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ABSTRACT
In this paper, we aim to deter urban crime by recommending opti-
mal police patrol strategies against opportunistic criminals in large
scale urban problems. While previous work has tried to learn crim-
inals’ behavior from real world data and generate patrol strategies
against opportunistic crimes, it cannot scale up to large-scale urban
problems. Our first contribution is a game abstraction framework
that can handle opportunistic crimes in large-scale urban areas. In
this game abstraction framework, we model the interaction between
officers and opportunistic criminals as a game with discrete targets.
By merging similar targets, we obtain an abstract game with fewer
total targets. We use real world data to learn and plan against op-
portunistic criminals in this abstract game, and then propagate the
results of this abstract game back to the original game. Our sec-
ond contribution is the layer-generating algorithm used to merge
targets as described in the framework above. This algorithm ap-
plies a mixed integer linear program (MILP) to merge similar and
geographically neighboring targets in the large scale problem. As
our third contribution, we propose a planning algorithm that rec-
ommends a mixed strategy against opportunistic criminals. Finally,
our fourth contribution is a heuristic propagation model to handle
the problem of limited data we occasionally encounter in large-
scale problems. As part of our collaboration with local police de-
partments, we apply our model in two large scale urban problems:
a university campus and a city. Our approach provides high predic-
tion accuracy in the real datasets; furthermore, we project signifi-
cant crime rate reduction using our planning strategy compared to
current police strategy.
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1. INTRODUCTION
Managing urban crime has always posed a significant challenge

for modern society. Distinct from elaborately planned terrorists
attacks, urban crimes are usually committed by opportunistic crim-
inals who are less careful in planning the attack and more flexible
in executing such plans [25]. Almost universally, preventive police
patrolling is used with the goal of deterring these crimes. At the
same time, opportunistic criminals observe the police deployment
and react opportunistically . Therefore, it is very important to de-
ploy the police resources strategically against informed criminals.

Previous work has tackled the problem of allocating police re-
sources against opportunistic criminals. There are two approaches
to recommend patrol strategies. The first approach is security
games, such as Stackelberg Security Games [26] and Opportunistic
Security Games [27], where the interaction between police officers
and opportunistic criminals is modeled as a leader-follower game.
Security games contain various extensions to handle different real
world scenarios, but the models of adversary behavior are based on
expert hypotheses, and lack detail as they are not learned from real-
world data for defender’s strategy and adversary’s reaction. The
second approach uses larger amounts of data, such as the patrol al-
location history and corresponding crime report, to learn a richer
Dynamic Bayesian Network (DBN) model [28] of the interaction
between the police officers and opportunistic criminals. The opti-
mal patrol strategy is generated using the learned parameters of the
DBN. While this approach predicts criminals’ behavior with high
accuracy for the problem in which the number of target areas is
small, it has three shortcomings: i) it cannot scale up to problems
with a large number of targets; ii) the algorithm performs poorly
in situations where the defender’s patrol data is limited; iii) the
planning algorithm only searches for a pure patrol strategy, which
quickly converges to a predictable pattern that can be easily ex-
ploited by criminals.

In this paper, we focus on the problem of generating effective
patrol strategies against opportunistic criminals in large scale ur-
ban settings In order to utilize the superior performance of DBN as
compared to other models given ample data, we propose a novel ab-
straction framework. This abstraction framework is our first contri-
bution. In this framework we merge the targets with similar prop-
erties and extract a problem with a small number of targets. We
call this new problem the abstract layer and the original problem
the original layer. We first learn in the abstract layer using the
DBN approach [28] and generate the optimal patrol strategy, then
we propagate the learned parameters to the original layer and use
the resource allocation in the abstract layer to generate a detailed
strategy in the original layer. By solving the problem hierarchically



through multiple abstractions, we can generate the optimal strategy
for the original scenario.

Our second contribution is a layer generating algorithm, for
which (i) we model it as a districting problem and propose a MILP
in order to merge targets in the original problem into geographically
compact and contiguous aggregated targets keeping the similarity
(defined later) within them as homogeneous as possible; (ii) we de-
velop a heuristic to solve this problem in large scale instances; (iii)
we propose two approaches to find the optimal aggregated targets.
Our third contribution is a planning algorithm that generates an op-
timal mixed strategy against opportunistic criminals. We consider
a mixed strategy because (i) it broadens the scope of the defender’s
strategies; (ii) previous pure strategies depended on the model get-
ting updated periodically; as mentioned earlier, the model usually
converged to a single pure strategy that is easy to exploit.

When the defender’s patrol data is limited or even missing in
the original layer, the learning approach in [28] overfits the data.
Therefore, in order to solve this problem, we propose our fourth
contribution which is a heuristic model to propagate important fea-
tures from the abstract layer to the original layer. We use models
from behavioral game theory, such as Quantal Response, to extract
these features. In particular, we first approximate the learned DBN
parameters in the abstract layer using behavioral parameters. Then
the behavioral parameters are propagated to the original layer.

Finally, we evaluate our abstract game in two scenarios: the Uni-
versity of Southern California (USC) campus [28] and Nashville,
TN. We obtain data in USC from [28]. Data in Nashville, TN is ob-
tained as part of the collaboration with the local police department.

