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Abstract—Starting with the seminal work by Kempe et al., a
broad variety of problems, such as targeted marketing and the
spread of viruses and malware, have been modeled as selecting
a subset of nodes to maximize diffusion through a network. In
cyber-security applications, however, a key consideration largely
ignored in this literature is stealth. In particular, an attacker
often has a specific target in mind, but succeeds only if the
target is reached (e.g., by malware) before the malicious payload
is detected and corresponding countermeasures deployed. The
dual side of this problem is deployment of a limited number of
monitoring units, such as cyber-forensics specialists, so as to limit
the likelihood of such targeted and stealthy diffusion processes
reaching their intended targets. We investigate the problem of
optimal monitoring of targeted stealthy diffusion processes, and
show that a number of natural variants of this problem are NP-
hard to approximate. On the positive side, we show that if stealthy
diffusion starts from randomly selected nodes, the defender’s
objective is submodular, and a fast greedy algorithm has provable
approximation guarantees. In addition, we present approximation
algorithms for the setting in which an attacker optimally responds
to the placement of monitoring nodes by adaptively selecting
the starting nodes for the diffusion process. Our experimental
results show that the proposed algorithms are highly effective
and scalable.

I. INTRODUCTION

In recent years, diffusion processes in social networks
have been the focus of intense study [1], [2], [3], [4], [5].
Much of the work in this space considers diffusion as a
desirable process, motivated by the study of viral marketing
strategies, and seeks to maximize its reach by choosing the
(near) optimal set of influential nodes. However, the same
mathematical framework can also be applied to malicious
diffusion processes. Indeed, the spread of computer worms—
perhaps the most prominent malicious diffusion process—has
been studied extensively using epidemic models [6], [7]. Even
though these models have been successfully used to analyze
the spread of some real-world worms, such as the Code Red
worm from 2001 [8], they do not consider a key aspect
of malware: stealth. In practice, once a worm is detected,
we can implement a number of effective countermeasures.
For example, if we acquire a sample of a worm, we can
use it to implement signature-based antivirus software. As
another example, if we learn of the vulnerabilities exploited
for propagation, we can patch them and effectively stop the
worm. In the case of non-targeted worms, which try to infect
as many computers as possible, stealth does not always play a
crucial role, since it may be in conflict with the primary goal of
maximizing impact. For example, the Code Red worm defaced
the websites hosted by the webservers that it had infected,
thereby immediately revealing its presence.

Fig. 1. Many worms, such as Conficker (top), spread so as to maximize the
number of infections. Others, like Gauss (bottom), aim at specific targets, and
deliberately try to avoid being detected, so that their spread is highly localized.

In contrast, recent years have seen the rise of highly
targeted worms. For example, the Stuxnet worm targeted
uranium-enrichment infrastructure in Iran, reportedly destroy-
ing one-fifth of the uranium centrifuges at the Natanz facil-
ity [9], while the Gauss worm was designed to spy on Lebanese
banks, including Bank of Beirut and EBLF, but it also targeted
users of Citibank and PayPal in the Middle East [10]. Even
though these worms propagated in a non-deterministic manner,
typically via USB flash drives and local area networks, they
had very specific (sets of) targets (Figure 1). In the case of
these worms, stealth plays a key role, as the worm must remain
covert until reaching its target in order to succeed.

Worms that can propagate over local networks and remov-
able drives pose a serious threat to systems that are meant to
be secured by the “air gap,” that is, by not connecting them to
the Internet or other public networks. In order to keep these
systems safe, it is imperative that we detect worms before they
reach their target. Consequently, systems must be continuously
monitored for suspicious activities and anomalies. For exam-
ple, we can monitor network connections originating from a
system to detect when a worm connects to a remote command-
and-control server, or use entropy analysis to find encrypted
malware payload. However, since thorough monitoring of a
system requires substantial resources and experts’ time, we
cannot monitor every system. Hence, we are faced with the
problem of determining which systems to monitor.



A. Approach

We introduce a new model of stealthy diffusion with
the goal of choosing a collection of nodes to monitor so
as to maximize the probability that the malicious diffusion
is detected before some high value asset is affected. We
analyze the problem of monitoring stealthy diffusion as a game
between two players, the attacker and the defender; we take the
side of the defender. The game is defined on a known graph,
with a distinguished target node. The attacker chooses a single
seed node, and the defender selects k monitor nodes. Both
the defender’s and attacker’s choices are restricted to subsets
of network nodes (i.e., only nodes that are under their direct
control, or, for the attacker, that could be directly attacked).
The defender’s utility is the probability that the diffusion
process hits a monitor node before reaching the target.

Our model bears resemblance to recent work on com-
petitive influence maximization [11], [12], [13], [14], [15],
[16], [17]. However, our model is distinct in two respects:
first, because it accounts for stealth in the attacker’s primary
objective, and second, because of the defender’s focus on
malware detection, rather than blocking.

We consider two design choices, with two options each:
1) Diffusion process model. The two options here are the

independent cascade model as described by Kempe et
al. [3], and a variant of the independent cascade model
where each infected node repeatedly tries to infect its
neighbors, until they are all infected. The latter model,
which we call repeated independent cascade, provides
a more realistic model for malicious diffusion, such
as the spread of computer worms. We also find the
repeated variant to be exciting on a conceptual level,
since it considerably enriches the problem of monitoring
the diffusion process in our setting, whereas it does
not lead to meaningful problems in the classic influence
maximization setting, as it is inevitable that all nodes will
be infected eventually.

2) Attacker power. In the distributional setting, the attacker
does not respond to the defender’s choice of monitors: we
are given upfront a probability distribution over his choice
of seed nodes. In the maximin setting, the (more powerful)
attacker best-responds to any choice of monitors by
minimizing the defender’s utility, and the defender’s goal
is to maximize the minimum utility.

