
Data Poisoning Attacks on Factorization-Based
Collaborative Filtering

Bo Li
Vanderbilt University

bo.li.2@vanderbilt.edu

Yining Wang
Carnegie Mellon University

ynwang.yining@gmail.com

Yevgeniy Vorobeychik
Vanderbilt University

yevgeniy.vorobeychik@vanderbilt.edu

Aarti Singh
Carnegie Mellon University
aarti@cs.cmu.edu

Abstract

Recommendation and collaborative filtering systems are important in modern infor-
mation and e-commerce applications. As these systems are becoming increasingly
popular in the industry, their outputs could affect business decision making, in-
troducing incentives for an adversarial party to compromise the availability or
integrity of such systems. We introduce a data poisoning attack on collaborative
filtering systems. We demonstrate how a powerful attacker with full knowledge
of the learner can generate malicious data so as to maximize his/her malicious
objectives, while at the same time mimicking normal user behavior to avoid being
detected. While the complete knowledge assumption seems extreme, it enables a
robust assessment of the vulnerability of collaborative filtering schemes to highly
motivated attacks. We present efficient solutions for two popular factorization-
based collaborative filtering algorithms: the alternative minimization formulation
and the nuclear norm minimization method. Finally, we test the effectiveness of our
proposed algorithms on real-world data and discuss potential defensive strategies.

1 Introduction

Recommendation systems have emerged as a crucial feature of many electronic commerce systems. In
machine learning such problems are usually referred to as collaborative filtering or matrix completion,
where the known users’ preferences are abstracted into an incomplete user-by-item matrix, and
the goal is to complete the matrix and subsequently make new item recommendations for each
user. Existing approaches in the literature include nearest-neighbor methods, where a user’s (item’s)
preference is determined by other users (items) with similar profiles [1], and factorization-based
methods where the incomplete preference matrix is assumed to be approximately low-rank [2, 3].

As recommendation systems play an ever increasing role in current information and e-commerce
systems, they are susceptible to a risk of being maliciously attacked. One particular form of attacks
is called data poisoning, in which a malicious party creates dummy (malicious) users in a recom-
mendation system with carefully chosen item preferences (i.e., data) such that the effectiveness or
credibility of the system is maximally degraded. For example, an attacker might attempt to make
recommendations that are as different as possible from those that would otherwise be made by
the recommendation system. In another, more subtle, example, the attacker is associated with the
producer of a specific movie or product, who may wish to increase or decrease the popularity of a
certain item. In both cases, the credibility of a recommendation system is harmed by the malicious
activities, which could lead to significant economic loss. Due to the open nature of recommendation
systems and their reliance on user-specified judgments for building profiles, various forms of attacks

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



are possible and have been discussed, such as the random attack and random product push/nuke
attack [4, 5]. However, these attacks are not formally analyzed and cannot be optimized according
to specific collaborative filtering algorithms. As it is not difficult for attackers to determine the
defender’s filtering algorithm or even its parameters settings (e.g., through insider attacks), this can
lead one to significantly under-estimate the attacker’s ability and result in substantial loss.

We present a systematic approach to computing near-optimal data poisoning attacks for factorization-
based collaborative filtering/recommendation models. We assume a highly motivated attacker with
knowledge of both the learning algorithms and parameters of the learner following the Kerckhoffs’
principle to ensure reliable vulnerability analysis in the worst case. We focus on two most popular
algorithms: alternating minimization [6] and nuclear norm minimization [3]. Our main contributions
are as follows:

• Comprehensive characterization of attacker utilities: We characterize several attacker
utilities, which include availability attacks, where prediction error is increased, and integrity
attacks, where item-specific objectives are considered. Optimal attack strategies for all
utilities can be computed under a unified optimization framework.

• Novel gradient computations: Building upon existing gradient-based data poisoning frame-
works [7, 8, 9], we develop novel methods for gradient computation based on first-order
KKT conditions for two widely used algorithms: alternating minimization [6] and nuclear
norm minimization [2]. The resulting derivations are highly non-trivial; in addition, to
our knowledge this work is the first to give systematic data poisoning attacks for problems
involving non-smooth nuclear norm type objectives.