2. RELATED WORK
There are five threads of research that are related to our problem.

The first line of work we compare with is game theoretic models,
such as Stackelberg Security Games (SSG) [26], Opportunistic Se-
curity Games (OSG) [27], Patrolling security games (PSG) [5] and
Pursuit Evasion Games (PEG) [17]. The interaction between po-
lice and criminals is modeled as a Security Game. While SSG is
successfully applied in security domains to generate randomized
patrol strategies., e.g., in counter-terrorism and fare evasion checks
on trains [18], it assumes that attackers are perfectly rational. A
lot of recent research has focused on attackers with bounded ratio-
nality. An example of such work is Opportunistic Security Games
(OSG) [27]. In OSGs, attackers are opportunistic criminals who
are boundedly rational in planning the attacks but more flexible in
executing the plan. An optimal patrol strategy against such oppor-
tunistic adversaries is generated in OSGs. Recent work in leader-
follower games, PSG, also has made progress in generating patrol
strategies against adversaries in arbitrary topology [4]. Different
types of adversaries in this game are considered in [6] while dif-
ferent security resources are considered in [3]. Another example of
a game theoretic model is PEG, which models a pursuer attempt-
ing to catch an evader [17]. In PEG, the evader is trying to avoid
capture and the pursuer is trying to capture the evader. However,
as stated before, the adversary models in these games are hypoth-
esized based on expert input and not detailed models — detailed
in locations and time — learned from large amounts of real-world
data that leads to the scale-up challenges addressed in our work.

The second area of work we compare with is data mining and
machine learning in the criminology domain. Recent research uses
real world crime data to analyze criminal behavior and recommend
patrol strategies for police. In [10], the author summarizes the gen-
eral framework in this domain. In [21], crime detection and crime
pattern clustering is achieved through data mining; in [12], machine
learning is used for criminal career analysis. However, in this area

of research, only crime data is considered. It does not explicitly
model and learn the interaction between police and these criminals
from real world data; and nor does this work focus on planning
police mixed strategies.

The third area of work we compare with is machine learning in
game theory. In [28], the interaction between a criminal and the de-
fender is modeled as a Dynamic Bayesian Network (DBN). Crime
and patrol data are used to learn such interaction in this DBN and
the defender’s optimal strategy is generated. Unfortunately, this
approach only works in small scale problems. When the number
of targets increases, the time complexity and the number of un-
known variables increase dramatically; we show in Section 6, that
this approach fails to run when the number of targets increases be-
yond 20. In [8], the payoffs of attackers in SSGs are learned from
their responses against the defender’s strategy. However, in this
approach, the goal is to show defender strategies that enable fast
learning of the adversary’s payoff instead of learning these models
from existing detailed data of defender-adversary interactions. An-
other example of such work is Green Security Games (GSG)[13,
22], where poaching data may be used to learn a model of poach-
ers’ boundedly rational decision making; as noted in our earlier
paper[28], our work complements theirs, and applying abstraction
hierarchies introduced in this paper in GSGs remains an interesting
issue for future work.

The last thread of recent research we compare with is the abstract
game that is widely used in large incomplete information games
such as Texas Hold’em [14, 16]. There are a number of differ-
ent approaches including both lossless abstractions [15] and lossy
abstractions [23]. In [11] and [1], sub-games are generated to cal-
culate the Nash equilibrium in a normal form games. Abstractions
have also been brought into security games. In [2], abstraction is
used to design scalable algorithms in PSGs. However, these works
focus on clustering similar actions, strategies or states to formulate
a simpler game. In our situation, we are physically merging the
similar targets to generate simpler games. The criteria of merging
targets is different from that of merging actions, strategies or states.
Our differing criteria and approach for merging targets, different
means of propagating results of our abstractions, and our learning
from real-world crime data set our work apart from this work.

3. PROBLEM STATEMENT

Figure 1: Sample Crime Report Figure 2: Sample Schedule

In this paper, we focus on limiting opportunistic crimes in large
scale urban areas. Such large scale areas are usually divided into
N targets by the defenders. At the same time, defenders divide
the time into patrol shifts. T denotes the total number of shifts.
At the beginning of each patrol shift, the defender assigns each
available patrol officer to a target and the officer patrols this target
in this shift. The criminals observe the defender’s allocation and
seek crime opportunities by deciding the target to visit. In order to
learn the criminal’s opportunistic reaction to the defender’s alloca-
tion, two categories of data are required for T shifts. The first is
about crime activity which contain crime details. Figure 1 shows
a snapshot of this kind of data in a campus region. In this paper,
we only consider the time and location information of crimes, ig-
noring the difference among different types of crimes. Therefore,



we can summarize the crime report into a table like Table 1. In
this table, columns represents the index of each target while rows
represents total number of shifts, 1...T. Each element in the table
represents the number of crimes at the corresponding target in that
shift. N × T data points are recorded in the table.

Shift 1 2 3 ... N
1 1 1 2 ... 2
2 1 1 1 ... 1
3 2 1 1 ... 1

Table 1: Crime data

The second category is the pa-
trol allocation schedule at these
shifts. The snapshot of such
data is shown in Figure 2. We
ignore the individual difference
between officers and assume
that the officers are homoge-
neous and have the same effect

on criminals’ behavior. Therefore, only the number of officers at
each target and shift affects criminals’ behavior and we can sum-
marize the patrol data in the similar manner as crime reports, which
is shown in Table 2.

Shift 1 2 3 ... N
1 2 1 1 ... 1
2 1 1 2 ... 2
3 2 1 1 ... 1

Table 2: Patrol data

Given the available data for
crime and patrol officers, our
goal is to recommend efficient
patrol strategies to prevent op-
portunistic crimes in problems
with a large number of targets.
To begin with, we learn crimi-
nals’ behavior from data and ap-

ply the abstract game framework to hierarchically learn the crimi-
nal’s behavior. Next, we propose a planning algorithm that gener-
ates the mixed strategy that optimizes the defender’s utility against
the learned behavior of criminals.