B. Results

Our theoretical results focus on choosing an approximately
optimal set of monitors in polynomial time. Structure-wise, the
results are split according to the attacker model (item 2 above),
as this is the more significant factor. All the results below hold
for both diffusion models.

In Section III, we study the distributional setting. We
present a polynomial-time algorithm that approximates the
optimal solution to a factor of 1 − 1/e − o(1). We also
show that this result is tight, by proving that it is NP-hard
to approximate the problem to a factor of 1 − 1/e + o(1).
These results are reminiscent of the classic results for influence
maximization [3].

In Section IV, we study the maximin version of the
problem, which turns out to be much more challenging. In

fact, the problem is NP-hard to approximate to any factor,
even when the defender’s monitor budget is increased by a
factor of ln |S|, where S is the set of possible seed nodes. On
the positive side, we show that with an additional increase in
the number of monitors — |S|k ln(1/ε) — we can achieve a
1 − ε fraction of the optimum for k monitors, in polynomial
time. We also establish a stronger result when the diffusion
process is deterministic: k ln |S| monitors suffice to do as well
as the k-monitor optimum.

In Section VI, we test several algorithms on random graphs
and the autonomous-system relationship graph. We find that
our approximation algorithm for the distributional setting is
essentially optimal in practice. For the maximin setting, while
our approximation algorithm is not far from optimal, we
present two algorithms that are closer to optimal in practice,
albeit without providing worst-case guarantees.

II. MODEL

Our starting point is a model of diffusion (of viruses or
malware) through a network from an initial set S of affected
nodes. Importantly, in our theoretical results in Sections III
and IV, we assume that S is a singleton; we discuss the
generalization to any number of seed nodes in Section V.

Let G = (V,E), with |V | = n be a graph with a set of
nodes V , and for simplicity assume that this graph is undi-
rected. Each edge (v, w) ∈ E is associated with a probability
pvw which captures the likelihood of direct diffusion from node
v to its neighbor w. For two nodes v, w ∈ V , we use d(v, w)
to denote their shortest path distance in the graph. For a node
v ∈ V and integer d we use Γd(v) = {w | d(v, w) ≤ d} to
denote the set of all nodes that are within distance d from v.

One natural model of diffusion that has commonly been
considered in the past is known as the independent cascade
(IC) model [3]. A set of seed nodes S ⊆ V is infected at the
beginning of the diffusion process. In each subsequent round,
when a node first becomes infected it is active for exactly
one round. Each active node v ∈ V passes the infection
to its uninfected neighbor w ∈ V with probability pvw,
independently of previous rounds or neighbors. Note that in
the independent cascade model, the diffusion process dies out
after at most n rounds. In the context of cyber malware spread,
the notion that an infected node can only spread malware to its
neighbors once seems too limiting. We therefore also consider
a natural extension, which we term the repeated independent
cascade (RIC) model, in which infected nodes remain active
in all subsequent rounds. Thus, every infected node v attempts
to pass the infection to each uninfected neighbor w with
probability pvw in every round. We assume that for any edge
e ∈ E, either pe = 0 or pe ≥ ρ for some ρ ∈ Ω( 1

poly(n) ).

In most of the literature to date, given a diffusion process,
the problem has been to choose a set of initial seed nodes
S ⊆ V so as to maximize the expected total number of nodes
infected in the network.1 In cyber security, on the other hand,
the attacker often has specific targets in mind, and it is crucial
for the attacker to avoid detection. These two objectives are
typically in conflict: greater spread of an infection increases

1This goal is actually meaningless in the RIC model if a graph is connected,
since all nodes will eventually be infected.



the likelihood of reaching the target, but also increases the
likelihood of being detected before the target is reached. To
formalize this tradeoff, let M ⊂ V be a set of monitored
nodes, which we call simply monitors, let S ⊆ V be a set of
potential seed nodes (for example, nodes that can be reached
by the attacker directly), and let t /∈ S be the target of attack.
The restriction that t /∈ S is natural in cyber security: for
example, sensitive data is often not located on workstations in
regular use, but on servers available only behind a firewall (and
usually not susceptible to direct phishing attacks); as another
example, critical cyber-physical system infrastructure is often
separated from the internet by the air gap, so that it cannot
be attacked directly, but is susceptible to indirect infection (for
example, through software updates).

In our model, the attacker seeds a single node s ∈ S; see
Section V for a generalization to the case of multiple seeds. For
a given seed node s and a collection of monitors M , we define
the attacker’s utility as the probability that the target node t
is infected before any monitoring node detects an infection.
More formally, the attacker’s utility is the probability that the
infection reaches the target t before or at the same time as
when the first monitor is infected. The defender’s utility is the
converse: the probability that an infection is detected prior to
reaching the target t. We denote the corresponding defender’s
utility function by U(M, s).

We consider two models of attacker behavior. In the first
model, the attacker chooses s ∈ S using a known distribution
D over S. In this case, we are interested in the expected utility
of the defender, that is, the probability that there exists m ∈M
that is infected before t, where the probability is taken over
the edge probabilities of G and the choice of S. We denote
this by

U(M) = Es∼D[U(M, s)],

where U(·) denotes the utility function when seeds are chosen
randomly.

In the second model, the attacker first observes the choice
of monitors M , and then chooses a seed node s ∈ S
that minimizes the defender’s utility. We call this model the
maximin model and denote the defender’s utility by

V(M) = min
s∈S

U(M, s).

where V(·) denotes the utility function when seeds are chosen
in an adversarial way. In both attack models, the defender’s
goal is to choose a set of monitor nodes M ⊆M to maximize
the defender’s utility, whereM is the set of feasible monitoring
locations and |M | ≤ k for a given budget k. We use OPTk
to denote an optimal selection of M for a given model and
budget k.