• Mimicking normal user behaviors: For data poisoning attacks, most prior work focuses
on maximizing attacker’s utility. A less investigated problem is how to synthesize malicious
data points that are hard for a defender to detect. In this paper we provide a novel technique
based on stochastic gradient Langevin dynamics optimization [10] to produce malicious
users that mimic normal user behaviors in order to avoid detection, while achieving attack
objectives.

Related Work: There has been extensive prior research concerning the security of machine learning
algorithms [11, 12, 13, 14, 15]. Biggio et al. pioneered the research of optimizing malicious data-
driven attacks for kernel-based learning algorithms such as SVM [16]. The key optimization technique
is to approximately compute implicit gradients of the solution of an optimization problem based on
first-order KKT conditions. Similar techniques were later generalized to optimize data poisoning
attacks for several other important learning algorithms, such as Lasso regression [7], topic modeling
[8], and autoregressive models [17]. The reader may refer to [9] for a general algorithmic framework
of the abovementioned methods.

In terms of collaborative filtering/matrix completion, there is another line of established research that
focuses on robust matrix completion, in which a small portion of elements or rows in the underlying
low-rank matrix is assumed to be arbitrarily perturbed [18, 19, 20, 21]. Specifically, the stability
of alternating minimization solutions was analyzed with respect to malicious data manipulations in
[22]. However, [22] assumes a globally optimal solution of alternating minimization can be obtained,
which is rarely true in practice.

2 Preliminaries

We first set up the collaborative filtering/matrix completion problem and give an overview of existing
low-rank factorization based approaches. Let M ∈ Rm×n be a data matrix consisting of m rows and
n columns. Mij for i ∈ [m] and j ∈ [n] would then correspond to the rating the ith user gives for the
jth item. We use Ω = {(i, j) : Mij is observed} to denote all observable entries in M and assume
that |Ω| � mn. We also use Ωi ⊆ [n] and Ω′j ⊆ [m] for columns (rows) that are observable at the
ith row (jth column). The goal of collaborative filtering (also referred to as matrix completion in the
statistical learning literature [2]) is then to recover the complete matrix M from few observations
MΩ.

The matrix completion problem is in general ill-posed as it is impossible to complete an arbitrary
matrix with partial observations. As a result, additional assumptions are imposed on the underlying
data matrix M. One standard assumption is that M is very close to an m × n rank-k matrix with

2



k � min(m,n). Under such assumptions, the complete matrix M can be recovered by solving the
following optimization problem:

min
X∈Rm×n

‖RΩ(M−X)‖2F , s.t. rank(X) ≤ k, (1)

where ‖A‖2F =
∑
i,j A2

ij denotes the squared Frobenious norm of matrix A and [RΩ(A)]ij equals
Aij if (i, j) ∈ Ω and 0 otherwise. Unfortunately, the feasible set in Eq. (1) is non-convex, making
the optimimzation problem difficult to solve. There has been an extensive prior literature on ap-
proximately solving Eq. (1) and/or its surrogates that lead to two standard approaches: alternating
minimization and nuclear norm minimization. For the first approach, one considers the following
problem:

min
U∈Rm×k,V∈Rn×k

{
‖RΩ(M−UV>)‖2F +2λU‖U‖2F + 2λV ‖V‖2F

}
. (2)

Eq. (2) is equivalent to Eq. (1) when λU = λV = 0. In practice people usually set both regularization
parameters λU and λV to be small positive constants in order to avoid large entries in the completed
matrix and also improve convergence. Since Eq. (2) is bi-convex in U and V, an alternating
minimization procedure can be applied. Alternatively, one solves a nuclear-norm minimization
problem

min
X∈Rm×n

‖RΩ(M−X)‖2F + 2λ‖X‖∗, (3)

where λ > 0 is a regularization parameter and ‖X‖∗ =
∑rank(X)
i=1 |σi(X)| is the nuclear norm of X,

which acts as a convex surrogate of the rank function. Eq. (3) is a convex optimization function and
can be solved using an iterative singular value thresholding algorithm [3]. It can be shown that both
methods in Eq. (2) and (3) provably approximate the true underlying data matrix M under certain
conditions [6, 2].