4. ABSTRACT GAME
Even though previous approaches [28] deal with opportunistic

crimes, they cannot directly be applied to large scale problems.
There are two reasons. First, over-fitting is inevitable in the learn-
ing process of large scale problems. The number of unknown vari-
ables in the learning process is O(N2) while the number of data
points is O(N × T ) [28]. When N increases, the number of vari-
ables gets close to the number of data points and causes over-fitting.
The second reason is the runtime. The complexity of previous ap-
proaches is at least O(NC+1T ) where C is the largest value that
any variable in the model of [28] can take and it grows quickly with
N . In fact, our experiments shows that the algorithm does not con-
verge in one day even with N = 25. Therefore, we propose the
abstract game framework to deal with opportunistic crimes in large
scale urban areas.

Figure 3: Game Ab-
straction

The idea of abstracting the most es-
sential properties of a complex real
problem to form a simple approxi-
mate problem has been widely used in
the poker game domain [14]. Using
such an abstraction the problem can be
solved hierarchically and a useful ap-
proximation of an optimal strategy for
the real problem is provided. In this pa-
per, we use the concept of abstraction
to transform the large scale urban area
problem into a smaller abstract prob-
lem and solve it hierarchically. Figure
3 illustrates the four steps in our game
abstraction framework. First, we need
to generate the abstract layer from the
original layer (Section 4.1). Targets
that have similar properties are merged

together into aggregated targets. The set of aggregated targets is
called the abstract layer while the set of original targets is called
the original layer. Currently we only consider two layers: the orig-
inal layer and the abstract layer. If the problem in the abstract layer
is still too large to solve, we need to do further abstraction, which
we will discuss in Section 4.5. After we obtain the abstract layer,
the second step is to learn the criminal’s behavior and generate an
optimal patrol strategy in the abstract layer (Section 4.2). The third
step is to propagate information, such as criminal behavior features,
from the abstract layer to the original layer (Section 4.3). Finally,
we use the information from the abstract layer and data in the orig-
inal layer to learn the criminal’s behavior and generate an optimal
patrol strategy in the original layer (Section 4.4).

4.1 Layer Generating Algorithm
We model the layer generation as a Districting Problem [19, 9].

The districting problem is the well known problem of dividing a
geographical region into balanced subregions with the notion of
balance differing for different applications. For example, police
districting problems focus on workload equality [9]. Our layer gen-
eration is a districting problem that group targets in the original
layer into aggregated targets in the abstract layer. However, dis-
tinct from the classic Districting problem where the resources are
balanced among different aggregated targets, in our problem, we
try to maximize the similarity of the targets inside the same aggre-
gated target. We do so by modeling the similarity of targets within
each aggregated target and use this similarity measure as one of the
criteria in the optimization formulation of our problem.

When generating the aggregated targets, there are three princi-
ples to follow. First, the aggregated targets should follow the ge-
ometric constraints in the districting problem such as contiguity,
compactness and environmental constraints. Contiguity means that
every target is geographically connected; compactness means that
all targets in an aggregated target should be close together; and
environmental constraints are the constraints for defender’s patrol
convenience. For example, if two neighboring targets are divided
by a highway, they should not be merged together. Second, the
dissimilarity within the aggregated targets should be minimized.
We consider two properties of target i, the number of crimes per
shift with the defender’s presence ci1 and the number without the
defender’s presence ci0. For target i and target j, we define the
Dissimilarity distance function as Disij = |ci1 − cj1|+ |ci0 − c

j
0|.

Third, the algorithm should consider the scalability constraint
for learning algorithm. Let N denote the number of targets in the
original layer and n denote the largest scale of problem that the
learning and planning algorithms can scale up to. Then there can
be no more than n targets inside each aggregated target and no
more than n aggregated targets in the abstract layer. Therefore,
N ≤ n2 in the original layer. When N > n2, we need multiple
layer abstraction that will be introduced later. As we prove next in
Lemma 1, the more the aggregated targets are in the abstract layer,
the less information is lost during the abstraction. Hence, we would
want to have as many targets as possible in the abstract layer. Thus,
we set n aggregated targets in the abstract layer.

Let I = {1, . . . , N} be a set of targets in the original layer.
A partition of size K of this set I is a collection of sets {Ik}Kk=1

such that Ik 6= ∅ for all k ∈ {1, . . . ,K}, Ik ∩ Il = ∅ for all
k, l ∈ {1, . . . ,K}, k 6= l and

⋃K
k=1 Ik = I . {Ik}Kk=1 is the

set of the aggregated targets in the abstract layer. Let PK(I) de-
note the set of all partitions of I of size K. Given Ik ⊂ I we
define its inner Dissimilarity as Dis(Ik) =

∑
i,j∈Ik

Disij =∑
i,j∈Ik

|ci1−cj1|+|ci0−c
j
0| . Also we define its Inertia as In(Ik) =

minj
∑
i∈Ik

dij , with dij denoting the physical distance between



the geometric centers of targets i, j. In our districting process we
want to find a partition which achieves both low inner Dissimilar-
ity and Inertia over all elements of the partition. Given α > 0 as
a normalization parameter, we define the information loss function
LI(K) as the lowest cost with a partition of sizeK, mathematically
LI(K) = min{Ik}Kk=1

∈PK(I)

∑K
k=1 αIn(Ik) +Dis(Ik).

LEMMA 1. The information loss decreases with K, that is
LI(K + 1) ≤ LI(K).