III. WEAK ATTACKERS: THE DISTRIBUTIONAL SETTING

In this section, we study the weaker attacker model, where
a known distribution over seeds is given. This section’s main
result is a tight 1 − 1

e approximation for the case where the
attacker’s seed node is drawn from a known distribution. Our
algorithm proceeds by greedily choosing a set of k monitors
based on their marginal gains, U(M∪{m})−U(M). However,
since the diffusion process is stochastic and can be unbounded,
we cannot compute the exact value of U(M) directly — this

problem is indeed #P-hard for the independent cascade model
using a similar reduction to that of Chen et al. [18]. Instead, we
estimate U(M) in two steps by Uτ (M) and Ûτ (M). Define
Uτ (M) to be the utility measured over the first τ time steps,
i.e., the probability that the target is not reached before at least
one monitor is infected, measured over the first τ time steps.
We in turn estimate Uτ (M) via Ûτ (M) by running ` copies
of the diffusion process up to time τ , and taking the average
over the outcomes.

Algorithm 1 DISTRIBUTIONAL MONITORING

Input: G,M, k,S, t, attacker distribution D over choice of
seeds S , and δ, ε > 0.

1) Let `← 8k2

ε2 ln( 2k|M|
δ ) and τ ← n

ρ ln( 4kn
ε ).

2) Start with M ← ∅.
3) For i = 1, . . . , k do

a) Let m ∈ M be a node that maximizes the marginal
gain Ûτ (M ∪{m})− Ûτ (M), where the simulation is
taken over ` samples.

b) Set M ←M ∪ {m}.
Output: Set of monitors M .

Like Kempe et al. [3], to establish the approximation
guarantee of this algorithm, we rely on the celebrated result
of Nemhauser et al. [19] on optimizing monotonically non-
decreasing submodular functions. A function F defined over
a set S is said to be submodular if F : 2S → R+ satisfies a
natural diminishing returns property: the marginal gain from
adding an element to T ⊂ S is at least the marginal gain from
adding that element to any superset of T . More formally, for
any T ⊂ T ′ ⊂ S, and any s /∈ T ′,

F (T ∪ {s})− F (T ) ≥ F (T ′ ∪ {s})− F (T ′).

Function F is furthermore monotonically non-decreasing, if
for all s and T ⊆ S, F (T ∪ {s}) ≥ F (T ). Consider the
problem of choosing T ⊆ S with k elements that maximizes
the value of F (·). While this problem is NP-hard in general,
Nemhauser et al. [19] show that a simple greedy algorithm that
builds T by repeatedly adding an element with the maximum
marginal gain achieves a (1− 1

e ) approximation. We use this
result to prove the main theorem of this section.

Theorem 1. For any ε, δ > 0, Algorithm 1 runs in time
poly(n, 1ε ,

1
ρ , log( 1

δ )) and returns a set M ⊆ M, such that
|M | = k, and with probability 1− δ

U(M) ≥
(

1− 1

e

)
U(OPTk)− ε.

This guarantee holds under both the IC and RIC models.

Below we prove the theorem for the RIC model. A similar
(and slightly simpler) approach with different parameters also
works for the IC model. We omit the modified proof due to
space constraints.

The next lemmas first show that U(·) is a monotonically
non-decreasing submodular function, and furthermore, for the
choice of parameters in the algorithm, Ûτ (·) ≈ U(·). Putting
these together, we show that the greedy algorithm finds a set
that has utility at least (1− 1

e ) U(OPTk)− ε.



Lemma 1. U(·) is monotonically non-decreasing and submod-
ular over the set of monitor nodes.

Proof: Consider the outcome of the infection process to
be a partial ordering between the set of nodes in the order that
they are infected. For ordered partition σ, let Pr(σ) indicate
the probability of partition σ occurring, taken over the choice
of seed node from D and the outcomes of edge activations. For
a given partial ordering σ and choice of monitor nodes M , let
fσ(M) = 1 if there is a monitor m ∈M that is infected in σ
before t. Then

U(M) =
∑
σ

fσ(M) Pr(σ).

Since a non-negative linear combination of submodular
functions is also submodular, to show that U(·) is submodular
it suffices to show that for any σ, fσ(·) is submodular over set
monitor nodes. Take any partial ordering σ , M1 ⊂ M2, and
m′ 6∈M2. There are two cases.

Case 1: There exists m ∈ M2 that is infected before t
in σ. Then adding m′ to M2 does not produce any gain. So,
fσ(M1 ∪ {m′})− fσ(M1) ≥ 0 = 1− 1 = fσ(M2 ∪ {m′})−
fσ(M2).

Case 2: No m ∈M2 exists that is infected before t. Then
adding m′ to M1 and M2 has the same effect. So, fσ(M1 ∪
{m′})− fσ(M1) = fσ(M2 ∪ {m′})− fσ(M2).

As shown above, the marginal gain of each element is non-
negative, therefore, U(·) is also monotonically non-decreasing.

Lemma 2. For any ε, let τ = n
ρ ln(nε ). Then |U(M) −

Uτ (M)| ≤ ε.

Proof: Any s-t path has at most n edges, each succeeding
with probability at least ρ. For each edge, after τ ′ = 1

ρ ln(nε )
time steps, the probability that the edge is not activated is equal
to the probability that τ ′ independent attempts fail to activate
the edge, which is at most (1− ρ)τ

′ ≤ e−ρτ ′ = ε
n , where the

first inequality comes from the fact that 1 − x ≤ e−x for all
x ∈ [0, 1]. Then t will be activated in the first τ = nτ ′ time
steps, with probability at least 1− ε.

Let A be the event that t is infected by round τ , and Ā to
be its complement. By the above argument, Pr(Ā) ≤ ε. Let
U(M |A) indicate the utility U(M) of the set M conditioned
on the event A. That is, U(M |A) is the probability that a
monitor is infected before the target, given that the target is
infected in the first τ steps. Define Uτ (M |A), U(M |Ā) and
Uτ (M |Ā) similarly. By this definition, Uτ (M |A) = U(M |A).
On the other hand, if the target is not reached within the first
τ steps, then Uτ (M |Ā) = 1. So, Uτ (M |Ā) ≥ U(M |Ā). It
follows that,

Uτ (M) = Uτ (M |A) Pr(A) + Uτ (M |Ā) Pr(Ā)

≥ U(M |A) Pr(A) + U(M |Ā) Pr(Ā)

= U(M),

and

Uτ (M) = Uτ (M |A) Pr(A) + Uτ (M |Ā) Pr(Ā)

= U(M |A) Pr(A) + Pr(Ā)

≤ U(M) + ε.