3 The Attack Model

In this section we describe the data poisoning attack model considered in this paper. For a data
matrix consisting of m users and n items, the attacker is capable of adding αm malicious users to the
training data matrix, and each malicious user is allowed to report his/her preference on at most B
items with each preference bounded in the range [−Λ,Λ].

Before proceeding to describe the attacker’s goals, we first introduce some notation to facilitate
presentation. We use M ∈ Rm×n to denote the original data matrix and M̃ ∈ Rm′×n to denote
the data matrix of all m′ = αm malicious users. Let Ω̃ be the set of non-zero entries in M̃ and
Ω̃i ⊆ [n] be all items that the ith malicious user rated. According to our attack models, |Ω̃i| ≤ B for
every i ∈ {1, · · · ,m′} and ‖M̃‖max = max |M̃ij | ≤ Λ. Let Θλ(M̃; M) be the optimal solution
computed jointly on the original and poisoned data matrices (M̃; M) using regularization parameters
λ. For example, Eq. (2) becomes

Θλ(M̃; M) = arg min
U,Ũ,V

‖RΩ(M−UV>)‖2F+‖RΩ̃(M̃−ŨV>)‖2F+2λU (‖U‖2F+‖Ũ‖2F )+2λV ‖V‖2F

(4)

where the resulting Θ consists of low-rank latent factors U, Ũ for normal and malicious users as
well as V for items. Simiarly, for the nuclear norm minimization formulation in Eq. (3), we have

Θλ(M̃; M) = arg min
X,X̃

‖RΩ(M − X)‖2F + ‖RΩ̃(M̃ − X̃)‖2F + 2λ‖(X; X̃)‖∗, (5)

where Θ = (X, X̃) . Let M̂(Θ) be the matrix estimated from learnt model Θ. For example, for
Eq. (4) we have M̂(Θ) = UV> and for Eq. (5) we have M̂(Θ) = X. The goal of the attacker is to
find optimal malicious users M̃∗ such that

M̃∗ ∈ argmaxM̃∈MR(M̂(Θλ(M̃; M)),M). (6)

Here M = {M̃ ∈ Rm
′×n : |Ω̃i| ≤ B, ‖M̃‖max ≤ Λ} is the set of all feasible poisoning attacks

discussed earlier in this section and R(M̂,M) denotes the attacker’s utility for diverting the collabo-
rative filtering algorithm to predict M̂ on an original data set M, with the help of few malicious users
M̃. Below we list several typical attacker utilities:

3



Availability attack the attacker wants to maximize the error of the collaborative filtering system,
and eventually render the system useless. Suppose M is the prediction of the collaborative filtering
system without data poisoning attacks.1 The utility function is then defined as the total amount of
perturbation of predictions between M and M̂ (predictions after poisoning attacks) on unseen entries
ΩC :

Rav(M̂,M) = ‖RΩC (M̂−M)‖2F . (7)

Integrity attack in this model the attacker wants to boost (or reduce) the popularity of a (subset)
of items. Suppose J0 ⊆ [n] is the subset of items the attacker is interested in and w : J0 → R is a
pre-specified weight vector by the attacker. The utility function is

Rin
J0,w(M̂,M) =

m∑
i=1

∑
j∈J0

w(j)M̂ij . (8)

Hybrid attack a hybrid loss function can also be defined:
Rhybrid
J0,w,µ

(M̂,M) = µ1R
av
J0,w(M̂,M) + µ2R

in(M̂,M), (9)

where µ = (µ1, µ2) are coefficients that trade off the availability and integrity attack objectives. In
addition, µ1 could be negative, which models the case when the attacker wants to leave a “light trace":
the attacker wants to make his item more popular while making the other recommendations of the
system less perturbed to avoid detection.

