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Abstract Agent-based modeling is commonly used for studying complex sys-
tem properties emergent from interactions among agents. However, agent-
based models are often not developed explicitly for prediction, and are gener-
ally not validated as such. We therefore present a novel data-driven agent-
based modeling framework, in which individual behavior model is learned
by machine learning techniques, deployed in multi-agent systems and vali-
dated using a holdout sequence of collective adoption decisions. We apply the
framework to forecasting individual and aggregate residential rooftop solar
adoption in San Diego county and demonstrate that the resulting agent-based
model successfully forecasts solar adoption trends and provides a meaningful
quantification of uncertainty about its predictions. Meanwhile, we construct
a second agent-based model, with its parameters calibrated based on mean
square error of its fitted aggregate adoption to the ground truth. Our result
suggests that our data-driven agent-based approach based on maximum likeli-
hood estimation substantially outperforms the calibrated agent-based model.
Seeing advantage over the state-of-the-art modeling methodology, we utilize
our agent-based model to aid search for potentially better incentive structures
aimed at spurring more solar adoption. Although the impact of solar subsidies
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is rather limited in our case, our study still reveals that a simple heuristic
search algorithm can lead to more effective incentive plans than the current
solar subsidies in San Diego County and a previously explored structure. Fi-
nally, we examine an exclusive class of policies that gives away free systems
to low-income households, which are shown significantly more efficacious than
any incentive-based policies we have analyzed to date.

Keywords Machine Learning · Agent-based Modeling · Innovation Diffusion ·
Rooftop Solar · Policy Optimization

1 Introduction

The rooftop solar market in the US, and especially in California, has expe-
rienced explosive growth in last decade. At least in part this growth can be
attributed to the government incentive programs which effectively reduce the
system costs. One of the most aggressive incentive programs is the California
Solar Initiative (CSI), a rooftop solar subsidy program initiated in 2007 with
the goal of creating 1940 megawatts of solar capacity by 2016 [12]. The CSI
program has been touted as a great success, and it certainly seems so: over
2000 megawatts have been installed to date. However, in a rigorous sense,
success would have to be measured in comparison to some baseline; for ex-
ample, in comparison to the same world, but without incentives. Of course,
such an experiment is impossible in practice. However, in principle, insight can
be drawn by sensitivity analysis based on hypothetical solar diffusion model.
What is the most appropriate modeling methodology to build a highly robust
solar diffusion model?

Agent-based modeling (ABM) has long been a common framework of choice
for studying aggregate, or emergent, properties of complex systems as they
arise from microbehaviors of a multitude of agents in social and economic
contexts [7,30,35]. ABM appears well-suited to policy experimentation of just
the kind needed for the rooftop solar market. Indeed, there have been sev-
eral attempts to develop agent-based models of solar adoption trends [14,32,
38]. Both traditional agent-based modeling, as well as the specific models de-
veloped for solar adoption, use data to calibrate aspects of the models (for
example, features of the social network, such as density, are made to match
real networks), but not the entire model. More importantly, validation is of-
ten qualitative, or, if quantitative, using the same data as used for calibration.
The weakness of validation makes those models less eligible as a reliable policy
experiment tool.

The emergence of “Big Data” offers new opportunities to develop agent-
based models in a way that is entirely data-driven, both in terms of model
calibration and validation. In the particular case of rooftop solar adoption,
the CSI program, in addition to subsidies, also provides for a collection of
a significant amount of data by the program administrators, such as Center
for Sustainable Energy (CSE) in San Diego county, about specific (individual-
level) characteristics of adopters. While by itself insufficient, we combine this
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data with property assessment characteristics for all San Diego county resi-
dents to yield a high-fidelity data set which we use to calibrate artificial agent
models using machine learning techniques. However, the increasing availability
of data from various sources in all levels, i.e., micro and macro levels, also poses
significant computational challenge to any researcher who aims to study the
phenomenon of solar diffusion. Machine learning and data mining provide us
with efficient and scalable algorithms, well-principled techniques, such as cross
validation, feature selection etc. A data-driven ABM is then constructed using
exclusively such learned agent models, with no additional hand-tuned vari-
ables. Moreover, following standard practice in machine learning, we separate
the calibration data from the data used for validation.

This paper makes the following contributions:

1. a framework for data-driven agent-based modeling;
2. methods for learning individual-agent models of solar adoption, addressing

challenges posed by the market structure and the nature of the data;
3. an adaptation of a recent agent-based model of rooftop solar adoption, used

as a baseline, with an improved means for systematic calibration (systemi-
tizing the approach proposed by Palmer et al. [32] (entirely new addition
compared to our preliminary work [44]);

4. a data-driven agent-based model of solar adoption in (a portion of) San
Diego county, with forecasting efficacy evaluated on data not used for model
learning;

5. a comparison of the data-driven approach to the baseline adoption model
(a new addition compared to our preliminary work [44]);

6. a quantitative evaluation of the California Solar Initiative subsidy program
(including a significantly improved and extended approach to optimizing
the solar discount policy relative to our preliminary work [44]), a broad
class of incentive policies, and a broad class of solar system “seeding”
policies.

2 Related Work

Agent-based modeling methodology has a substantial, active, literature [7,30,
35], ranging from methodological to applied. Somewhat simplistically, the ap-
proach is characterized by the development of models of agent behavior, which
are integrated within a simulation environment. The common approach is to
make use of relatively simple agent models (for example, based on qualitative
knowledge of the domain, qualitative understanding of human behavior, etc.),
so that complexity arises primarily from agent interactions among themselves
and with the environment. For example, Thiele et al. [40] document that only
14% of articles published in the Journal of Artificial Societies and Social Sim-
ulation include parameter fitting. Our key methodological contribution is a
departure from developing simple agent models based on relevant qualitative
insights to learning such models entirely on data. Due to its reliance on data
about individual agent behavior, our approach is not universally applicable.
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However, we contend that such data is becoming increasingly prevalent, as
individual behavior is now continuously captured in the plethora of virtual
environments, as well as through the use of mobile devices. As such, we are
not concerned about simplicity of agent models per se; rather, it is “bounded”
by the amount of data available (the more data we have, the more complex
models we can reliably calibrate on it).