Putting the above two inequalities together we have |U(M)−
Uτ (M)| ≤ ε.

Lemma 3. For any ε, δ > 0 and M , let Ûτ (M) be the average
of ` = 1

2ε2 ln( 2
δ ) simulations of Uτ (M). With probability at

least 1− δ, ∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≤ ε.

Proof: We estimate the probability that the target is not
reached before a monitor is infected, in the first τ time
steps, using ` = ln( 2

δ ) 1
2ε2 simulations. The outcome of each

simulation is a random variable Xi with expectation Uτ (M).
Using Hoeffding’s inequality we have

Pr
[∣∣∣Ûτ (M)− Uτ (M)

∣∣∣ ≥ ε]
= Pr

[∣∣∣∣∣1` ∑̀
i=1

Xi − E

[
1

`

∑̀
i=1

Xi

]∣∣∣∣∣ ≥ ε
]

≤ 2e−2`ε
2

≤ δ.

We are now ready to prove the theorem.

Proof of Theorem 1: Recall from Algorithm 1 that ` =
8k2

ε2 ln( 2k|M|
δ ) and τ = n

ρ ln( 4kn
ε ).

The algorithm takes k rounds, and at each round estimates
the utility of O(|M|) monitors. By Lemma 3, for each of these
estimates, with probability 1 − δ

k|M| ,
∣∣∣Ûτ (M)− Uτ (M)

∣∣∣ ≤
ε/(4k). So, with probability 1 − δ, all the estimates Ûτ (·)
used in the algorithm are within ε/4 of their respective Uτ (·).
Using Lemma 2, this is within ε/(4k) of U(·). Therefore,
|Ûτ (M)−U(M)| ≤ ε/(2k) for all M considered by the greedy
algorithm.

The (1 − 1
e ) U(OPTk) − ε guarantee then follows by

applying the result of Nemhauser et al. [19] (described above)
for optimizing submodular functions, and observing that at
each of the k steps of Algorithm 1, which uses estimates of
the utilities, the true marginal utility of the chosen monitor
differs from the choice the exact greedy algorithm would have
made at this round by at most ε/k. So, at each step the true
contribution of the node chosen at that step is close to the
contribution of node with the best marginal gain. We conclude
that after k estimated greedy choices the outcome has a utility
that differs from the exact greedy solution, which has value
(1− 1

e ) U(OPTk), by at most ε.2

Next we provide a matching hardness result to complement
Theorem 1.

Theorem 2. Finding a (1− 1
e + o(1))-approximately optimal

monitor set is NP-hard under the IC and RIC models. That is,
it is NP-hard to find a set M ⊆M such that |M | ≤ k and

U(M)

U(OPTk)
> 1− 1

e
.

This is true even if D has singleton support.

2Proof of Theorem 4 formalizes this argument for a more general optimiza-
tion problem discussed in the future section.



Proof: We present a reduction from the search version
of the MAX-COVER problem: Given a set of elements U , a
collection of its subsets A ⊆ 2U , and a budget k such that there
exists a subset of A with size k that covers all the elements
U , it is NP-hard to find a subset of A of size k that covers
more than 1− 1

e fraction of U [20].

We create a graph G = (V,E) as follows. V includes one
vertex per a ∈ A, one vertex per u ∈ U , the deterministic
seed node s (which has probability 1 under D), the target t,
and two additional vertices v1 and v2 (see Figure 2). The set
of edges and their corresponding probabilities are as follow.

E =


e : au ∀a ∈ A, u ∈ U , s.t. u ∈ a pe = 1
e : su ∀u ∈ U pe = 1

|U |2
e : sv2, v1v2, v1t pe = 1


This graph is an instance of the targeted diffusion problem
with monitor set M corresponding to nodes in A, s being the
attacker seed node, and t being the target node.

Let M ′ be the choice of monitor nodes that correspond to a
k-cover of (U,A) and OPTk be the optimal set of k monitors.
Since there is a path of length 3 between s to t that consists
of edges with probability 1, target t is certainly infected at
time step 3 if a monitor is not infected earlier. So, the utility
of M ′ is the probability that at least one of the nodes in U
is infected in the first time step (and as result one monitor
becomes infected in the second time step). Then, the utility of
M ′ is the probability of the complement of the event where
none of the members of U are infected in the first step. Letting
|U | = m, we have

U(OPTk) ≥ U(M ′) = 1−
(

1− 1

m2

)m
.

Let M ⊆M be any monitor set and let α be the fraction
of the elements of U that are adjacent to some member of M ,
i.e., |Γ(M)| = αm is the size of the neighborhood of M in U .
The utility of the defender for choosing M is the probability
that at least one of the nodes in Γ(M) is infected in the first
time step. Therefore,

U(M) = 1−
(

1− 1

m2

)αm
.

We have

lim
m→∞

U(M)

U(M ′)
=

1−
(
1− 1

m2

)αm
1−

(
1− 1

m2

)m
= lim
m→∞

−
(
1− 1

m2

)αm( 2α

(1− 1
m2 )m2

+ α log
(
1− 1

m2

))
−
(
1− 1

m2

)m( 2

(1− 1
m2 )m2

+ log
(
1− 1

m2

))
= lim
m→∞

α log
(
1− 1

m2

)
log
(
1− 1

m2

) = α,

where the second equality follows by the application of
L’Hospital’s rule. So, if U(M)

U(M ′) > 1− 1
e , then |Γ(M)| > (1−

1
e )m. This implies that a polynomial time algorithm produces
a (1− 1

e )-approximation for any MAX-COVER instance, which
contradicts the hardness of (1 − 1

e )-approximation for MAX-
COVER.

t v1

v2

s

U M

Fig. 2. Illustration of the construction used in the proof of Theorem 2. All
solid edges have probability 1 and all dotted edges have probability 1/|U |2.