The proof of Lemma 1 is in the appendix (http://bit.ly/
1ND8liH) . Based on these three principles, we propose a mixed
integer linear program (MILP) to solve the districting problem.
We apply an extension of the capacitated K-median problem with
K = n. While the capacitatedK-median problem [24] satisfies the
scalability constraint by setting a maximum capacity for each ag-
gregated target, it cannot handle the geometric constraints such as
contiguity. A counterexample is shown in the appendix. In this pa-
per, we handle the geometric constraints by considering the inertia
of each aggregated target as part of the information loss function.

minx,y,z α
∑
i,j dijyij +

∑
ik zik

s.t.
∑
j yij = 1 ∀i ∈ I

yij ≤ xj ∀i, j ∈ I∑
j xj = n∑
j yij ≤ n ∀j ∈ I

zik ≥ Disik(yij + ykj − 1) ∀i, k, j ∈ I
zik ≥ 0 ∀i, k ∈ I
yij + ykj ≤ 1 ∀j ∈ I
yij , xj ∈ {0, 1} ∀i, j ∈ I

(1)

xj is a binary variable. It is 1 if the target j is the center of an
aggregated target and 0 otherwise. The variable yij takes the value
1 when the target i is allocated to the aggregated target centered in
j and 0 otherwise. The variable zik is a continuous non-negative
variable that takes the value Disik when target i and target k are
allocated to the same aggregated target, otherwise zik is 0. The ob-
jective function is the weighted sum of inertia and dissimilarity. α
represents the trade-off between geometric shape and the similarity
within each aggregated target.

The first set of constraints ensures that every target is allocated
to an aggregated target. The second set of constraints ensures that
the center of an aggregated target belongs to this aggregated target.
The third expression states that there are n aggregated targets. The
fourth set of inequalities ensures the size of every aggregated target
to be no greater than n. The fifth and sixth constraint ensures that
zik will take the value Disik when target i and target k are allo-
cated to the same aggregated target, otherwise zik will be 0. The
seventh constraint is an example of environmental constraints that
target i and target k cannot be in the same aggregated target.

Directly solving this MILP is NP-hard [20]. Therefore we use
the heuristic constraint generation algorithm (Algorithm 1) to ap-
proximately solve the problem. The algorithm has two phases: first,
the location problem is solved as a K-median problem. In the sec-
ond phase, we use the constraint generation technique [7] to solve
the optimization problem. The iterative constraint generation al-
gorithm is shown as the for loop (line 2-9). To start with, all the
constraints zik ≥ Disik(yij + ykj − 1) for i, j, k are removed
completely (denoted by the empty set Cuts in line 1), and then in
each iteration of the for loop the MILP is solved (line 3) and then
we check whether any of the left out constraints are violated (line

Algorithm 1 Constraint Generation Algorithm (I,K)
1: Center← Location_Problem(I,K); Cuts=∅
2: for i = 1, · · · ,MAX_IT do
3: y∗, z∗ ← Allocation_Phase(Center, Cuts)
4: i∗, j∗, k∗ = argmini,j,k z

∗
ik −Disik(yij + ykj − 1)

5: if (z∗i∗k∗ −Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)) ≥ 0 then
6: break
7: else
8: Cuts← Cuts ∪ {zi∗k∗ ≥ Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)}
9: end if

10: end for
11: return {y∗}, objective_function

4, 5). If yes, then the most violated constraint is added to Cuts
or else the loop stops. The maximum number of iterations is lim-
ited by MAX_IT . Constraint generation guarantees an optimal
solution given large enough MAX_IT .

4.2 Abstract Layer

Figure 4: DBN
framework

Learning Algorithms: As noted ear-
lier, having generated the abstract layer,
the next step is learn the adversary model
at the abstract layer. As stated before, the
Dynamic Bayes Network (DBN) learning
algorithm presented in [28] could not be
used in the original layer due to scaling
difficulties; however, with a sufficiently
small number of targets in the abstract
layer, we can now use it. To illustrate
its operation, we reproduce the operation
with N targets as shown in Figure 4.
Three types of variables are considered in
the DBN: squares in the top represent the
number of defenders at aggregated target i
during shift t, Di,t, squares in the bottom
represent the number of crimes at aggre-
gated target i during shift t, Yi,t, while
circles represents the number of crimi-
nals at aggregated target i during shift t,
Xi,t. As shown in Figure 4, there are

two transitions in the DBN: the criminal’s transition from shift t
to t + 1, which is modeled as the transition probability and the
crime transition at shift t, which is modeled as the crime out-
put probability. Mathematically, a transition probability is defined
as P (Xi,t+1|D1,t, ..., DN,t, X1,t, ..., XN,t) and the crime output
probability is defined as P (Yi,t|D1,t, ..., DN,t, X1,t, ..., XN,t).
This model uses two matrices to represent the transition probabil-
ities, the movement matrix A which consists of all the criminal’s
transition probability P (Xi,t+1|D1,t, ..., DN,t, X1,t, ..., XN,t)
and the crime matrixB which consists of all the crime output prob-
ability P (Yi,t|D1,t, ..., DN,t, X1,t, ..., XN,t). A and B contains
CN × CN × CN unknown parameters.

Given available data about Di,t (patrol schedule), Yi,t (crime
report), this model applies the Expectation Maximization algorithm
to learn A and B while estimating Xi,t. The detail of this learning
model is present in [28]. The novelty in this paper is propagating
adversary behavior parameters (A andB) from the abstract layer to
the original layer, which we discuss in Section 4.3; but we do that,
we discuss planning in the abstract layer.