Thiele et al. [40], as well as Dancik et al. [13] propose methods for cali-
brating model parameters to data. However, unlike our work, neither offers
methodology for validation, and both operate at model-level, requiring ei-
ther extremely costly simulations (making calibration of many parameters
intractable), or, in the case of Dancik et al., a multi-variate Normal distri-
bution as a proxy, losing any guarantees about the quality of the original
model in the process. Our proposal of calibration at the agent level, in con-
trast, enables us to leverage state-of-the-art machine learning techniques, as
well as obtain more reliable, and interpretable, models at the individual agent
level. Recently, in field of ecology and sociology, there is rising interest to
combine agent-based model with empirical methods [24]. Biophysical mea-
surements, i.e., soil properties and socioeconomic surveys are used by Berger
and Schreinemachers [4] to generate a landscape and agent populations which
are consistent with empirical observation by Monte Carlo techniques. Notice
that this is quite different application from ours, since we do not need to gen-
erate an agent population; rather we instantiate our multi-agent simulation
with learned agents. Huigen et al. [22] visually calibrate a special agent-based
model using ethnographic histories of farm households to understand link-
age between land-use system dynamics and demographic dynamics. Happe et
al. [20] instantiate an agent-based agricultural policy simulator with empirical
data and investigate the impact of a regime switch in agricultural policy on
structural change under various framework conditions. However, the model is
not statistically validated. By populating ABM with a population of residen-
tial preferences drawn from the survey results, Brown and Robinson [9] explore
the effects of heterogeneity in residential preferences on an agent-based model
of urban sprawl, performing sensitivity analysis as a means of validation. In
settings of public-goods games, Janssen and Ahn [23] compare the empirical
performance of a variety of learning models with parameters estimated by
maximum likelihood estimation and theories of social preferences. However,
no systematic and rigorous validation is applied.

A number of agent-based modeling efforts are specifically targeted at the
rooftop solar adoption domain [8,14,32,38,33,37,45]. Denholm et al. [14] and
Boghesi et al. [8] follow a relatively traditional methodological approach (i.e.,
simple rule-based behavior model), and their focus is largely on financial con-
siderations in rooftop solar adoption. Palmer et al. [32] and Zhao et al. [45],
likewise use a traditional approach, but consider several potentially influen-
tial behavioral factors, such as social influence and household income. Palmer
et al. calibrate their model using total adoption data in Italy (unlike our ap-
proach, they do not separate calibration from validation). Zhao et al. set model
parameters based on a combination of census and survey data, but without
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performing higher-level model calibration with actual adoption trends. None of
these past approaches makes use of machine learning to develop agent models
(indeed, none except Palmer et al. calibrate the model using actual adop-
tion data, and even they do not seem to do so in a systematic way, using
instead “trial and error”). Much of this previous work on agent-based models
of rooftop solar adoption attempts to use the models to investigate alternative
policies. Unlike us, however, none (to our knowledge) consider the dynamic
optimization problem faced by policy makers (i.e., how much of the budget to
spend at each time period), nor compare alternative incentive schemes with
“seeding” policies (i.e., giving systems away, subject to a budget constraint).

There have also been a number of models of innovation diffusion in general,
as well as rooftop solar adoption in particular, that are not agent-based in
nature, but instead aspire only to anticipate aggregate-level trends. Bass [2]
introduce the classic “S-curve” quantitative model, building on the qualitative
insights offered by Rogers [39] and others. In the context of rooftop solar,
noteworthy efforts include Lobel and Perakis [28], Bollinger and Gillingham [6],
and van Benthem et al. [3]. Lobel and Perakis calibrate a simple model of
aggregate solar adoption in Germany on total adoption data; their model, like
ours, includes both economics (based on the feed-in tariff as well as learning-
by-doing effects on solar system costs) and peer effects. We therefore use their
model, adapted to individual agent behavior, as our “baseline”. Bollinger and
Gillingham demonstrate causal influence of peer effects on adoption decisions,
and van Benthem et al. focus on identifying and quantifying learning-by-doing
effects.

Several related efforts are somewhat closer in spirit to our work. Kearns
and Wortman [26] developed a theoretical model of learning from collective
behavior, making the connection between learning individual agent models
and models of aggregate behavior. However, this effort does not address the
general problem of learning from a single observed sequence of collective be-
havior which is of key interest to us. Judd et al. [25] use machine learning to
predict behavior of participants in social network coordination experiments,
but are only able to match the behavior qualitatively. Duong et al. [16] pro-
pose history-dependent graphical multiagent models to compactly represent
agent joint behavior based on empirical data from experimental cooperation
games. However, scalability of this approach is quite limited. Another effort in
a similar vein uses machine learning to calibrate walking models from real and
synthetic data, which are then aggregated in an agent-based simulation [41].
Aside from the fundamental differences in application domains from our set-
ting, Torrens et al. [41] largely eschew model validation, and do not consider
the subsequent problem of policy evaluation and optimization, both among
our key contributions. Most recently, Wunder et al. [42] fit a series of deter-
ministic and stochastic models to data collected from on-line experimental
public goods games. Like our approach, they make use of machine learning to
learn agent behavior, and validate the model using out-of-sample prediction.
However, this work does not validate the model ability to forecast individual
and aggregate-level behavior, since training and validation data sets are chosen
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randomly, rather than split across the time dimension (so that in many cases
future behavior is used to learn and model is validated on “past” behavior).
Moreover, the models are very simple and specific to the public goods game
scenario, taking advantage of the tightly controlled source of data.

Finally, there has been substantial literature that considers the problem of
marketing on social networks [27,10]. Almost universally, however, the associ-
ated approaches rely on the structure of specific, very simple, influence models,
without specific context or attempting to learn the individual behavior from
data (indeed, we find that simple baseline models are not sufficiently reliable
to be a basis for policy optimization in our setting). Moreover, most such ap-
proaches are static (do not consider the dynamic marketing problem, as we do),
although an important exception is the work by Golovin and Krause [19], in
which a simple greedy adaptive algorithm is proven to be competitive with the
optimal sequential decision for a stochastic optimization problem that satisfies
adaptive submodularity.

3 Data-Driven Agent-Based Modeling

The overwhelming majority of agent-based modeling efforts in general, as well
as in the context of innovation/solar adoption modeling in particular, involve:
a) manual development of an agent model, which is usually rule-based (fol-
lows simple behavior rules), b) ad hoc tuning of a large number of param-
eters, pertaining to both the agent behaviors, as well as the overall model
(environment characteristics, agent interactions, etc), and c) validation usu-
ally takes the form of qualitative expert assessment, or is in terms of overall
fit of aggregate behavior (e.g., total number of rooftop solar adoptions) to
ground truth, using the data on which the model was calibrated [7,30,35,8,
14,32,38,45]. We break with this tradition, offering instead a framework for
data-driven agent-based modeling (DDABM), where agent models are learned
from data about individual (typically, human) behavior, and the agent-based
model is thereby fully data-driven, with no additional parameters to govern its
behavior. We now present our general framework for data-driven agent-based
modeling (DDABM), which we subsequently apply to the problem of modeling
residential rooftop solar diffusion in San Diego county, California. The key fea-
tures of this framework are: a) explicit division of data into “calibration” and
“validation” to ensure sound and reliable model validation and b) automated
agent model training and cross-validation. In this framework, we make three
assumptions. The first is that time is discrete. While this assumption is not
of fundamental importance, it will help in presenting the concepts, and is the
assumption made in our application. The second assumption is that agents are
homogeneous. This may seem a strong assumption, but in fact it is without
loss of generality. To see this, suppose that h(x) is our model of agent behav-
ior, where x is state, or all information that conditions the agent’s decision.
Heterogeneity can be embedded in h by considering individual characteristics
in state x, such as personality traits and socio-economic status, or, as in our
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application domain, housing characteristics. Indeed, arbitrary heterogeneity
can be added by having a unique identifier for each agent be a part of state, so
that the behavior of each agent is unique. Our third assumption is that each
individual makes independent decisions at each time t, conditional on state x.
Again, if x includes all features relevant to an agent’s decision, this assumption
is relatively innocuous.

