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Abstract
In recent years AI research has had an increasing
role in models and algorithms for security prob-
lems. Game theoretic models of security, and
Stackelberg security games in particular, have re-
ceived special attention, in part because these mod-
els and associated tools have seen actual deploy-
ment in homeland security and sustainability appli-
cations. Stackelberg security games have two pro-
totypical features: 1) a collection of potential assets
which require protection, and 2) a sequential struc-
ture, where a defender first allocates protection re-
sources, and the attacker then responds with an op-
timal attack. I see the latter feature as the major
conceptual breakthrough, allowing very broad ap-
plication of the idea beyond physical security set-
tings. In particular, I describe three research prob-
lems which on the surface look nothing like proto-
typical security games: adversarial machine learn-
ing, privacy-preserving data sharing, and vaccine
design. I describe how the second conceptual as-
pect of security games offers a natural modeling
paradigm for these. This, in turn, has two impor-
tant benefits: first, it offers a new perspective on
these problems, and second, facilitates fundamen-
tal algorithmic contributions for these domains.

1 Introduction
In recent years AI research has had an increasing role in mod-
els and algorithms for security problems. AI interest in ad-
versarial problems is not new: there have been decades of re-
search in adversarial AI settings, such as games (e.g., check-
ers, chess, and poker) and robust algorithms (such as robust
learning and optimization). Unlike the classical adversarial
AI, where research is primarily algorithmic, application of
AI to security makes modeling a crucial part of the endeavor.

The prototypical model in security and AI is a two-player
game between a defender and an attacker. The defender is
charged with protecting some assets (commonly called tar-
gets), which the attacker wishes to attack. Both players typ-
ically have either resource constraints (e.g., a bound on the
number of targets that can be protected/attacked), or incur
a protection/attack cost, respectively. The utility functions

then reflect the value of assets, when safely protected (the
defender gains) or successfully attacked (the attacker gains).
In my view, a significant conceptual milestone was to model
this interaction between the defender and attacker as a Stack-
elberg game, in which the defender first chooses which as-
sets to protect (in a possibly randomized fashion), and the
attacker subsequently responds, taking into account the de-
fender’s strategy or, more generally, his posterior belief about
it [Paruchuri et al., 2008]. This modeling milestone had two
significant ramifications: first, it facilitated deployment of AI
solutions to security problems in the field, and second—and
this is particularly salient for my research—it opened the door
for transferring modeling concepts from security games to a
broad range of domains.

In this companion paper, I briefly describe three example
problems of broad interest in which I successfully applied se-
curity game modeling concepts.

2 Adversarial Machine Learning
The practical success of machine learning has led to its
widespread integration within security applications, such as
spam filtering and fraud and intrusion detection. Conceptu-
ally, machine learning works when sufficient training data is
collected so that the resulting model makes accurate predic-
tions on new data generated from the same, or sufficiently
similar distribution. Focusing on classification, adversarial
learning problems feature a benign and a malicious class (in
the simplest case), with the goal of predicting whether a par-
ticular instance, characterized by a feature vector x ∈ X ⊆
Rd, is malicious. Take spam email filtering as a natural exam-
ple. We see an email, which we translate into a feature vector
x (commonly, features are binary and indicate the presence of
specific words in an email), and apply a classifier h(x) to de-
termine whether it’s spam (say, labeled as +1) or not (labeled
as −1). If we decide it’s spam, the email is filtered (e.g., into
a spam folder); otherwise it is delivered to the user.

Now, notice that a spam email, which we see through
the feature space as x, actually represents an action of an
individual—the spammer—who chose to send that particu-
lar email to, say, sell Viagra. If this email is subsequently fil-
tered, the spammer can be expected to edit the email template,
choosing a new email, x′, that now bypasses the filter. If all
spammers were to do this, classifier-based spam filters would
rapidly become useless. In practice, such drift happens some-



what gradually, and spam filters are regularly “retrained” to
keep up with the shifting spam landscape.

The scenario I just described is called an evasion attack.
Clearly, evasion attacks can be devastating if the conse-
quences of false negatives are high. This problem motivates
the following two related research questions: 1) how do we
model evasion attacks, and 2) how do we develop classifica-
tion methods which are robust to evasion. Natural models
of evasion attacks, including those typically proposed in the
literature, fix the classifier, h(x), an ideal instance, x, and
consider an attacker who minimizes a distance (measured by
some weighted lp norm) between an attack instance x′ and
the ideal instance x, subject to the constraint that h(x′) = −1
(that is, x′ is classified as benign; passed on to the user in the
spam filtering example) [Lowd and Meek, 2005]. As stated,
this attack model isn’t itself useful for robust learning (the at-
tacker essentially always wins), but a natural variation is: im-
pose a budget constraint so that the attacker will do nothing
if the distance between x′ and x is too large [Li and Vorob-
eychik, 2014]. Many variations on this theme are possible
without changing the general idea. Whatever the specifics,
consider a classifier parametrized by a weight vector w, and
let Q(w;x) be a function which returns an x′, the response of
the adversary with ideal instance x to classifier w.

