c ≤ log2 n).

Algorithm 3 returns the approximate solution of maximum
∆ to obtain a minimal q(~x′) by modifying less or equal to
k features.

Algorithm 3ApproxAdversaryEvasion(F, q(~x), ε, k)

n← |F |
D0 ← {(∅, 0)} // tuple di = (feaSet, value) ∈ D
G = GenFeaGroup(F, S)
l← 0
for i ← 1 to |G| do

for j ← 1 to |gi| do
l← l+ 1 // merge two tuple-lists by di.value
Dl ←MergeTuple(Dl−1, AddFea(Dl−1, fij , k))

end for
Dl ← Trim(Dl, ε/2n)
remove elements from Dl that dl.value > q(~x)

end for
let d∗ correspond to the maximum d.value in Dn

return d∗

As the length of Di can be 2i, which makes the merge
algorithm take exponential time, here we employ the Al-
gorithm 6 to trim the list length. The idea is that if some

Algorithm 4 GenFeaGroup(F, S)

G← ∅
n← |F |
m← |S|
for j ← 1 to m do
for i← 1 to n do
gj ← ∅
if sji = 1 then
gj ← gj ∪ fi

end if
end for
G← G ∪ gj

end for
G← DisjointSet(G) // convert G to disjoint-sets
return G

combination of features make the decrease of q(~x) similar,
then only one combination should be kept. This means
that with a trimming parameter δ, for any element di re-
moved from Di, there is an element dj that approximates
di, that is,
Retrieve(di)

1+δ
≤ Retrieve(dj) ≤ Retrieve(di).

However, this Trim action can only be done for features
that have no common basises to avoid missing qualified
feature combination. Therefore, Algorithm 4 is applied to
group the features that need to be added as a whole before
Trim; and algorithm 5 helps to form different feature com-
binations and guarantee only less or equal to k features are
considered.

Algorithm 5 AddFea(D, f, k)

m← |D|
D′ ← ∅
for i← 1 to m do

if size(i.set ∪ f) ≤ k then
t′i.set← ti.set ∪ f
t′i.value← Retrieve(t′i.set)
insert t′i into ordered D′ by t′i.value

end if
end for
return D′

Algorithm 6 Trim(D, ε)

m← |D|
D′ ← d1

last← d1.value
for i ← 2 to m do
if di.value > last · (1 + ε) then

append di onto the end of D′

last← di.value
end if

end for
return D′

Finally, for each feature combination we would use the al-
gorithm 7 to obtain the corresponding value based on the
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chosen bases. Our goal is to find the feature combination
that reduce the most from q(~x) by flipping fewer features,
which means the strategy x′ can have a higher chance to
pass the classifier after less modification on the original
“ideal” instance x.

Algorithm 7 Retrieve(d)

w ← ∅
for fi ∈ d do
w ← w ⊕ wfi // wfi is basis set controled by fi

end for
v ←

∑
sj∈w

−2αxj // αxj is the actual value in x

return v

C Experiments

Here we test the AAS scheme with the same set up of
simulations on the feature space of 500, and similar results
shown as below have demonstrated the consistency and
robustness of our proposed approach.

(a) (b)

(c) (d)

Figure 10: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 0.2,V (x) =
G(x) = 1, PA = 1 (a) c=0.1; (b) c=0.3; (c) c=0.5; (d)
c=0.9.

(a) (b)

Figure 11: Comparison of the expected utility assum-
ing PA = 1, V (x) = G(x) = 1; (a) c = 0.1; (b) c = 0.3.

(a) (b)

(c) (d)

Figure 12: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 0.2,G(x) = 1,
PA = 1 (a) V (x) = 2, c=0.1; (b) V (x) = 10, c=0.1;
(c) V (x) = 2, c=0.3; (d) V (x) = 10, c=0.3.

(a) (b)

Figure 13: Comparison of the expected utility assum-
ing PA = 1; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.
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(a) (b)

Figure 14: Comparision of the expected utility assum-
ing PA = 1, introducing parameter error with 0.2 for
δ; (a) c = 0.1; (b) c = 0.3.

(a) (b)

Figure 15: Comparison of the expected utility assum-
ing PA = 1, introducing parameter error with 0.2 for
δ; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.

(a) (b)

Figure 16: Comparison of the expected utility assum-
ing PA = 1, introducing adversarial model error; (a)
c = 0.1; (b) c = 0.3.