Planning Algorithms: In this paper, we focus on planning with
mixed strategies for the defender rather than the pure strategy plans
from previous work [28]. This change in focus is based on two key



reasons. First, this change essentially broadens the scope of the de-
fender’s strategies; if pure strategies are superior our new algorithm
will settle on those (but it tends to result in mixed strategies). Sec-
ond, previous work [28] on planning with pure strategies depended
on repeatedly cycling through the following steps: planning multi-
ple shifts of police allocation for a finite horizon, followed by up-
dating of the model with data. This approach critically depended on
the model getting updated periodically in deployment. Such peri-
odic updating was not always easy to ensure. Thus, within any one
cycle, the algorithm in [28] led to a single pure strategy (single po-
lice allocation) being repeated over the finite horizon in real-world
tests as it tried to act based on the model learned from past data;
such repetition was due to a lack of updating of the criminal model
with data, and in the real-world, the criminals would be able to ex-
ploit such repetition. Instead, here we plan for a mixed strategy.
We assume that the model updates may not occur frequently and as
a result we plan for a steady state.

We model the planning procedure as an optimization problem
where our objective is to maximize the defender’s utility per shift.
After the defenders’ (mixed) strategy is deployed for a long time,
criminals receive perfect information of the strategy and their
(probabilistic) reaction will not change over time. As a result, the
criminals’ distribution becomes stationary and this is called crimi-
nals’ stationary state. In our case, ergodicity guarantees unique sta-
tionary state (see appendix). Our planning algorithm assumes crim-
inals’ stationary state when maximizing the defender’s utility. We
define defender’s utility as the negation of the number of crimes.
Therefore, the objective is to minimize the number of crimes that
happen per shift in the stationary state. Let’s define I = {i} as
the set of aggregated targets, D as the total number of defenders
that are available for allocation; dI = {di} as the set of defender’s
allocation at target set I , xI = {xi} as the set of criminal’s station-
ary distribution at target set I with respect to defender’s strategy dI
and yI = {yi} as the set of expected number of crimes at target
I . Note that C is the largest value that the variables Di, Xi and Yi
can take. The optimization problem can be formed as follows:

minimize
dI

∑
i∈I yi

subject to 0 ≤ xi ≤ C, i ∈ I,
0 ≤ di ≤ C, i ∈ I,∑

i∈I di ≤ D,
yi =

∑
Yi,t

Yi,t·

P (Yi,t|d1, ..., dN , x1, ..., xN ), i ∈ I,
xi =

∑
Xi,t+1

Xi,t+1·

P (Xi,t+1|d1, ..., dN , x1, ..., xN ), i ∈ I.

(2)

In this optimization problem, we are trying to minimize the total
number of crimes occurring in one shift while satisfying five sets
of constraints. The first two constraints ensure the defender and
criminal’s distribution are non-negative and no more than an upper
bound C. The third constraint represents the constraint that the
number of deployed defender resources cannot be more than the
available defender resources. The fourth constraint is the crime
constraint. It sets yi to be the expected number of crime at target
i. The last constraint is the stationary constraint, which means that
the criminals’ distribution is not changing from shift to shift with
respect to the patrol strategy dI . The transitions are calculated by
movement matrix A and crime matrix B. The details of the crime
and stationary constraint are shown in the appendix.

4.3 Propagation of learned criminal model
In the previous section, we generate the patrol allocation for the

aggregated targets in the abstract layer. In order to provide pa-
trolling instructions for the original layer, we propagate the learned
criminal model in the abstract layer to the original layer. We need to
address two cases: when there is no detailed patrol data and when
there is. In particular, we have found that some police departments
record the location of police patrols in detail at the level of targets
in the original layer, but many others specifically only keep approx-
imate information and do not record details (even if they record all
crime locations in detail); thus leading to the two cases. We start by
describing the case with sufficient patrol data in the original layer.

Direct learning (sufficient data): When there is detailed patrol
data in the original layer and nothing is approximated away, we
know the numbers of police at each target in the original layer at
each shift. Then, we can directly learn A and B in this DBN. The
learning algorithm is same as that applied in the abstract layer. The
data used in the algorithm is the crime report and patrol schedule
inside each aggregated target. While we directly learn A and B,
computation of the patrol strategy at the abstract layer affects the
patrol strategy in the detailed layer as discussed in Section 4.4.

Parameter Propagation (limited data): If the patrol data in
the original layer is limited, the DBN model that we learned in the
original layer will be inaccurate if we still apply the same learn-
ing algorithm as the abstract layer to learn matrices A and B. One
remedy is to provide addition criminal information to the original
layer from the abstract layer to help the process of learning criminal
model in the original layer. However, in the abstract layer, move-
ment matrix A and crime matrix B represent the criminal’s behav-
ior in aggregated targets. It cannot directly describe the criminal’s
behavior in the targets in the original layer. Therefore, we propose
a human behavior based model of extracting behavior parameters
from A and B in the abstract layer. Then we set these behavior pa-
rameters of an aggregated target as the behavior parameters for the
targets contained within this aggregated target in the original layer.

Parameter extraction: We introduce the process of using a hu-
man behavior model to extract the behavior parameters fromA and
B. The basic assumption of a human behavior model is that the
criminal follows certain patterns when moving from shift to shift.
Specifically, the criminals follow the movement by the well es-
tablished Quantal Response (QR). In the learning algorithm [28],
one simplification made was breaking down the criminals’ transi-
tion probabilities into marginal probability P (Xj,t+1|Di,t, Xi,t)
which represents the movement of a criminal from target i to tar-
get j. Based on the Quantal Response model, we approximate
this movement using the following equation: P (Xj,t+1 = 1) =

e
Attj∑

n∈N eAttn
where Attn is the attractiveness property of target

n. In the DBN, the movement depends not only on the attrac-
tiveness, but also on the allocation of defenders and criminals at
previous shift. Therefore, we formulate P̂ (Xj,t+1 = 1|Di,t, Xi,t)
as (λi, µi ≥ 0):

e
Attj∑

n∈N eAttn
· eλiXi,t+µiDi,t , if i 6= j

e
Attj∑

n∈N eAttn
· eλiXi,t−µiDi,t , otherwise

(3)