Given these assumptions, DDABM proceeds as follows. We start with a
data set of individual agent behavior over time,D = {(xit, yit)}i,t=0,...,T , where
i indexes agents, t time through some horizon T and yit indicates agent i’s
decision, i.e., 1 for “adopted” and 0 for “did not adopt” at time t.

1. Split the data D into calibration Dc and validation Dv parts along the
time dimension: Dc = {(xit, yit)}i,t≤Tc and Dv = {(xit, yit)}i,t>Tc where
Tc is a time threshold.

2. Learn a model of agent behavior h on Dc. Use cross-validation on Dc for
model (e.g., feature) selection.

3. Instantiate agents in the ABM using h learned in step 2.
4. Initialize the ABM to state xjTc for all artificial agents j.
5. Validate the ABM by running it from xTc using Dv.

One may wonder how to choose the initial state xjTc
for the artificial agents.

This is direct if the artificial agents in the ABM correspond to actual agents
in the data. For example, in rooftop solar adoption we know which agents
have adopted solar at time Tc, and their actual housing characteristics, etc.
Alternatively, one can run the ABM from the initial state, and start validation
upon reaching time Tc + 1.

Armed with the underlying framework for DDABM, we now proceed to
apply it in the context of spatial-temporal solar adoption dynamics in San
Diego county.

4 DDABM for Solar Adoption

4.1 Data

In order to construct the DDABM for rooftop solar adoption, we made use
of three data sets provided by the Center for Sustainable Energy: individual-
level adoption characteristics of residential solar projects installed in San Diego
county as a part of the California Solar Initiative (CSI), property assessment
data for the entire San Diego county, and electricity utilization data for most
of the San Diego county CSI participants spanning twelve months prior to
solar system installation. Our CSI data, covering projects completed between
May 2007 and April 2013 (about 6 years and 8,500 adopters), contains detailed
information about the rooftop solar projects, including system size, reported
cost, incentive (subsidy) amount, whether the system was purchased or leased,
the date of incentive reservation, and the date of actual system installation,
among others. The assessment data includes comprehensive housing charac-
teristics of San Diego county residents (about 440,000 households), including
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square footage, acreage, number of bedrooms and bathrooms, and whether or
not the property has a pool. The CSI and assessment data were merged so
that we could associate all property characteristics with adoption decisions.

4.2 Modeling Individual Agent Behavior

Our DDABM framework presupposes a discrete-time data set of individual
adoption decisions. At face value, this is not what we have: rather, our data
only appears to identify static characteristics of individuals, and their adop-
tion timing. This is, of course, not the full story. Much previous literature
on innovation diffusion in general [2,18,36,39], and solar adoption in particu-
lar [6,28,34,43], identifies two important factors that influence an individual’s
decision to adopt: economic benefits and peer effects. We quantify economic
benefits using net present value (NPV), or discounted net of benefits less costs
of adoption: NPV =

∑
t δ
t(bt − ct), where bt correspond to benefits (net sav-

ings) in month t, and ct are costs incurred in month t; we used a δ = 0.95
discount factor.1 Peer, or social, effects in adoption decisions arise from social
influence, which can take many forms. Most pertinent in the solar market is
geographic influence, or the number/density of adopters that are geograph-
ically close to an individual making a decision. Both economic benefits and
peer effects are dynamic: the former changes as system costs change over time,
while the latter changes directly in response to adoption decision by others. In
addition, peer effects create interdependencies among agent decisions, so that
aggregate adoption trends are not simply averages of individual decisions, but
evolve through a highly non-linear process. Consequently, even if we succeed
in learning individual agent models, this by no means guarantees success when
they are jointly instantiated in simulation, especially in the context of a fore-
casting task. Next, we describe in detail how we quantify economic and peer
effect variables in our model.

4.2.1 Quantifying Peer Effects

We start with the simpler issue of quantifying peer effects. The main challenge
is that there are many ways to measure these: for example, total number of
adopters in a zip code (a measure used previously [6]), fraction of adopters
in the entire area of interest (used by [28]), which is San Diego county in our
case, as well as the number/density of adopters within a given radius of the
individual making a decision. Because we ultimately utilize feature selection
methods such as regularization, our models consider a rather large collection
of these features, including both the number and density of adoptions in San
Diego county, the decision maker’s zip code, as well as within a given radius
of the decision maker for several radii. Because we are ultimately interested

1 Our choice of discount factor is in the typical range for residential photovoltaic sys-
tems [11]. We found that small variations in the discount rate do not significantly change
the results.
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in policy evaluation, we need to make sure that policy-relevant features can
be viewed as causal. While we can never fully guarantee this, our approach
for computing peer effect variables follows the methodology of Bollinger and
Gillingam [6], who tease out causality from the fact that there is significant
temporal separation between the adoption decision, which is indicated by the
incentive reservation action, and installation, which is used in measuring peer
effects.

4.2.2 Quantifying Net Present Value

To compute NPV in our DDABM framework we need to know costs and ben-
efits that would have been perceived by an individual i adopting a system at
time t. Of course, our data does not actually offer such counterfactuals, but
only provides information for adopters at the time of adoption. The structure
of solar adoption markets introduces another complication: there are two prin-
cipal means of adoption, buying and leasing. In the former, the customer pays
the costs up-front (we ignore any financing issues), while in the latter, the
household pays an up-front cost and a monthly cost to the installer. Moreover,
CSI program incentives are only offered to system buyers, who, in the case
of leased systems, are the installers. Consequently, incentives directly offset
the cost to those buying the system outright, but at best do so indirectly
for leased systems. In the case of leased systems, there is also an additional
data challenge: the system costs reported in the CSI data do not reflect actual
leasing expenses, but the estimated market value, and are therefore largely
useless for our purposes. Finally, both costs and benefits depend on the capac-
ity (in watts) of the installed system, and this information is only available for
individuals who have previously adopted.

Our first step is to estimate system capacity using property assessment
features. We do so using step-wise linear regression [15], arriving at a relatively
compact model, shown in Table 1. The adjusted R2 of this model is about 0.27,

Table 1 Linear model of solar system capacity (size). All coefficients are significant at
p = 0.05 level.