IV. POWERFUL ATTACKERS: THE MAXIMIN SETTING

We next tackle more powerful attackers that observed the
defender’s choice of monitors (for example, when such a
choice is made public) and best-respond to it. The defender’s
goal is then to choose a set of monitors M that maximizes
V(M) = mins∈S U(M, s).

Our first result is negative: we show that it is NP-hard to
find a set of (1− o(1))k ln(|S|) monitor nodes with non-zero
utility even when OPTk has utility 1. That is, the targeted
diffusion problem is hard to approximate to any factor even
when the given budget is significantly larger.

Theorem 3. For any ε > 0, it is NP-hard under the IC and RIC
models to find a set M ⊆M such that |M | ≤ (1−ε) ln(|S|)k,
and

V(M)

V(OPTk)
> 0.

This is true even if the diffusion process is deterministic, that
is, ρ = 1.

Proof: We reduce from the search version of the MIN-
SET-COVER problem: Given a set of elements U , a collection
of its subsets A ⊆ 2U , and k such that we are promised
that there exists a subset of A with size k that covers all the
elements of U , for any ε > 0, it is NP-hard to find a subset of
A of size (1− ε)k ln(|U |) that covers U [21].

Let (U,A) be an instance of MIN-SET-COVER with the
promise that there exists a subset of A of size k that covers
all the elements U . We create a graph G(V,E) as shown in
Figure 3. V includes one vertex per a ∈ A, one vertex per
u ∈ U , the target t, and an additional vertex v. E includes
one edge as for every a ∈ A and u ∈ U such that u ∈ a.
Furthermore, E has an edge vu for all u ∈ U ∪{t}. All edges
have probability 1 (so the IC and RIC models are equivalent
in the context of this construction).

Consider the maximin targeted diffusion problem with the
set of possible monitors M corresponding to the set of nodes
in A, set of possible attacker seed nodes S corresponding to
the set of nodes in U , and t being the target node. Let OPTk
denote the optimal set cover for (U,A). Then V(OPTk) = 1,
because whichever node in S the attacker chooses, it is covered
by some monitor, which is reached in one step (whereas it takes
two steps to reach t).

Assume on the contrary that there is a polynomial time
algorithm for finding a set |M | ≤ (1 − ε) ln(|S|)k such that



t v

S M

Fig. 3. Illustration of the construction used in the proof of Theorem 3. All
edges have probability 1.

V(M) > 0. Since, all the edge probabilities are 1, this implies
that V(M) = 1. If Γ(M) ( S, then the attacker could choose
any u ∈ S \ Γ(M) as the seed node and successfully attack
the target with probability 1, leading to V(M) = 0. Therefore,
Γ(M) = S. But, this shows that there is a polynomial time
algorithm that approximates set cover within (1 − ε) ln(|U |),
which contradicts the hardness result stated above.

Next, we show that it is possible to achieve 1 − ε mul-
tiplicative factor approximation of V(OPTk) using at most
|S|k ln(1/ε) monitors. For a seed node s, let Us(·) represent
the utility function when the attacker deterministically selects
s. Algorithm 2 informally proceeds as follows: For each seed
node s, individually, choose k ln(1/ε) monitors greedily based
on their estimated marginal gain with respect to Us(·) and store
them in a set M(s). The algorithm then returns

⋃
s∈SM(s).

Algorithm 2 MAXMIN MONITORING

Input: G,M, k,S, t and δ, ε, γ > 0.
1) Let ` ← 36k2 ln2(1/ε)

γ2 ln
(

δ
2|S|·|M|k ln(1/ε)

)
and τ ←

n
ρ ln( 8nk ln(1/ε)

γ ).
2) For all s ∈ S, do

a) Set M(s)← ∅.
b) For all i = 1, . . . , k log( 1

ε ): Let mi ∈ M be a node
that maximizes the estimated marginal gain Ûτs (M(s)∪
{mi})−Ûτs (M(s)), where the simulation is taken over
` tries up to τ time steps. Set M(s)←M(s) ∪ {mi}.

c) M ←M ∪M(s).
Output: Set of monitors M .

Theorem 4. For any maximin targeted diffusion instance, any
k, ε > 0, γ > 0 and δ > 0, Algorithm 2 runs in time
poly(n, 1ε ,

1
γ ,

1
ρ , log( 1

δ )) and finds a set |M | ≤ |S|k ln(1/ε)
such that with probability 1−δ, V(M) ≥ (1−ε) V(OPTk)−γ.
This guarantee holds under both the IC and RIC models.

As before, we prove the theorem for the more difficult
RIC model; modifying the proof for the IC model is an easy
exercise.

Proof: Let OPTk represent the optimal set of k monitor
nodes for the maximin utility V(·). For a seed node s, let
OPTk(s) represent the optimal set of k monitors when the
attacker deterministically selects s. Then for all s ∈ S,
V(OPTk) ≤ Us(OPTk(s)).

To prove the claim, it suffices to show that for any s,

when we choose M(s) using k ln(1/ε) greedy selections of
monitors, we have,

Us(M(s)) ≥ (1− ε) Us(OPTk(s))− γ, (1)

and as a result,

V

(⋃
s

M(s)

)
≥ min

s
Us(M(s))

≥ min
s

(1− ε) Us(OPTk(s))− γ

≥ (1− ε) V(OPTk)− γ.
Hereinafter, we focus on establishing Equation (1). For ease
of notation, we suppress s in Us(·) and M(s) and represent
them, respectively, by U(·) and M . Let ξ = γ

2k ln(1/ε) .