The reason for the above effect of defender is that the defender at
target i disperses criminals to other targets. However, λ, µ and Att
are not known and we need to learn them from data. Our approach
to compute λ, µ and Att is to find their values that minimize the
L1 distance between P̂ (Xj,t+1 = 1|Di,t, Xi,t) and the learned
marginal probability P (Xj,t+1 = 1|Di,t, Xi,t). We can formulate
this problem as the following optimization:



minAtt,λ,µ
∑
i,j,Di,t,Xi,t

||P (Xj,t+1 = 1|Di,t, Xi,t)−

P̂ (Xj,t+1 = 1|Di,t, Xi,t)||
subject to µi ≥ 0, λi ≥ 0, i = 1, ..., N

The constraints represent the positive effect of number of crimi-
nals on the transition probability and more defenders lead to faster
dispersion of criminals. λ, µ and Att are the behavior parameters
that we propagate to original layer.

Since λ and µ represent the influence of the number of criminals
and number of defenders on the criminals’ movement in the aggre-
gated target, it is reasonable to assume that the criminals’ move-
ment in the targets that belong to the aggregated target inherit these
parameters. In other words, this means that the influence of the
number of criminals and defenders is the same within the aggre-
gated target. At the same time, Att measures the availability of the
crime opportunities. Therefore, within one aggregated target, the
attractiveness is distributed among the targets proportional to the
total number of crimes in each target. For example, if the attrac-
tiveness of an aggregated target I (made up of I1 and I2) is 0.6, the
total number of crimes at target I1 is 80 while that at target I2 is
40, then the attractiveness of A1 is 0.4 while that of A2 is 0.2. λ,
µ and Att for each target are the behavior parameters that will be
used in crime and stationary constraints in the planning algorithm.

4.4 Computing Strategy in the Original Layer
In the previous section, we generated the adversary behavior pa-

rameters in the original layer. In order to provide patrolling instruc-
tions for the original layer, we utilize the strategy in the abstract
layer to assign resources in the original layer. Then, combined
with the propagated adversary behavior parameters we generate the
strategy at the original layer.

Resource Allocation: In the abstract layer, the optimal strategy
recommends the number of resources allocated to each aggregated
target. We use this recommendation as a constraint on the number
of resources in planning within the aggregated targets at the orig-
inal layer. For example, the abstract layer may provide 0.8 as the
allocation to an aggregated target say X; then we plan patrols in X
in the original layer using 0.8 as the total number of resources.

Next, in the original layer, we treat each aggregated target in the
abstract layer as an independent DBN as shown in Figure 4. The
same algorithm for generating a mixed strategy in the abstract layer
can be applied in each of the independent DBNs. The optimization
problem is the same as Equation 2. D is the total number of re-
sources allocated to these aggregated targets (e.g., 0.8 to target X).

In addition, the formulations of crime and stationary constraints
required in the computation of the mixed strategy are different for
the scenario with sufficient and limited data. For the scenario with
sufficient data these constraints are formulated using the parameters
A and B of the DBN that is learned in this original layer. For
the scenario with limited data the propagated values of λ, µ and
Att are used to estimate the the A and B parameters for the DBN
representation of the adversary behavior in the original layer. The
estimation is the inversion of parameter extraction, and it happens
in the original layer. For example, we use Equation 3 to estimate
the parameters using λ, µ and Att. The details are presented in the
appendix. Then, these reconstructedA andB are used to formulate
the crime and stationary constraints.

4.5 Extended Abstract Game
When n2 < N , we can use two layers of abstraction to solve

the problem. However, when the real problem has N > n2 tar-

gets, even two layered abstraction does not suffice since there must
be a layer in the game with more than n targets. Therefore, we
propose the multiple layer framework to handle problems with an
arbitrarily large number of targets. This framework is an extension
of the two layer abstract game. We apply an iterative four step pro-
cess. As a first step, we need to decide the number of layers as
well as the districting of targets for each of the layers. Consider-
ing the scalability constraints (recall that there cannot be more than
n targets within each aggregated target), the number of layers is
M = blognNc + 1. We denote the original layer as Layer 1 and
the layer directly generated from Layer m as layer m + 1. In this
notation, the topmost abstract layer is Layer M . The second step
is learning criminals behavior in the top layer. The third step is to
generate a patrol strategy at this layer. The fourth step is to propa-
gate parameters to the next layer. We keep executing steps two to
four for each layer until we reach the original layer. At each layer,
we decide whether to do parameter propagation based on the avail-
ability of the patrol data. If we have sufficient patrol data at layer
m, we do direct learning at layer m. Otherwise, we do parameter
propagation from layer m+ 1 to layer m.

We propose three different layer generation algorithms. The first
algorithm is the direct algorithm. For example, if N = 50 and
n = 5. Then, there should be M = 3 layers. For layer 1, there
will be 50 targets. For layer 2, the number of targets could be any
integer between 10 to 25. For layer 3, the number of targets can be
2 to 5. The direct learning tries all the combinations of three layers
and runs the MILP for each combination to generate the optimal
segmentation. It calls the MILP in Section 4.1 for O(NM · M)
times; the second algorithm is a dynamic programming approach
that ensures the solution is globally optimal. The MILP is called
O(N2 ·M) times; the third algorithm is the greedy algorithm that
sets the number of targets to be maximum, which for the mth layer
is nM+1−m. The number of calls is M while the solution is not
necessarily optimal. Details are in the appendix.