Predictor Estimate

(Intercept) 1.59
Owner Occupied (binary) -0.25

Has a Pool (binary) 0.63
Livable Square Footage 7.58e-04

Acreage (binary) 1.32
Average Electricity Utilization in Zipcode 8.25e-04

which is acceptable for our purposes.
Next, we use the system size variable to estimate system costs separately

for the purchased and leased systems. For the purchased systems, the cost
at the time of purchase is available and reasonably reliable in the CSI data,
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but only during the actual purchase time. However, costs of solar systems
decrease significantly over time. A principal theory for this phenomenon is
learning-by-doing [1,21,29,28,3], in which costs are a decreasing function of
aggregate technology adoption (representing, essentially, economies of scale).
In line with the learning-by-doing theory, we model the cost of a purchased
system as a function of property assessment characteristics, predicted system
size, and peer effect features, including total adoption in San Diego county.
We considered a number of models for ownership cost and ultimately found
that the linear model is most effective. In all cases, we used l1 regularization
for feature selection [17]. The resulting model is shown in Table 2.

Table 2 Ownership cost linear model.

Predictor Coefficient

(Intercept) 1.14e+04
Property Value 7.38e-04

Livable Square Footage 0.15
System Capacity 6.21e+03

Total Adoption in SD County -1.06

In order to estimate total discounted lease costs, we extracted cost details
from 227 lease contracts, and used this data to estimate the total discounted
leasing costs Cl =

∑
t δ
tct through the duration of the lease contract in a

manner similar to our estimation of ownership costs. One interesting finding
in our estimation of lease costs is that they appear to be largely insensitive to
the economic subsidies; more specifically, system capacity turned out to be the
only feature with a non-zero coefficient (the coefficient value was 1658, with
the intercept value of 10447). In particular, this implies that solar installers
do not pass down their savings to customers of leased systems.

Having tackled estimation of costs, we now turn to the other side of NPV
calculation: benefits. In the context of solar panel installation, economic ben-
efits are monthly savings, which are the total electricity costs offset by solar
system production. These depend on two factors: the size of the system, which
we estimate as described above, and the electricity rate. The latter seems
simple in principle, but the rate structure used by SDG&E (San Diego Gas
and Electric company) makes this a challenge. The SDG&E rates have over
the relevant time period a four-tier structure, with each tier depending on
monthly electricity utilization relative to a baseline. Tiers 1 and 2 have similar
low rates, while tiers 3 and 4 have significantly higher rates. Tier rates are
marginal: for example, tier-3 rates are only paid for electricity use above the
tier-3 threshold. The upshot is that we need to know electricity utilization
of an individual in order to estimate marginal electricity costs offset by the
installed solar system. For this purpose, we use the electricity utilization data
prior to solar PV installation for the adopters. Here, we run into a technical
problem: after running a regression model, we found that average predicted
electricity utilization for San Diego zip codes significantly exceed observed zip



Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption 11

code averages—in other words, our data is biased, apparently as a result of
adopters having systematically higher utilization rates than non-adopters. To
reduce the bias, we previously applied a penalized linear model [44]. Now, we
turn to an alternative method which is proven to be better-performed in terms
of goodness of fit. In this new method, we first average households of every zip
code area over all related features and obtain a ”representative” household of
each area. Then, those approximately 100 zip code ”representative” households
are used to fit the logarithm of zip code average electricity consumption with
a linear model.2 In addition, for those whose electricity consumption is known,
we use the information directly to compute solar economic savings. Based on
the idea, we train 12 electricity consumption models (i.e., each corresponds to
a month in a year) using typical household characteristics. Moreover, to cope
with possible over-fitting all linear consumption models are l1 regularized and
R2s are around 80%.3 For instance, the resulting models of January (lowest
temperature) and August (highest temperature) are shown in Table 3 and 4.

Table 3 Electricity Utilization Log Linear Model: January.

Predictor Coefficient

(Intercept) 5.64
# of bath rooms 1.62e-02

Has a Pool (binary) 0.45
Has a Pleasant View (binary) 0.12

Acreage (binary) 0.60
Home Age (till 2014) -4.85e-05

Table 4 Electricity Utilization Log Linear Model: August.

Predictor Coefficient

(Intercept) 5.49
Home Value of Last Time Sold -8.64e-08

# of bedrooms 0.25
Has a Pool (binary) 1.04
# of garage space 3.14e-03

Has a Pleasant View (binary) 2.49e-02
Acreage (binary) 0.65

Home Age (till 2014) -3.16e-05

Now that we can predict both system size and electricity utilization. More-
over, we can correspondingly predict, for an arbitrary individual, their monthly

2 Prediction of simple linear regression model without log is unbounded, which could go
below zero.

3 l1 regularization is a common method of model selection in machine learning to prevent
over-fitting by adding the l1 norm of weight vector to the loss function so as to penalize
extreme parameter values [5]. In linear regression, it is also known as ”lasso” regression [17].
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savings from having installed rooftop solar. Along with the predicted costs, this
gives us a complete evaluation of NPV for each potential adopter.

4.2.3 Learning the Individual-Agent Model

In putting everything together to learn an individual-agent model, we recognize
that there is an important difference between the decision to buy and the
decision to lease, as described above. In particular, we have to compute net
present value differently in the two models. Consequently, we actually learn
two models: one to predict the decision to lease, and another for the decision
to buy, each using its respective NPV feature, along with all of the other
features, including peer effects and property assessment, which are shared
between the models. For each decision model, we used l1-regularized logistic
regression. Taking xl and xo to be the feature vectors and pl(xl) and po(xo)
the corresponding logistic regression models of the lease and own decision
respectively, we then compute the probability of adoption

p(x) = pl(xl) + po(xo)− pl(xl)po(xo),

where x includes the NPV values for lease and own decisions.

To train the two logistic regression models, we can construct the data set
(xit, yit), where i correspond to the households in San Diego county and t
to months, with xit the feature vector of the relevant model and yit the lease
(own) decision, encoded as a 1 if the system is leased (owned) and 0 otherwise.
To separate calibration and validation we used only the data through 04/2011
for calibration, and the rest (through 04/2013) for ABM validation below. The
training set was comprised of nearly 7,000,000 data points, of which we ran-
domly chose 30% for calibration (due to scalability issues of standard logistic
regression implementation in R).4 All model selection was performed using 10-
fold cross-validation. Since leases only became available in 2008, we introduced
a dummy variable that was 1 if the lease option was available at the time and
0 otherwise. We also introduced seasonal dummy variables (Winter, Spring,
Summer) to account for seasonal variations in the adoption patterns. The final
model for the propensity to purchase a solar system is shown in Table 5, and
a model for leasing is shown in Table 6.

4.3 Agent-Based Model

The models developed above were implemented in the Repast ABM simulation
toolkit [31].