For a fixed M and

` =
8

ξ2
log(δ/(2|S| · |M|k ln(1/ε)))

simulations up to time step τ = n
ρ ln(4nk log(1/ε)/ε), using

Hoeffding’s inequality we have

Pr

[∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≥ ξ

4

]
≤ 2e−`ξ

2/8

≤ δ

|S| · |M|k ln(1/ε)
.

A total of |S| · |M|k ln(1/ε) sets are considered by the
algorithm, so with probability 1 − δ, for any M considered
by the algorithm, we have

∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≤ ξ/4. Ad-

ditionally, by Lemma 2, |Uτ (M)− U(M)| ≤ ξ/4. Therefore,
with probability 1−δ, for any M considered by the algorithm,
we have

∣∣∣Ûτ (M)− U(M)
∣∣∣ ≤ ξ/2.

Let us introduce additional notations to help with the proof.
For any set M and monitor m, let gM (m) = U(M ∪ m) −
U(M) be the marginal utility of m with respect to the set
M . Similarly, let ĝτM (m) = Ûτ (M ∪ m) − Ûτ (M). Then,
with probability 1 − δ, for any M and m considered by the
algorithm, we have |ĝτM (m)− gM (m)| ≤ ξ.

Next, for any i ≤ k ln(1/ε), let Mi =
⋃
j≤imj be the set

of monitors that have been chosen by the greedy algorithm
up to and including step i for the seed node s. we prove by
induction that.

U(OPTk(s))− U(Mi) ≤
(

1− 1

k

)i
U(OPTk(s))− 2iξ.

For the case of i = 0, the claim holds trivially. Assume that this
claim holds for i− 1. At step i, mi is chosen such that mi =
arg maxm ĝ

τ
Mi−1

(m). So in particular, mi has higher estimated
marginal utility than any monitor in the set OPTk(s) \Mi−1.
If OPTk(s)\Mi−1 = ∅, then we have already achieved utility
of at least OPTk(s) and the claim holds trivially. If not, then
0 < |OPTk(s) \Mi−1| ≤ k. So,

ĝτMi−1
(mi) ≥

∑
m∈OPTk(s)\Mi−1

ĝτMi−1
(m)

|OPTk(s) \Mi−1|
.

Therefore,

gMi−1
(mi) ≥

1

k

∑
m∈OPTk(s)\Mi−1

gMi−1
(m)− 2ξ. (2)



On the other hand, using submodularlity, we have that

U(OPTk(s))− U(Mi−1) ≤
∑

m∈OPTk(s)\Mi−1

gMi−1
(m),

So, using this in conjunction with Equation (2), we get

gMi−1(mi) ≥
1

k
(U(OPTk(s))− U(Mi−1))− 2ξ.

It follows that

U(OPTk(s))− U(Mi)

= U(OPTk(s))− U(Mi−1)− gMi−1(mi)

≤
(

1− 1

k

)
(U(OPTk(s))− U(Mi−1)) + 2ξ

≤
(

1− 1

k

)i
U(OPTk(s)) + 2(i− 1)ξ + 2ξ

≤
(

1− 1

k

)i
U(OPTk(s)) + 2iξ.

Therefore, after i = k ln(1/ε) rounds and replacing ξ =
γ

2k ln(1/ε) , we get Us(M(s)) ≥ (1 − ε) Us(OPTk(s)) − γ.
So, with probability 1− δ, V(M) ≥ (1− ε) V(OPTk)− γ.

Our final theoretical result states that if the diffusion
process is deterministic (case of ρ = 1), then k ln(|S|) monitor
nodes are sufficient to find the optimal solution. Note that by
the (1 − ε) ln(|S|)k lower bound of Theorem 3, which holds
even for the ρ = 1 case, this is the smallest number of monitors
needed to guarantee a non-zero utility.

The idea behind our Algorithm, presented below as Algo-
rithm 3, is to choose monitors in a way as to “cover” the set
of all possible seed nodes. Specifically, for each possible seed
node s ∈ S and candidate monitor node m ∈ M, we say
that m covers s if m is successful at monitoring the diffusion
process starting from s, i.e., the deterministic diffusion process
starting at s infects m before it infects the target. Our algorithm
then constructs an equivalent set cover instance for an instance
of a deterministic diffusion problem and greedily finds a set
cover of size k ln(|S|).

Algorithm 3 MAXIMIN MONITORING WITH ρ = 1

Input: G,M, k,S, t.
1) For all s ∈ S create the set Γd(s,t)−1(s).
2) Create a set cover instance (S,M), where for the element

corresponding to s ∈ S and the set corresponding to m ∈
M, s ∈ m if and only if m ∈ Γd(s,t)−1. See Figure 4 for
an example.

3) Greedily find a set cover M ⊆M for (S,M).
Output: Set of monitors M .

Theorem 5. For any maximin targeted diffusion instance with
ρ = 1 and for any k, Algorithm 3 runs in polynomial time in n
and finds a set |M | ≤ k ln(|S|) such that V(M) = V(OPTk).

Proof: Since ρ = 1, all edges in the instance have prob-
ability 1 and the diffusion process is deterministic. Therefore,
for any k, V(OPTk) ∈ {0, 1}. In the case of V(OPTk) = 0,
the theorem holds trivially. Hence, we focus on the case of
V(OPTk) = 1.