With the framing of security games and this adversarial
framework in mind, a Stackelberg security game is a good
conceptual fit: the defender here is the learner, controlling
w (the defender’s action space), while the attacker solves the
optimization problem (computes a best response to w), which
we encapsulate in the function Q(w;x) (the attacker’s action
space is X). The utility function of the defender (learner) is,
typically, the empirical risk (as an approximation of expected
loss), while the attacker’s utility is a combination of distance
to ideal instance x and either the value of being classified
as benign, or some function of distance to the classification
boundary. At this point, one may wonder how the learner
would possibly know the attacker’s ideal instance, x. The
answer is, by looking at training data: ideal instances corre-
spond to the malicious training instances.1

We proposed the first method for solving such games op-
timally for a l1-regularized linear SVM with a very gen-
eral class of adversarial models, including important models
which cannot be captured by a simple norm (for example,
allowing us to capture attackers who can substitute words,
such as synonyms, without detracting from the purpose of the
email) [Li and Vorobeychik, 2014]. The idea behind the al-
gorithm was that if the feature space X is finite, one can for-
mulate the learner’s optimization problem as a mixed-integer
linear program. This is impractical for a large feature space,
so we leverage constraint generation to iteratively add attacks
(x′), until the process converges. If the attacker is solving
an optimization problem (to optimality), convergence implies
an optimal solution for the learner. Our experimental evalu-
ation showed that this approach is significantly more robust
to evasion than alternatives (including several previous ad-
versarial learning methods), with only a small sacrifice in ac-
curacy if no evasion attacks occur. In a related effort, we

1One can think of this as a form of revealed preferences.

proposed a principled approach for embedding randomization
in decisions about whether or not to act on a feature vector
x, where action can involve filtering or forensic analysis [Li
and Vorobeychik, 2015]. The idea, again, was to model the
evasion attacks as expected utility maximizers, with utility
combining evasion and modification of an ideal instance, and
the defender choosing a probability distribution over feature-
conditional decision functions.

3 Privacy-Preserving Data Sharing
Now that data storage is relatively cheap, there is an increas-
ing tendency to collect information, and share it with the an-
alytics teams. Data sharing takes many forms: for example,
NIH and NSF have explicit policies that promote the shar-
ing of research data by requiring data management plans.
Numerous data sharing platforms have emerged, for exam-
ple, to further facilitate such activities as the sharing of ge-
nomic data for both validation and further exploration. In-
deed, within clinical contexts there is commonly a separation
between those who generate data (e.g., through clinical trials,
or by managing the EMR systems) and those who analyze
it. Data is also often shared to facilitate background checks
(intellius.com), and to increase transparency of democratic
institutions (e.g., property assessment data, voter registration
data). Moreover, detailed online and economic activity data is
now routinely collected by social media, credit card compa-
nies, search engines, and crediting bureaus, and is aggregated
and subsequently resold by data brokers. Through these for-
mal and informal transactions involving the sharing of data,
privacy stands out as a major concern. If you are a healthcare
provider, you are subject to explicit privacy regulations, in the
form of HIPAA in the US, and the Data Protection Directive
of the EU. Both of these regulations recognize the importance
of sharing data, and offer guidelines to balance the value of
shared data and privacy risk. Of particular salience to my re-
search is that such guidelines allow the use of risk assessment
to govern data sharing. HIPAA, for example, suggests as one
of the criteria for data to be considered “safe” to share (from a
regulatory perspective) that “the risk is very small that the in-
formation could be used, alone or in combination with other
reasonably available information, by an anticipated recipient
to identify an individual who is a subject of the information”.