4 In fact, we have sampled the process multiple times, and can confirm that there is little
variance in the model or final results.
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Table 5 Ownership Logistic Regression Model

Predictor Coefficient

(Intercept) -10.45
Owner Occupied (binary) 1.23

# Installations Within 1 Mile Radius 3.19e-03
# Installations Within 1

4
Mile Radius 7.05e-03

Lease Option Available (binary) 0.73
Winter (binary) -0.61
Spring (binary) -0.19

Summer (binary) -0.37
Installation Density in Zipcode 82.02

NPV (Purchase) 9.74e-06

Table 6 Lease Logistic Regression Model

Predictor Coefficient

(Intercept) -14.04
Owner Occupied (binary) 1.00

# Installations Within 2 Mile Radius 3.26e-03
# Installations Within 1

4
Mile Radius 9.58e-03

Lease Option Available (binary) 2.17
Winter (binary) -0.40
Spring (binary) 0.30

Summer (binary) -0.30
Installation Density in Zipcode 45.85

NPV (Lease) 1.03e-05

4.3.1 Agents

The primary agent type in the model represents residential households (imple-
mented as a Java class in Repast). In the ABM we do not make the distinction
between leasing and buying solar systems, so that each agent acts according
the the stochastic model p(xit) derived as described in the previous section,
where xit is the system state relevant to agent i’s at time (iteration) t. In
addition, in order to flexibly control the execution of simulation, we defined a
special updater agent type which is responsible for updating state attributes
of household agents xit at each time step t.

4.3.2 Time Step

Time steps of the simulation correspond to months. At each tick of the simu-
lation, updater agent first updates features xit for all agents, such as purchase
and lease costs, incentive (which may depend on time), NPVs, and peer effects,
for all agents based on the state of world (e.g., the set of agents having adopted
thus far in the simulation). Lease and ownership cost are computed using the
lease and ownership cost models as described above, while the incentives may
follow an arbitrary subsidy scheme, and in particular can mirror the CSI rate
schedule. Next, each non-adopter household is asked to make a decision. When
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a household agent i is called upon to make the adoption decision at time t,
this agent adopts with probability p(xit). If an agent chooses to adopt, this
agent switches from being a non-adopter to becoming an adopter in the sim-
ulation environment. Moreover, when we thereby create a new adopter, we
also assign an installation period of the solar system. Specifically, just as in
reality, adoption decision only involves the reservation of the incentive, while
actual installation of the system takes place several months later. Since peer
effect variables are only affected by completed installations, it is important to
capture this lag time. We capture the delay between adoption and installation
using a random variable distributed uniformly in the interval [1, 6], which is
the typical lag time range in the training data.

4.3.3 Computing Peer Effect Variables

In order to compute geography-based peer effects, we need information about
geographic location of the households. To this end we use a Repast GIS pack-
age. A naive way to compute peer effect variables would update these for each
non-adopter agent in each iteration. However, this approach is very inefficient
and scales poorly, as there are vastly more non-adopters than adopters in typ-
ical simulations. Therefore, we instead let adopter agents update peer effect
variables for their neighbors at the time of system installation, dramatically
reducing the corresponding overhead.

5 A State-of-the-Art Alternative Solar Adoption Model

Our model differs from most agent-based modeling approaches in the context
of rooftop solar adoption on the following three principal dimensions: first, all
features used for modeling agent behavior are carefully derived from available
data, second, calibration is performed using the individual agent behavior, and
third, the model is validated using data that is the “future” relative to the
data used for model calibration.

In order to offer a principled baseline comparison of our model to “state-of-
the-art”, we implement a recent agent-based model that was also proposed in
the context of rooftop solar adoption [32]. Our choice of the model was driven
by the following considerations: a) the model was sufficiently well described for
us to be able to independently replicate it, b) the model included an explicit
section about parameter calibration, and c) it was possible for us to instantiate
this baseline model, albeit somewhat imperfectly, using data available to us.
Still, we faced several limitations, the most important of which being the
difference between the targeted population (Palmer et al. model targeted Italy,
whereas our model and data is for California) and available data (Palmer et
al. utilized data not available to us, such as household income, as well as
proprietary categorization of individuals into adoption classes).

In this section, we describe in detail our adaptation of the model by Palmer
et al. [32], staying as close as possible to the original model. In addition, we
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describe a means of model calibration which was more systematic than the
approach (trial-and-error) used by Palmer et al., but also uses as a calibration
target aggregate adoption levels over time.

5.1 Consumer Utility Model

Strongly influenced by classical consumer theory, the agent in the Palmer
et al. model makes adoption decision based on utility, i.e., to what extent
the investment of solar would satisfy one’s needs. The utility for an agent to
install solar PV system i is defined as a weighted sum of four factors, or partial
utilities:

U i = wecou
i
eco + wenvu

i
env + wincu

i
inc + wcomu

i
com (1)

where ∑
f

wf = 1 for f ∈ F : {eco, env, inc, com} and wf ∈ [0, 1]

The four partial utilities are the economic benefit of the solar investment
(ueco), the environmental benefit of installing in a PV system (uenv), the utili-
ties of household income (uinc) and the influence of communication with other
agents (ucom). Simply, agent decides to invest a PV system when one’s utility
surpasses a certain threshold. Notice also that the four weights in the model are
identical for all agents, which along with the decision threshold are calibrated
by matching the fitted aggregate adoption to the ground truth. 5

5.1.1 Economic Utility

Economic utility captures economic benefit/cost associated with solar instal-
lation. We use net present value of buying solar PV system to calculate the
economic utility, which we normalize to have zero mean and unit variance:

ueco =
NPV ibuy −NPVbuy

S(NPVbuy)
(2)

where NPVbuy and S(NPVbuy) are the sample mean and standard deviation
of net present value of all potential adopters respectively.

5 In the model developed by Palmer et al. [32], the weighs differ by agent’s socio-economic
group, derived using proprietary means. Since this categorization is not available in our case,
and also to reduce the number of parameters necessary to calibrate (and, consequently, to
reduce the amount of over-fitting), we use identical weights for all agents.
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5.1.2 Environmental Utility

The environmental utility ideally measures amount of CO2 solar installation
could save. Due to difficulty of obtaining this information, following Palmer
et al.[32], we instead use expected solar electricity production to compute
environmental utility.

uenv =
EiPV − EPV
S(EPV )

(3)

where EiPV = RiCSI ∗HRsun ∗ 30(days) ∗ 12(months) ∗ 20(years), or the total
electricity production in 20 years. EPV and S(EPV ) are sample mean and
standard deviation of solar electricity generation for all potential adopters.

5.1.3 Income Utility

Income utility in agent model of Palmer et al.[32] is originally calculated by
household income. Unfortunately, household income is not available in our
current study, and we instead use home value that can be treated as a rel-
atively reliable estimate of a household’s income. Unfortunately, the home
value in our original dataset are prices last time the home was sold, which
can be significantly out of date. To compute home value more accurately, we
extract historical median home sale prices (merged both sold and list price in
dollar/ft2) of San Diego County from Zillow’s on-line real estate database.
Finally, the home value is recovered by multiplying the per-unit price with
livable square feet. Similar to other utilities, the income utility of each agent
is just the normalized home value, that is

uinc =
V ihome − Vhome
S(Vhome)

(4)

where, Vhome and S(Vhome) denote sample mean and standard deviation of
home value of all potential solar adopters.