First, we show that there is a one-to-one and onto mapping
between set covers of (S,M) and a monitor sets with utility
1. For any monitor set M such that V(M) = 1, consider
the collection of sets that correspond to M ; with abuse of
notation we also call this M . Since, V(M) = 1, for every
choice of attacker seed nodes s ∈ S, there exists a monitor
m ∈ M , such that d(s,m) < d(s, t), i.e., the monitor m
is infected before target t. Therefore, for such m, we have
m ∈ Γd(s,t)−1(s). It follows that the collection of sets that
correspond to the choice of monitors in M forms a set cover for
(S,M). Conversely, for any set cover M for (S,M), consider
the set of monitor nodes that correspond to M ; with abuse of
notation we also call this M . Since M is a set cover, for all
s ∈ S there exists a set m ∈M such that s ∈M . Consider the
corresponding nodes s and m in the diffusion instance. This
means that m ∈ Γd(s,t)−1(s). So, if s is the seed node, m gets
is infected before t. Therefore, for every choice of attacker
seed node s ∈ S , there is a monitor in M that is infected
before the target, so V(M) = 1.

It therefore suffices to show that the greedy set cover
algorithm produces a set cover of size at most k ln(|S|). This is
a well-known fact. Here, we provide a simple proof of this fact
for completeness. Since there is a one-to-one mapping between
the set covers and monitor sets with utility 1, there is a set
cover of size k for (S,M). Therefore, there must be a set that
covers at least |S|k of the points. The greedy procedure chooses
this largest set, so there are at most |S|(1 − 1

k ) uncovered
elements left after the first greedy choice. Similarly, since the
optimal algorithm uses at most k sets to cover the remaining
uncovered nodes after step i − 1, there must be a set that
covers 1

k of the remaining elements. So, there are at most
|S|(1 − 1

k )i elements left after the ith greedy choice. After
i = k ln(|S|) greedy choices, there are |S|(1 − 1

k )k ln |S| < 1
uncovered elements in S. We conclude that there is a set cover
of size k ln(|S|). This corresponds to a monitor set of size
k ln(|S|) with utility 1.

The idea of “covering” the seeds nodes, used in this algo-
rithm, leads to heuristic algorithms for diffusion processes that
are not deterministic (general ρ). Even though the theoretical
guarantees of the above algorithm do not extend to the case
of general diffusion processes, the smaller number of monitor
nodes required by this algorithm (Theorem 5), compared to
the larger number of monitor nodes required by Algorithm 2,
motivates experimental study of algorithms that attempt to
greedily “cover” the set of seed nodes even when ρ < 1. We
discuss these algorithms in Section VI.

V. GENERALIZATIONS

The model of Section II and our theoretical results are
formulated in terms of a single seed node. It is natural, though,
to ask about the case where, like the defender, the attacker has
a budget b, and selects a subset S ⊂ S of seed nodes such that
|S| ≤ b.

An interesting aspect of this more general problem from
the attacker’s perspective is that the objective of the attacker
is not monotone in the size of the set S, unlike the traditional
influence maximization problem: while seeding more nodes
would increase the likelihood of reaching the target (or de-
crease the time to reach it), it may also increase the likelihood
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Fig. 4. An illustration of Step 2 of Algorithm 3. In the example, S = {s1, s2, s3, s4}, and M = {m1,m2,m3}. The given graph is on the left, and the
constructed set cover instance is on the right.

of being detected.

In Section III, the restriction to b = 1 is made purely for
ease of exposition. Of course, it only makes the hardness result
(Theorem 2) stronger. As for the positive result (Theorem 1),
to see why the proof can be generalized with the same ap-
proximation guarantee, the key is to extend the submodularity
argument (Lemma 1) by encoding the choice of all seed nodes
in σ, and letting fσ(M) = 1 if and only if there is a monitor
m ∈M that is infected in σ before all selected seed nodes.

In Section IV, the b = 1 restriction does play a technical
role — in the proof of Theorem 4. Specifically, Algorithm 2
processes each possible seed node separately. This approach
provides guarantees when any single seed node can be selected.
But when multiple seed nodes are selected, the approach does
not account for the diffusion process as a whole.

In contrast, the positive result for ρ = 1 (Theorem 5) essen-
tially goes through unchanged. Indeed, because the diffusion
process is deterministic, for a choice of k monitors M , there
are b seeds such that the process starting at all of them reaches
the target before (or at the same time as) any monitor if and
only if there is a single seed node with this property.

In addition, our model and results can be generalized in
another direction: detection delay. Specifically, we can allow
monitoring to take arbitrarily long to detect an infection, by
associating with each node v ∈ V a discrete distribution over
the number of iterations of the diffusion process between the
point of time v is infected and the point in which it detects
the infection.

Happily, essentially all our results go through when de-
tection delays are allowed. In particular, submodularity of the
utility function can be shown to hold by taking the detection
delays, too, into account when considering each infection order
σ. For example, if m was infected two rounds before t, but its
detection delay is, say, five rounds, then it will appear after t
in the order.

Above we say “essentially all our results” because Theo-
rem 5 is stated for a deterministic diffusion process; it does
generalize to the detection delay setting when delays are
deterministic (in that case each vertex can simply be replaced
by a path).

VI. NUMERICAL RESULTS

In this section, we present numerical results on the approx-
imation algorithms proposed in Sections III and IV. Further-
more, we also introduce two simple heuristics for the maximin
setting, which perform very well in practice. 3

3The software and dataset used for these experiments are available at http:
//aronlaszka.com/data/haghtalab2015monitoring.zip.

We conducted our experiments on three types of networks:

• Erdős-Rényi (E-R) random graphs [22]: We generated
random networks having 100 nodes and each possible
edge being present with probability 0.5. This model is
one of the most widely used random-graph models and,
hence, constitutes a good baseline.

• Barabási-Albert (B-A) random graphs [23]: We generated
random networks of 100 nodes, starting with cliques of 3
nodes and connecting every additional node to 3 existing
ones. B-A graphs are widely used to construct synthetic
graphs as their heavy-tailed degree distribution resembles
real social and technological networks.

• Autonomous System (AS) relationship graph: In the In-
ternet, an AS is a collection of connected routing prefixes
under the control of a single administrative entity. Even
though the network formed by AS does not correspond
directly to the propagation network, it arises from similar
technological and business processes. The graph used
in our experiments was obtained from the Cooperative
Association for Internet Data Analysis (CAIDA),4 and
consists of 68,526 nodes and 177,000 edges.