4 Computing Optimal Attack Strategies

We describe practical algorithms to solve the optimization problem in Eq. (6) for optimal attack
strategy M̃∗ that maximizes the attacker’s utility. We first consider the alternating minimization
formulation in Eq. (4) and derive a projected gradient ascent method that solves for the corresponding
optimal attack strategy. Similar derivations are then extended to the nuclear norm minimization
formulation in Eq. (5). Finally, we discuss how to design malicious users that mimic normal user
behavior in order to avoid detection.

4.1 Attacking Alternating Minimization

We use the projected gradient ascent (PGA) method for solving the optimization problem in Eq. (6)
with respect to the alternating minimization formulation in Eq. (4): in iteration t we update M̃(t) as
follows:

M̃(t+1) = ProjM

(
M̃(t) + st · ∇M̃R(M̂,M)

)
, (10)

where ProjM(·) is the projection operator onto the feasible region M and st is the step size in
iteration t. Note that the estimated matrix M̂ depends on the model Θλ(M̃; M) learnt on the joint
data matrix, which further depends on the malicious users M̃. Since the constraint set M is highly
non-convex, we generate B items uniformly at random for each malicious user to rate. The ProjM(·)
operator then reduces to projecting each malicious users’ rating vector onto an `∞ ball of diameter Λ,
which can be easily evaluated by truncating all entries in M̃ at the level of ±Λ.

We next show how to (approximately) compute ∇
M̃
R(M̂,M). This is challenging because one of

the arguments in the loss function involves an implicit optimization problem. We first apply chain
rule to arrive at

∇M̃R(M̂,M) = ∇M̃Θλ(M̃; M)∇ΘR(M̂,M). (11)
The second gradient (with respect to Θ) is easy to evaluate, as all loss functions mentioned in the
previous section are smooth and differentiable. Detailed derivation of∇ΘR(M̂,M) is deferred to
Appendix A. On the other hand, the first gradient term term is much harder to evaluate because Θλ(·)
is an optimization procedure. Inspired by [7, 8, 9], we exploit the KKT conditions of the optimization
problem Θλ(·) to approximately compute∇

M̃
Θλ(M̃; M). More specifically, the optimal solution

Θ = (U, Ũ,V) of Eq. (4) satisfies

λUui =
∑
j∈Ωi

(Mij − u>i vj)vj ;

1Note that when the collaborative filtering algorithm and its parameters are set, M is a function of observed
entriesRΩ(M).

4



Algorithm 1 Optimizing M̃ via PGA
1: Input: Original partially observed m × n data matrix M, algorithm regularization parameter λ, attack

budget parameters α, B and Λ, attacker’s utility function R, step size {st}∞t=1.
2: Initialization: random M̃(0) ∈ M with both ratings and rated items uniformly sampled at random; t = 0.
3: while M̃(t) does not converge do
4: Compute the optimal solution Θλ(M̃(t); M).
5: Compute gradient∇M̃R(M̂,M) using Eq. (10).
6: Update: M̃(t+1) = ProjM(M̃(t) + st∇M̃R).
7: t← t+ 1.
8: end while
9: Output: m′ × n malicious matrix M̃(t).

λU ũi =
∑
j∈Ω̃i

(M̃ij − ũ>i vj)vj ;

λV vj =
∑
i∈Ω′j

(Mij − u>i vj)ui +
∑
i∈Ω̃′j

(M̃ij − ũ>i vj)ũi,

where ui, ũi are the ith rows (of dimension k) in U or Ũ and vj is the jth row (also of dimension k)
in V. Subsequently, {ui, ũi,vj} can be expressed as functions of the original and malicious data
matrices M and M̃. Using the fact that (a>x)a = (aa>)x and M does not change with M̃, we
obtain

∂ui(M̃)

∂M̃ij

= 0;
∂ũi(M̃)

∂M̃ij

=
(
λUIk + Σ

(i)
U

)−1

vj ;

∂vj(M̃)

∂M̃ij

=
(
λV Ik + Σ

(j)
V

)−1

ui.