5.1.4 Communication Utility

In Palmer et al. [32] work, the communication utility is calculated based on so-
cial economic status of each agent. Because the relevant information is unavail-
able, we turn to a simple variation, preserving the essence of their approach.
Since, density of installation within 1-mile radius of a household is the most
significant among all geology-based peer effect measures, we use it to derive
the communication utility. In other sense, this is equivalent to assume that
all agents within 1-mile radius of a household are in the same socio-economic
group, which is a reasonable assumption since individuals with similar socio-
economic status often live nearby. The communication utility is thus computed
as follows.

ucom =
F i1−mile − F1−mile

S(F1−mile)
(5)
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where, F1−mile and S(F1−mile) denote sample mean and standard deviation
of solar installation density within 1-mile radius for all potential adopters.

5.2 Calibration

Palmer et al. calibrated the parameters of their model using trial-and-error
to explore the parameter space, and making use largely of a visual qualita-
tive match between predicted and observed adoption levels. We make use,
instead, a more systematic calibration method, formulating as the problem of
minimizing mean-squared error between predicted and actual adoption:

θ∗ = arg min
θ

1

T

T∑
t=1

(Ŷ t − Y t)2 (6)

where θ = (weco, wenv, winc, wcom, theshold), Ŷ t and Y t are fitted and actual
aggregate adoption at time t, which we take to be at monthly granularity.

To search for the optimal parameter, we implemented our adaptation of the
Palmer et al. agent-based model in R. Specifically, at each tick, we compute
utility of each agent and an agent will choose to install solar PV as long as its
utility gets above the threshold. Because calibration of the entire dataset is
computationally infeasible, we instead calibrate the model based on a random
sample of 10% (about 44,000) of the households. Rather finding an ideal pa-
rameter by “trial and error”, we here propose a more systematic way to search
the parameter space. It is done through multiple iterations. In first iteration,
it scans every possible parameters based on a relatively coarse discretization
of parameter space and finds the optimal parameter with the minimum MSE.
In the next iteration, it probes only a subspace of previous iteration around
the best solution found so far, meanwhile, a more fine-grained discretization
is applied. For example, Figure 1, one can see most promising range of wenv
is from 0 to 0.25, which is further examined in the next iteration. The process
will terminate if no further improvement can be achieved by successive re-
finement. Notice, the approach involves checking a large number of candidate
parameters. To tackle this, we run the calibration in parallel, each run instance
examining a segment of entire search space. Figure 7 shows parameter space,
MSE, fitted percentage and number of parameters for each iteration. The final

Table 7 Iterative Localized Search

Round wenv Threshold MSE Fitted % # of parameters

1 [0, 1] [0.5, 1] 69.79 63 33000
2 [0, 0.25] [0.98, 0.99] 82.64 78 6930
3 [0, 0.25] [0.99, 1] 75.60 85 6930
4 [0.05, 0.11] [0.991, 0.992] 67.21 88 7700
5 [0.05, 0.11] [0.992, 0.993] 58.71 81 7700
6 [0.05, 0.11] [0.9922, 0.9923] 51.96 84 7700
7 [0.05, 0.11] [0.9923, 0.9924] 48.48 82 7700
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model (round 7) has the following parameters,

θ∗ = (w∗eco, w
∗
env, w

∗
inc, w

∗
com, theshold

∗) = (0, 0.08, 0, 0.92, 0.9924)

achieving 82% of the observed aggregate adoption level. The model to some
extent indicates only environmental utility and communication utility are sig-
nificant. Notably, the calibration process is extremely costly, i.e., each iteration
takes about 6-7 hours with 70 processes running simultaneously. In contrast,
the training procedure of our proposed DDABM only takes about 3 hours
running on a sample of 30% entire data in a single process. For the calibrated
model, the comparison between the fitted adoption and actual adoption are il-
lustrated in Figure 2. The key takeaway is that the calibrated model achieves
good performance with respect to the training (calibration) data. What re-
mains to be seen is how it performs in the validation context, which is the
subject of the next section.

6 ABM Validation

We have now reached Step 5 of the DDABM framework: validation. Our start-
ing point is quantitative validation, using data that is the “future” relative to
the data used for model learning (calibration). Given that our agent model and,
consequently, the ABM are stochastic, we validate the model by comparing
its performance to a baseline in terms of log-likelihood of observed adoption
sequence in validation data. Specifically, suppose that Dv = {(xit, yit)} is the
sequence of adoption decisions by individuals in the validation data, where
xit evolves in part as a function of past adoption decisions, {yi,t−k, . . . , yi,t−1}
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Fig. 2 Cumulative adoption: Palmer et al. predicted vs. observed on calibration data.

(where k is the installation lag time). Letting all aspects relevant to the cur-
rent decision be a part of the current state xit, we can compute the likelihood
of the adoption sequence given a model p as:

L(Dv; p) =
∏

i,t∈Dv

p(xit)
yit(1− p(xit))(1−yit).

Quality of a model p relative to a baseline b can then be measured using

likelihood ratio, R = L(Dv;p)
L(Dv;b)

. If R > 1, the model p outperforms the base-

line. As this discussion implies, we need a baseline. We consider two baseline
models: a NULL model, which estimates the probability of adoption as the
overall fraction of adopters, and a model using only the NPV and zip code
adoption density features for the purchase and lease decisions (referred to as
baseline below). The latter baseline is somewhat analogous to the model used
by Lobel and Perakis [28], although it is adapted to our setting, with all its
associated complications discussed above. As we found the NULL model to be
substantially worse, we only present the comparison with the more sophisti-
cated baseline.

To enable us to execute many runs within a reasonable time frame, we
restricted the ABM to a representative zip code in San Diego county (approx-
imately 13000 households). We initialized the simulation with the assessors
features, GIS locations, and adoption states (that is, identifies of adopters)
in this zip code. To account for stochasticity of our model, we executed 1000
sample runs for all models.

Figure 3 shows the likelihood ratio of our model (namely lasso) to the
baseline. From this figure, it is clear that our model significantly outperforms
the baseline in its ability to forecast rooftop solar adoption: the models are
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relatively similar in their quality for a number of months as the adoption trend
is relatively predictable, but diverge significantly after 9/12, with our model
ultimately outperforming the baseline by an order of magnitude.6 In other
words, both models predict near-future (from the model perspective) relatively
well, but our model significantly outperforms the baseline in forecasting the
more distance future.
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Fig. 4 Spread of sample runs of our model, with heavier colored regions corresponding to
higher density, and the observed average adoption trend.