As an illustration, consider the following problem: we
wish to share a record (corresponding to an individual), which
we represent as a vector x ∈ Rn, with xi a particular field,
such as name, SSN, address, ZIP code, gender, ICD9 (di-
agnostic) code, and so on. A typical goal is to transform x
into another attribute vector y so that it is difficult to recover
the identifying attributes (e.g., name) of x from y. Clearly,
one would strip all direct (or nearly direct) identifiers, such
as name, SSN, and exact address. The famous attack by
Sweeney in which she re-identified an anonymous hospital
record as belonging to a Massachusetts governor using a com-
bination of indirect attributes (such as admission date and ZIP
code) made clear that this isn’t sufficient [Sweeney, 1997].
In particular, some of the information, such as demograph-
ics (for example, a combination of gender, race, sex, and
ZIP code), can sometimes be used in conjunction with side



channel information to uniquely identify an individual in a
record which is superficially anonymized [Sweeney, 2002].
A common source of such side channels are public resources
such as voter registration records, which are fully identified,
and often contain detailed address and demographic informa-
tion. However, demographic information is often critical to
release, since it is often correlated with medically relevant
information, such as diagnosis and prognosis of a patient; re-
moving it altogether therefore significantly restricts the scope
of analytics. Indeed, such overprotection can at times lead
to elevated health risk [Fredrikson et al., 2014]. A common
approach, therefore, is generalization, by which an attribute,
such as a ZIP code, is replaced with a set containing it, such as
the first 3 digits of the zipcode [Sweeney, 2002]. Indeed, one
can consider a generalization hierarchy, by which a particular
attribute can be generalized to increasingly coarse categories
(or larger sets). In our notation, yi can then represent the level
of generalization of attribute i. There are two extreme cases
of interest: first, when yi = xi, that is, the attribute is shared
as is, and second, when yi is set to the highest level in the gen-
eralization hierarchy, which is equivalent to not sharing this
attribute at all (since yi indicates that the value xi belongs to
a set of all possible values of attribute i).

The tradeoff between the value of shared data and the as-
sociated privacy risk can be naturally captured by defining
a data sharing utility v(y;x) associated with the shared at-
tribute vector y, and the risk, R(y). If these are normalized
to be comparable, then the data sharer would aim to maxi-
mize u(y;x) = v(y;x)−R(y). The question is: how do you
determine risk, R(y)? In our work [Wan et al., 2015], we
view risk as determined by two factors: 1) the decision of the
data recipient whether to attempt re-identification of y (i.e.,
recovering the individual’s name), which we simply term at-
tack, and 2) the likelihood of success, conditional on such
an attack. Let Q(y) ∈ {0, 1} encode the attacker’s decision
whether to attack the record (Q(y) = 1) or not (Q(y) = 0),
and let p(y) the conditional probability of success, given at-
tack. Then R(y) = LQ(y)p(y) for some constant loss L
incurred if re-identification is successful. Notice here that
the recipient’s decision whether to attack is a function of
y. This is a consequence of the fact that y is what is ac-
tually shared with the recipient, who doesn’t need to decide
anything before having the data in hand. If we now posit
that the recipient’s decision is one of optimizing net benefit
of a re-identification attack, net loss (stemming from costs
of an attack, as well as any penalties that may be imposed
should the attack be discovered), modeling this setting us-
ing the concept of a Stackelberg security game is natural.
The simplest way to formalize the recipient’s decision within
this framework is to have them maximize the utility function
Q(y) ∈ argmaxa∈{0,1} a(V p(y)− c), where V and c are the
attacker’s benefit from a successful re-identification, and cost
incurred, respectively. In this model, it’s direct thatQ(y) = 1
iff p(y) > c/V (ignoring ties). There are several interesting
consequences of this model. The first is that sometimes data
is shared even if the publisher is certain that there is an attack;
this would happen if either L or p(y) are sufficiently small.
The second is that this model can be directly augmented to
include a hard constraint on risk R(y); for example, we can

actually constrain R(y) = 0, that is, that an economically
motivated attacker, as specified above, will never attack (we
call this the “no-attack” scenario). Remarkably, through a
case study we found that both of these variants outperform
what is perhaps the most common option offered by HIPAA,
termed Safe Harbor, which amounts to an enumerated list of
attribute generalization guidelines. Especially intriguing is
the fact that the “no-attack”, while obviously lower risk than
Safe Harbor within our modeling framework, actually attains
a higher data sharing utility on average: in a nutshell, Safe
Harbor will both over- and under-protect records, depending
on context.

4 Vaccine Design
Vaccination has a tremendous public health impact, prevent-
ing severe individual sickness, and in many cases epidemic
outbreaks. However, a number of infectious diseases defy
effective vaccination, influenza and HIV being, perhaps, the
most prominent in that class. Vaccination works by eliciting
an antibody which binds a viral protein, ideally at an active
site (that is, a site which is critical for viral survival and repli-
cation). Design of successful vaccines entails a myriad of
challenges. The one I am particularly interested in here is the
evolutionary challenge involved in antibody design, or the de-
sign of an antibody that would be targeted by a vaccine: both
flu and HIV can rapidly escape antibody binding through a
series of mutations.