5. REAL WORLD VALIDATION

Figure 5: Campus map 1 Figure 6: Campus map 2

We use two sets of real world data to validate the game abstrac-
tion framework. In the first case we use the data from the University
of Southern California (USC) campus that is provided by [28]. We
thank the authors for providing three years (2012-2014) of crime
report and patrol schedule from the USC campus. The number of
total crime events is on the order of 102. [28] reports that the cam-
pus patrol area (USC campus and its surroundings) is divided into
five patrol areas, which are shown in Fig 5. In order to make the
patrols more efficient, the police officers wish to further divide the
whole campus into 25 patrol areas and get patrol recommendations
on these 25 patrol areas. There are two tasks for us, (a) starting
from city blocks (there are 298 city blocks and they form the basis
of the USC map), create 25 separate "targets", as in our layer gen-
eration problem; (b) generate an optimal patrol strategy for these
25 targets. The creation of 25 targets is also a districting problem
and the technique in Section 4.1 can be directly applied. The 25
targets generated by the districting algorithm is shown in Figure 6.



We treat these 25 targets as the original layer. n is set to be 5 as the
runtime of learning and planning algorithm with n = 5 is reason-
ably small. So then we use two layer game abstraction to solve this
problem with 25 targets. The abstract layer is the five patrol areas
in Fig 5. This is because of the center area (the darkest area) is the
campus itself and is separated from its environment by fences and
gates. These environmental constraints cause our layer generation
to automatically create the area into 5 targets as shown in Figure 5.
Additionally, police only record their presence in the five areas, and
thus, we do not have detailed police presence data; as a result, we
use our behavior learning to propagate parameters from the abstract
layer to the original layer.

Figure 7: City
map

In the second case, we use data about
crime and detailed police patrol locations
in Nashville, TN, USA. The data covers a
total area of 526 sq. miles. Only burglar-
ies (burglary/breaking and entering) have
been considered for the analysis. Burglary
is the chosen crime type as it is a major
portion of all property crimes and is well
distributed throughout the county. Data for
10 months in 2009 is used. The number of
total crime events is on the order of 103.
Observations that lacked coordinates were

geocoded from their addresses. Police presence is calculated from
GPS dispatches made by police patrol vehicles. Each dispatch con-
sists of a unique vehicle identifier, a timestamp and the exact loca-
tion of the vehicle at that point in time. We divide the whole city
into N = 900 targets as shown in Figure 7. Since n is 5, the num-
ber of layers we need is M = blog5 900c + 1 = 5. We use the
multiple layer abstraction framework to solve this problem.

6. EXPERIMENTAL RESULTS
Experiment setup. We use MATLAB to solve our optimiza-

tion problems. There are two threads of experiments, one on the
USC campus problem and the other on Nashville, TN problem. To
avoid leaking confidential information of police departments, all
crime numbers shown in the results are normalized. The experi-
ments were run on a machine with 2.4 GHz and 16 GB RAM.

Game Abstraction Framework: Our first experiment is on
comparing the performance of our game abstraction framework
with the DBN framework proposed in [28] for large scale prob-
lems. Since the DBN framework cannot even scale to problems
with 25 targets, in this experiment we run on problems with sub-
sets containing N targets (5 ≤ N < 25) out of these 25 targets in
the USC campus. As shown in Figure 8, we compare the runtime
of these two frameworks. The x-axis in Fig. 8 is the number of tar-
getsN in the problem. For eachN , we try ten different subsets and
the average runtime is reported. The y-axis indicates the runtime in
seconds. The cut-off time is 3600s. As can be seen in Figure 8, the
runtime of the DBN framework grows exponentially with the scale
of the problem and cannot finish in an hour when N = 20. At the
same time, the runtime of the game abstraction framework grows
linearly with the scale of the problem. It takes less than 5 minutes
to solve the problems with N = 20. This indicates that the DBN
framework fails to scale up to large scale problems while the game
abstraction framework can handle many more targets.

In Figure 9 we compare the prediction accuracy of these two
different frameworks. We divide the 36 months’ data sets into two
parts, the first 35 months’ data is used for learning while we predict
the crime distribution for the last month and compare it with the
real crime data in that month. For every target and every shift, we
measure the prediction accuracy as the predicted probability of the

number of crimes reported in the data for that target and shift. For
example, for target i and shift t, our prediction is that there is 30%
probability that no crime occurs and 70% that one crime occurs
while in the data there is one crime at target i in shift t. Then, the
prediction accuracy for target i for shift t is 0.7. The reported ac-
curacy is the average accuracy over all targets and all shifts over all
ten different subsets. The higher the accuracy, the better our predic-
tion. As can be seen in Figure 9, the game abstraction framework
achieves similar prediction accuracy compared to the DBN algo-
rithms given any number of targets in the problem. This indicates
that even through information may be lost during the abstraction,
the game abstraction framework captures important features of the
criminal and performs as well as the exact DBN framework while
running 100 of times faster.