6 9/12 is where the aggregate adoption becomes highly non-linear, so that the added value
of the extra features used by our model sharply increases.
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Thus, quantitative validation already strongly suggests that the DDABM
model we developed performs quite well in terms of forecasting the probability
distribution of individual decisions.

In addition, we assess model performance in terms of aggregate behavior
in more qualitative terms. Specifically we can consider Figure 4 , which shows
stochastic realizations of our model (recall that agent behavior is stochastic),
where heavier regions correspond to greater density, in comparison with the
actual average adoption path. First, we can observe that the actual adoption
path is in the “high-likelihood” region of our model realizations. This is a
crucial observation: when behavior is stochastic, it would be unreasonable
to expect a prediction to be “spot-on”: in fact, every particular realization
of behavior path has a minuscule probability. Instead, model correctness is
well assessed in terms of how likely observed adoption path is according to
the model ; we observe that our model is very likely to produce an outcome
similar to what was actually observed. Second, our model offers a meaningful
quantification of uncertainty, which is low shortly after the observed initial
state, but fans out further into the future. Given that adoption is, for practical
purposes, a stochastic process, it is extremely useful to be able to quantify
uncertainty, and we therefore view this as a significant feature of our model.
Note also that we expect variation in the actual adoption path as well, so one
would not therefore anticipate this to be identical to the model average path,
just as individual sample paths typically deviate from the average.

Finally, we use the model developed in Section 5 to forecast adoption in the
same zip code. Figure 5 compares the forecasting performance of the Palmer et
al. model calibrated using aggregate-level adoption, and our DDABM model.
While initially both models exhibit reasonable forecasting performance, after
only a few months the quality diverges dramatically: the DDABM model is
far more robust, maintaining a high-quality forecast at the aggregate level,
whereas the baseline becomes unusable after only a few months. We propose
that the primary reason for this divergence is over-fitting: when a model is
calibrated to the aggregate adoption data, it is calibrated to a very “low-
bandwidth” signal; in particular, there are many ways that individuals can be-
have that would give rise to the same average or aggregate behavior. Individual-
level data, on the other hand, allows us to disentangle the microbehavior in
much greater specificity and robustness, increasing the likelihood of meaning-
ful behavior models that arise thereby, and reducing the chances of overfitting
the parameters to a specific overall adoption trend.

7 Policy Analysis

The model of residential rooftop solar we developed and validated can now be
used both as a means to evaluate the effectiveness of a policy that had been
used (in our case, California Solar Initiative solar subsidy program), and con-
sider the effectiveness of alternative policies. Our evaluation here is restricted
to a single representative zip code in San Diego county, as discussed above. We
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Fig. 5 Expected Adoption: DDABM Model (mean squared error = 15.35) vs. Palmer et al.
(mean squared error = 1045.30). Mean squared error measures forecasting error on evalua-
tion data.

begin by considering the problem of designing the incentive (subsidy) program.
Financial subsidies have been among the principal tools in solar policy aimed
at promoting solar adoption. One important variable in this policy landscape
is budget: in particular, how much budget should be allocated to the program
to achieve a desired adoption target?

7.1 Sensitivity of Incentive Budget

Our first experiment compares the impact of incentive programs based on
the California Solar Initiative, but with varying budget in multiples of the
actual CSI program budget.7 Specifically, we consider multiples of 0 (that is,
no incentives), 1 (which corresponds to the CSI program budget), as well as
2, 4, and 8, which amplify the original budget. To significantly speed up the
evaluation (and reduce variance), rather than taking many sample adoption
paths for each policy, we compare policies in terms of expected adoption path.
This is done as follows: the simulation still generates 1000 sample “new” states,
i.e., realizations of the probabilistic adoption decision, at each time step, but
only uses the one with average number of adopters as initial state for the next
time step.

7 It is important to note that the CSI program has many facets, and promoting solar
adoption directly is only one of its many goals. For example, much of the program is focused
on improving marketplace conditions for solar installers. Our analysis is therefore limited by
the closed world assumption of our simulation model, and focused on only a single aspect
of the program.
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Figure 6 shows the effectiveness of a CSI-based subsidy program on ex-
pected adoption trends over the full length of the program. As one would
expect, increasing the budget uniformly shifts average adoption up. Remark-
ably, however, the shift is relatively limited, even with 8x the original budget
level. Even more surprisingly, the difference in adoption between no subsidies
and incentives at the CSI program levels is quite small: only several more
individuals adopt in this zip code, on average.
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Fig. 6 Adoption trends for the CSI-based subsidy structure.

7.2 Design of Incentive

Since we found that the CSI-like solar system subsidies have rather limited
effect, a natural question is whether we can design a better subsidy scheme.

7.2.1 Problem Formulation

The incentive design problem can be formulated as follows. Assume we are
given a fixed budget B, which supposed to subsidize solar adopters in T steps.
The amount of incentive a household can get is simply multiplication of system
capacity (kilowatt) and subsidy rate (dollar/watt). As a step-wise incentive
structure, each step is associated with a fixed rate rt and terminates as an
accumulative target in megawatt mt is achieved. Then, the subsidy program
transits to a new step with a new rate and target. This is the exact structure
of CSI program currently implemented in California shown in Figure 7.

Given this, the problem is to find an optimal incentive structure, s∗ =
{(rt,mt)}0,...,T , which maximizes ultimate adoption simulated by ABM devel-
oped in Section 4,

s∗ = arg max
s

Uabm(s,B, T ) (7)
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Fig. 7 CSI Program Structure in California

subject to two constraints: 1). budget constraint:
∑T−1
i=0 rimi ≤ B; and 2)

non-increasing rates: ri ≥ rj ,∀i < j ∈ T .

7.2.2 Parametric Optimization

We proceed by creating a parametric space of subsidy schemes that are similar
in nature to the CSI incentive program. We restrict the design space by assum-
ing that ri+1 = γri for all time steps i. In addition, we let each megawatt step
mi to be a multiple of the CSI program megawatt levels in the corresponding
step, where the multiplicative factor corresponds to the budget multiple of
the CSI program budget. This particular scheme gives rise to a set of incen-
tive plans illustrated in Figure 8. With these restrictions, our only decision is
about the choice of r0, which then uniquely determines the value of γ based
on the budget constraint. To choose the (approximately) optimal value of r0,
we simply considered a finely discretized space ranging from 1 to 8 $/watt for
1x, 2x, and 4x CSI budget. The results, in Figure 9 and 10 suggest that the
impact of subsidies is quite limited even in this one-dimensional optimization
context.