Both the antibody, and the viral target, are proteins. While
binding is determined by the 3D structure of these proteins,
such structure is itself determined entirely by the sequence
of amino acids comprising the protein. The key challenge is
that structure is extremely challenging to determine computa-
tionally from sequence alone. Nevertheless, numerous com-
putational tools have emerged that compute protein structure
structure, and determine binding properties of pairs of pro-
teins (or pairs of molecules, more generally). These tools
typically work by using some form of stochastic local search
to minimize a total energy score over possible structures. For
my purposes, let’s consider binding prediction as a black box
that operates on a pair of protein sequences, a and v, the for-
mer denoting an antibody sequence, while the latter the viral
protein sequence (which in our case was the HIV gp120 enve-
lope protein, a common target of antibody binding). Hence-
forth, I use a to informally denote both a particular antibody
(including its structural characteristics), as well as formally
to denote a sequence (vector) of amino acids.

A basic antibody design problem can be formulated as the
following feasibility problem: find an antibody a such that
B(a, v) ≤ θ, where v is a specific target viral protein,B(a, v)
is the binding energy, and θ is a binding threshold (i.e., en-
ergy below this threshold implies that a binds to v). Com-
monly, this is posed as simply minimizing binding energy:
minaB(a, v) by the use of local search. Now, suppose that
we have identified an antibody a which binds to the target
virus v, is that the end of the line? I argue that it is not: what
is missing is the potential of viral mutation to escape binding
to the antibody.2 In particular, let v′ = Q(a; v) be a muta-

2The way this is often captured is by considering a panel of com-



tion to the native virus protein v which escapes binding a.
Mutations are generally stochastic, but there are a number of
effective constraints on these, including: a) survival (if too
many mutations are required, the virus is unlikely to survive
long enough to escape), and b) fitness (native type must have
a fitness advantage). To capture both of these, we introduced
a simple model of viral response based on the following op-
timization problem: minimize the number of mutations from
the native protein to escape the antibody a. We can formal-
ize this as the following optimization problem for the virus:
minv′:B(a,v′)≤θ ‖v−v′‖0, where the l0 norm counts the num-
ber of mutations from the native virus v, and the constraint
B(a, v′) ≤ θ ensures that v′ has escaped binding.

A pivotal feature of the virus escape problem is that it de-
pends on the antibody a which is being escaped. What im-
plication does this have for antibody design? At this point,
it seems that the conceptual framework from Stackelberg se-
curity games is a natural fit: the defender’s goal is to design
an antibody sequence a which is difficult for virus to escape.
We can formalize this by capturing said difficulty as the num-
ber of mutations required to escape, which gives rise to the
following optimization problem for the antibody [Panda and
Vorobeychik, 2015]: maxaminv′:B(a,v′)≤θ ‖v − v′‖0. For-
malizing the problem this way enables, in principle, the ap-
plication of AI algorithms to this particular combinatorial op-
timization problem. Of course, this is still not trivial: both
the antibody design space, and viral escape space, are enor-
mous. Just to be concrete, a typical antibody/virus protein
is on the order of 100 amino acids long (at least). Since
there are 20 amino acids that can be in each protein posi-
tion, the joint search space is 20020 (which does not even
include the possibility of insertions/deletions at particular po-
sitions). Even if we focus solely on the binding sites (which
requires us to identify a baseline 3D binding structure, such
as the VRC01/gp120 complex [Li et al., 2011], which is
what we used in our work), the resulting space is around
10020: substantial savings, to be sure, but hardly a tractable
search space. Our approach was to make use of stochastic
local search, relying on single-point mutations for the virus
which maximally increase binding energy, and considering
local random deviations from a known broadly binding anti-
body (VRC01). To improve scalability further, we made us of
machine learning techniques to predict binding. While such
techniques are not typically very accurate, they allow us to
rapidly scan the search space for promising candidates, and
we only used the computationally expensive protein model-
ing tools (in our case, Rosetta) in the relatively few promising
cases. After putting the computational elements together, we
found antibodies which were significantly more difficult for
the viral protein to escape through mutations than the VRC01
antibody which we used as the baseline (and which is one of
the most broadly binding antibodies known).

mon viral subtypes, and seeking an antibody which binds to many of
these. This task is generally viewed as quite computationally chal-
lenging, and only considers a fixed panel of viruses, ignoring rare
variants that may become common as a result of vaccination.

5 Conclusion
Adversarial machine learning, privacy-preserving data shar-
ing, and vaccine design, are three problems that, on the sur-
face, seem entirely distinct. What I hope to have demon-
strated is that these problems nevertheless can be usefully
captured within a single high-level modeling framework of
Stackelberg security games. This conceptual framework,
thus, is surprisingly general, potentially enabling us to port AI
algorithmic approaches designed for this class of models to a
broad variety of problems of considerable social relevance.
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