To instantiate our problem, we selected uniformly at random:
• 1 node to be the target node,
• 10 nodes to be the potential seed nodes,
• and 10 nodes to be the potential monitored nodes,

ensuring no overlap among these. Finally, we set the infection
probability of each edge to 0.5.

For each setting, propagation model, network type, and
budget value, we generated 15 instances (i.e., 15 random
graphs and/or random node subsets as above) and plotted the
average values over these instances. Finally, to estimate U(M)
or V(M) for a given set of nodes M in an instance, we sim-
ulated the diffusion process 10,000 times, each time running
until either the target or a monitored node was infected.

Due to space constraints, we omit the results for repeated
independent cascade model, as they are qualitatively the same
as the results presented below.

A. Distributional Setting

In this setting, we showed that Algorithm 1 has provable
approximation guarantees. In our experiments we consider
empirically how close its solutions are to optimal (computed
by exhaustive search). Figures 5 and 6 show that our algorithm
performs exceptionally well for B-A and E-R graphs, respec-
tively. Furthermore, as expected, its running time is much
lower than that of the exhaustive search in the computationally
more challenging cases. Moreover, Figure 7 shows the outputs

4http://as-rank.caida.org/

http://aronlaszka.com/data/haghtalab2015monitoring.zip
http://aronlaszka.com/data/haghtalab2015monitoring.zip
http://as-rank.caida.org/


of Algorithm 1 for the AS relationship graph, and we can see
from the measured running times that our algorithm scales
well (appears sublinear in the budget). Another interesting
observation is that in the large AS network increasing the
budget beyond 4 appears to make little difference in the
objective value, suggesting that it is most important to place
the first few monitors well.
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Fig. 5. Comparison of algorithms for the distributional setting on B-A graphs
with independent cascades.
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Fig. 6. Comparison of algorithms for the distributional setting on E-R graphs
with independent cascades.
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Fig. 7. Evaluation of Algorithm 1 for the distributional setting on the AS
relationship graph with independent cascades.

B. Maximin Setting

Next, we compare Algorithm 2 to an exhaustive search in
the maximin setting. Recall from Section IV that Algorithm 2
may output a set of monitored nodes whose size exceeds the
budget. Consequently, to make a fair comparison, we use a
variation of Algorithm 2, which is based on the same principle,
but always produces a set of size k. More specifically, we
increment the sets M(s) at the same time (i.e., we iterate over
all the seed nodes and increment each set, then iterate over all
the seed nodes again, etc.) and stop the algorithm as soon as
the size of their union M = ∪sM(s) reaches k.

As we will see, Algorithm 2 does not perform as well in
the maximin setting as Algorithm 1 does in the distributional
setting. Consequently, we introduce two new algorithms, called
greedy and heuristic, which are closer to optimal in practice.
• Greedy is a straightforward greedy algorithm for max-

imizing the set function V(M) (i.e., the same as Algo-
rithm 1, but maximizes V instead of U).

• Heuristic is a greedy heuristic algorithm which works as
follows: start with an empty set M = ∅ and add nodes
to M iteratively; in each iteration, take a seed node s
with minimum Us, and add a monitoring node m that
maximizes Us(M ∪ {m}) to M . The rationale behind
this heuristic is that in order to secure the target against
the worst-case attacker of the maximin setting, we have
to “cover” the seed node that is least “covered.”
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Fig. 8. Comparison of algorithms for the maximin setting on B-A graphs
with independent cascades.
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Fig. 9. Comparison of algorithms for the maximin setting on E-R graphs
with independent cascades.
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Fig. 10. Comparison of algorithms for the maximin setting on the AS
relationship graph with independent cascades.

Figures 8, 9, and 10 compare Algorithm 2, greedy, heuris-
tic, and exhaustive search in the independent cascades model
for B-A graphs, E-R graphs, and the AS relationship graph, re-
spectively (in the AS graph, we omit optimal exhaustive search,



which is intractable). Firstly, we can see that Algorithm 2
does not perform well, even compared to the greedy and
heuristic algorithms. On the other hand, the greedy algorithm
is near optimal, but its running time is the highest among
the suboptimal algorithms. Finally, the heuristic algorithm
performs reasonably well, especially in more complex cases,
and its running time is the lowest among all. That said, an
advantage of Algorithm 2 is that it provides worst-case guar-
antees, whereas there are examples showing that the greedy
and heuristic algorithms fail miserably in the worst case.

VII. CONCLUSION

We introduced a novel model of stealthy diffusion, relevant
in many cyber (and cyber-physical system) security settings,
whereby an adversary aims to attack a specific target but
simultaneously to avoid detection. Focusing on the defender’s
problem of choosing monitor locations so as to maximize
the probability of detecting such stealthy diffusion (e.g., of
malware) prior to its reaching the target, we present both
negative (inapproximability) results, and polynomial-time al-
gorithms for several natural variants of this problem. In one
of these variants, where the attacker randomly chooses an
initial site of infection, we exhibited a greedy algorithm which
achieves a constant factor approximation. In another, where
the attacker optimally responds to monitor placement in the
choice of initial infection, we exhibited several polynomial-
time algorithms which can return solutions arbitrarily close
to optimal, but at the cost of using more monitoring nodes.
In our experiments, we introduced two additional heuristics
for the latter variant of the problem, and while all algorithms
proved effective at solving the problem, the two heuristics
were particularly good, even though they can be arbitrarily
suboptimal on some classes of networks.

There are a number of natural future research directions.
First, while some of our results can be generalized to consider
attackers choosing more than a single initial site of infection
(see Section V), generalizing others (e.g., Algorithm 2) appears
non-trivial. Moreover, with more than a single node to choose,
the attacker’s problem itself becomes quite challenging, and the
development of both good algorithms and heuristics for this
subproblem, as well as generalizing the defender’s resulting
task, are important open problems.
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