Layer Generation Algorithm: Next, we use the data from the
city to evaluate the performance of our layer generation algorithms.
Again, we run the layer generation algorithms on problems with
subsets containing N targets (N ≤ 900) out of the 900 targets in
the city map. For each N , we try ten different subsets and report
the average value except when N = 900 for which only one sub-
set is possible. Figure 10 compares the runtime of different layer
generation algorithms in log format. Three different algorithms are
compared, the direct algorithm (Direct) that traverses all possible
layer combinations; the dynamic programming algorithm (DP) and
the greedy algorithm (Greedy). The x-axis in Fig. 10 is the number
of targets N . For N = 25, two layers are needed; for N = 50,
three layers are needed; for N = 200, four layers are needed and
for N = 900, five layers are needed. The y-axis is the runtime of
different algorithms in seconds. The cut-off time is set at 36000s.
When N = 25, the runtime of these three algorithms are the same
because the layer generation is unique. The number of targets in
layer 2 is 5. When N = 50, the runtime of the direct algorithm
is the same as that of the DP algorithm while the runtime of the
greedy algorithm is significantly lower. When N = 200, the direct
algorithm cannot finish in 10 hours; the DP algorithm takes around
five hours while greedy algorithm finishes in less than 10 minutes.
When N = 900, both direct learning and DP are cut off while
the runtime for greedy is less than 15 minutes. This validates our
theoretical result that the runtime of direct algorithm grows expo-
nentially with the scale of the problem, that of DP grows polyno-
mially and that of greedy algorithm grows linearly with the number
of layers. Since both direct and DP algorithm cannot scale up to the
problem with N = 900, we use the greedy algorithm as the layer
generation algorithm in the city problem.

In Figure 11, we compare the information loss of different layer
generation algorithms. The information loss is defined as the objec-
tive in Equation 1. As can be seen in Fig. 11, the information loss
of DP is the same as that of direct learning in any situations. This is
because DP ensures a globally optimal solution. At the same time,
the information loss of the greedy algorithm is higher than that of
the DP algorithm but no more than 15% higher. This indicates that
while greedy algorithm cannot ensure global optimal information
loss, it can reach a good approximation in reasonable runtime.

Learning: Third, we evaluate the performance of our learning
algorithm. Game abstraction is used for both problems and we eval-
uate the predictions in the original layer. The result shown in Figure
12 and Figure 13 compares the prediction accuracy of different al-
gorithms in USC campus and the city problem respectively. Three
different algorithms are compared: (1) the Random approach, in
which the probabilities of each situation are the same (Random),
(2) game abstraction with direct learning for both the abstract and
original layer (DL) and (3) game abstraction with parameter prop-
agation in the original layer (PP). We divide the whole data sets
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Figure 12: Accuracy (USC)
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Figure 13: Accuracy (city)
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Figure 14: Plan (USC)
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Figure 15: Plan (city)

into four equal parts. For each part, the first 90% of data is used
for training while we test on the last 10% of data. The x-axis in
Fig. 12 and 13 is the index of the part of data that we evaluate on.
y-axis indicates the prediction accuracy on the test set. As can be
seen in both figures, the accuracy of both game abstraction based
approaches are higher than that of the baseline random algorithm
in all the test sets. This indicates that game abstraction models help
improve the prediction in large scale problems. In addition, param-
eter propagation at the original layer outperforms direct learning
at this layer in the USC problem in Figure 12. Direct learning out-
performs parameter propagation in Nashville problem in Figure 13.
This is because the patrol data at the original layer in USC is lim-
ited. That is, only the aggregate number of police resources over
several targets is available while the resources at each target remain
unknown. Parameter propagation is better at handling limited pa-
trol data. However, the patrol data is adequate in the city problem
and direct learning is a better fit in such situations. Therefore, in
the planning section, we use parameter propagation as the learning
algorithm in the USC and direct learning as the learning algorithm
in Nashville.
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Figure 16: Runtime

Planning: Next, we
evaluate the perfor-
mance of our planning
algorithm in both the
problems. Figure 14 and
15 compare strategies
generated using the
game abstraction frame-
work with the actual
deployed allocation
strategy generated by the
domain experts. Three
different scenarios are compared: the real number of crimes,
shown as Real; the expected number of crimes with manually
generated strategies and learned adversary model with game
abstraction, shown as Real-E and the expected number of crimes
with the optimal strategy computed using game abstraction, shown
as Optimal. As shown in Figure 14 and 15, the expected number of
crime with manually generated strategy is close to the real number
of crimes, which indicates game abstraction model captures the
feature of criminals and provide good estimation of the real

number of crimes. In addition, strategy generated using the game
abstraction is projected to outperform the manually generated
strategy significantly. This shows the effectiveness of our proposed
patrol strategy as compared to the current patrol strategy.

Runtime: Finally, we break down the total runtime of the game
abstraction framework in the city problem layer by layer and show
it in Figure 16. The x-axis is the index of the layer, which goes
from the original layer (Layer 1) to the top layer (Layer 5). The y-
axis is the total runtime of the propagation, learning and planning
algorithm in that layer. As can be seen, the runtime increases as
the layer index decreases except for Layer 1. This is because in
greedy layer generation, for the fifth layer the number of targets is
5, and for the fourth layer it is 52, for third layer it is 53, for the
second layer it is 54 but for the first layer it is only 900. Therefore,
the number of targets within each aggregated target in layer two is
less than 3 < n = 5. Therefore, the runtime in layer 1 is faster.
However, the total runtime of the whole process is less than an
hour in each data set. Therefore, the game abstraction framework
can be extended to large scale problems with reasonable runtime
performance.

7. CONCLUSIONS
This paper introduces a novel game abstraction framework to

learn and plan against opportunistic criminals in large-scale urban
areas. First, we model the layer-generating process as a districting
problem and propose a MILP based technique to solve the problem.
Next, we propose a planning algorithm that outputs randomized
strategies. Finally, we use a heuristic propagation model to handle
the problem with limited data. Experiments with real data in two
urban settings shows that our framework can handle large scale ur-
ban problems that previous state-of-the-art techniques fail to scale
up to. Further, our approach provides high crime prediction accu-
racy and the strategy generated from our framework is projected to
significantly reduce crime compared to current police strategy.
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