7.2.3 A Heuristic Search Algorithm

Given the challenge of finding effective incentive schemes, we now relax the
restriction of the original CSI budget allocation pattern (see Figure 7), allowing
now the proportion of the budget allocated each step to vary. To this end,
we propose a simple heuristic search algorithm. The algorithm is a step-wise
greedy search method, with each step applying a heuristic which is learned
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from the previous step. The algorithm proceeds until no improvement can be
achieved through the following series of steps:

1. Solve a basic one-stage incentive optimization problem, i.e., only one rate
and one step, in other words, this is to uniformly spread the budget in one
single term. As shown in Figure 11, for each ri1 in the discretized space R1

(i.e., equally divided 100 values in (0, 5]), we run our ABM to obtain utility
U({(ri1,mi

1)}) for each policy correspondingly, s.t., ri1m
i
1 = B. An optimal

one-stage incentive optimization policy is defined as s∗1 = {(r∗1 ,m∗1)}, s.t.,
U({(r∗1 ,m∗1)}) ≥ U({(ri1,mi

1)}),∀{(ri1,mi
1)} 6= {(r∗1 ,m∗1)}
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Fig. 10 Comparison of distributions of the number of adopters (n) up to 4/13 for “optimal”
incentive policies.

2. Solve a 2-stage incentive optimization problem. Rather than searching all
possibilities in the discretized parameter space, the rate of the first stage
for the 2-stage structure is fixed at r∗1 , as shown in Figure 12, by which we
implicitly conjecture that r∗1 is superior to any other rates. For any possible
proportion of B used in stage 1, say Bi1, we can derive mi

1 accordingly from
r∗1m

i
1 = Bi1; then for each possible discretized rate ri2 that is below r∗1 , we

also determine mi
2 consequently by the budget constraint. Thus, for any

arbitrary policy s = {(r∗1 ,mi
1), (ri2,m

i
2)}, we run ABM and obtain its utility

U(s). The best policy should be

s∗ = s(m∗1, r
∗
2) = {(r∗1 ,m∗1), (r∗2 ,m

∗
2)} = arg max

s
U(s)

3. Solve a 3-stage incentive optimization problem. Similarly, as illustrated
in Figure 13, the rate and megawatt target of the stage 1 are set to r∗1
and m∗1 respectively, and the rate of the 2nd stage is set to r∗2 . By the
budget constraint, for any portion of budget Bi2 used in stage 2, one can
derive mi

2. Further, for any rate at stage 3, say ri3, which is below r∗2 ,
we can determine mi

3 similarly. Thus, for any 3-stage arbitrary policy s =
{(r∗1 ,m∗1), (r∗2 ,m

i
2), (ri3,m

i
3)}, or simply denote s as s(mi

2, r
i
3), we run ABM

and obtain its utility U(s). The best policy for the 3-stage problem is given
by

s∗ = s(m∗2, r
∗
3) = {(r∗1 ,m∗1), (r∗2 ,m

∗
2), (r∗3 ,m

∗
3)} = arg max

s
U(s)

4. The algorithm will proceed unless no further utility improvement can be
made in a step. The time complexity is O(NsNbNr), where Ns denotes
number of steps in the worse case, Nb the number of discretized fractions
of budget and Nr the number of discretized rates upper-bounded by the
fixed rate in the preceding stage. Notice that there is also a constant factor
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involving running time of simulation for each parameter, but here we save
it to highlight the main factors.
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A comparison of expected adoption of different incentive structures is
shown in Table 8, where ”x-Budget” indicates the scale of budget relative
to the original CSI subsidies, ”OnePar” stands for incentive plans examined
in Section 7.2.2 and ”x-Rebate” refers to incentive structure discussed in 7.1.
Our heuristic search method is able to find better alternative incentive plans
for all budget levels. Moreover, the result suggests that an incentive plan with
smaller number of steps, i.e., 1 to 3, may be better than spreading the whole
budget in a large number of steps, say 10, which is currently deployed in
California.

Table 8 A Comparison of Expected Adoption of Different Incentive Structures

x-Budget OnePar x-Rebate 1-Stage 2-Stage 3-Stage 4-Stage

1 159 161.5 163.2 163.9 - -
2 163.8 165 166.7 - - -
4 167.1 170.9 171.9 172.2 172.3 -

7.3 Seeding the Solar Market

Seeing a relatively limited impact of incentives, due to low sensitivity of our
model to the economic variables, we also consider an alternative class of policy,
called ”seeding”, which instead leverages the fact that peer effects have a
positive and significantly stronger impact on adoption rates.
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Suppose that we can give away free solar systems. Indeed, there are policies
of this kind already deployed, such as the SASH program in California [12],
fully or partially subsidizing systems to low-income households. To mirror such
programs, we consider a fixed budget B, a time horizon T , and consider seeding
the market with a collection of initial systems in increasing order of cost in
specific time periods (a reasonable proxy for low-income households). There
is a twofold tension in such a policy: earlier seeding implies greater peer effect
impact, as well as greater impact on costs through learning-by-doing. Later
seeding, however, can have greater direct effect as prices come down (i.e., more
systems can be seeded later with the same budget). We consider, therefore, a
space of policies where a fraction of the budget α is used at time 0, and the rest
at time T − 1, and compute a near-optimal value of α using discretization.8

Our findings, for different budget levels (as before, as multiples of the original
CSI budget), are shown in Figure 14. We can make two key observations:
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Fig. 14 Distribution of final adoptions (n) for optimal split of the seeding budgets.

first, we can achieve significantly greater adoption using a seeding policy as
compared to the CSI program baseline, and second, this class of policies is far
more responsive to budget increase than the incentive program.

8 Conclusion

We introduced a data-driven agent-based modeling framework, and used it to
develop a model of residential rooftop solar adoption in San Diego county. Our

8 In fact, we optimize over discrete choices of alpha (at 0.1 intervals), and the optimal
alpha varies with budget.
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model was validated quantitatively in comparison to a baseline, and qualita-
tively by considering its predictions and quantified uncertainty in comparison
with the observed adoption trend temporally beyond the data used to calibrate
the model. In the meantime, we developed a second agent-based model motived
by state-of-the-art calibration methodology. It turned out this model severely
underestimates solar adoption, poorly-performed compared to our developed
agent-based model that is based on maximum likelihood estimation. We used
our model to analyze the existing solar incentive program in California, as well
as a class of alternative incentive programs, showing that subsidies appear to
have little impact on adoption trends. Moreover, a simple heuristic search
algorithm was deployed to identify more effective incentive plans among all
incentive structures we have explored. Finally, we considered another class
of policies commonly known as “seeding”, showing that adoption is far more
sensitive to such policies than to subsidies.

Looking ahead, there are many ways to improve and extend our model.
Better data, for example, electricity use data by non-adopters, would un-
doubtedly help. More sophisticated models of individual behavior are likely
to help, though how much is unclear. Additionally, other sources of data can
be included, for example, survey data about adoption characteristics, as well
as results from behavior experiments in this or similar settings. The impor-
tance of promoting renewable energy, such as solar, is now widely recognized.
Studies, such as ours, enable rigorous evaluation of a wide array of policies,
improving the associated decision process and the increasing the chances of
successful diffusion of sustainable technologies.
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