Here Σ
(i)
U and Σ

(j)
V are defined as

Σ
(i)
U =

∑
j∈Ωi∪Ω̃i

vjv
>
j , Σ

(j)
V =

∑
i∈Ω′j∪Ω̃′j

uiu
>
i . (12)

A framework of the proposed optimization algorithm is described in Algorithm 1.

4.2 Attacking Nuclear Norm Minimization

We extend the projected gradient ascent algorithm in Sec. 4.1 to compute optimal attack strategies
for the nuclear norm minimization formulation in Eq. (5). Since the objective in Eq. (5) is convex,
the global optimal solution Θ = (X, X̃) can be obtained by conventional convex optimization
procedures such as proximal gradient descent (a.k.a. singular value thresholding [3] for nuclear norm
minimization). In addition, the resulting estimation (X; X̃) is low rank due to the nuclear norm
penalty [2]. Suppose (X; X̃) has rank ρ ≤ min(m,n). We use Θ′ = (U, Ũ,V,Σ) as an alternative
characterization of the learnt model with a reduced number of parameters. Here X = UΣV> and
X̃ = ŨΣV> are singular value decompositions of X and X̃; that is, U ∈ Rm×ρ, Ũ ∈ Rm′×ρ,
V ∈ Rn×ρ have orthornormal columns and Σ = diag(σ1, · · · , σρ) is a non-negative diagonal
matrix.

To compute the gradient ∇
M̃
R(M̂,M), we again apply the chain rule to decompose the gradient

into two parts:
∇M̃R(M̂,M) = ∇M̃Θ′λ(M̃; M)∇Θ′R(M̂,M). (13)

Similar to Eq. (11), the second gradient term ∇Θ′R(M̂,M) is relatively easier to evaluate. Its
derivation details are deferred to the Appendix. In the remainder of this section we shall focus on the
computation of the first gradient term, which involves partial derivatives of Θ′ = (U, Ũ,V,Σ) with
respect to malicious users M̃.

We begin with the KKT condition at the optimal solution Θ′ of Eq. (5). Unlike the alternating
minimization formulation, the nuclear norm function ‖ · ‖∗ is not everywhere differentiable. As a

5



Algorithm 2 Optimizing M̃ via SGLD
1: Input: Original partially observed m × n data matrix M, algorithm regularization parameter λ, attack

budget parameters α, B and Λ, attacker’s utility function R, step size {st}∞t=1, tuning parameter β, number
of SGLD iterations T .

2: Prior setup: compute ξj = 1
m

∑m
i=1 Mij and σ2

j = 1
m

∑m
i=1 (Mij − ξj)2 for every j ∈ [n].

3: Initialization: sample M̃
(0)
ij ∼ N (ξj , σ

2
j ) for i ∈ [m′] and j ∈ [n].

4: for t = 0 to T do
5: Compute the optimal solution Θλ(M̃(t); M).
6: Compute gradient∇M̃R(M̂,M) using Eq. (10).
7: Update M̃(t+1) according to Eq. (17).
8: end for
9: Projection: find M̃∗ ∈ arg minM̃∈M ‖M̃− M̃(t)‖2F . Details in the main text.

10: Output: m′ × n malicious matrix M̃∗.

result, the KKT condition relates the subdifferential of the nuclear norm function ∂‖ · ‖∗ as

RΩ,Ω̃

(
[M; M̃]− [X; X̃]

)
∈ λ∂‖[X; X̃]‖∗. (14)

Here [X; X̃] is the concatenated (m+m′)×n matrix of X and X̃. The subdifferential of the nuclear
norm function ∂‖ · ‖∗ is also known [2]:

∂‖X‖∗ =
{

UV> + W : U>W = WV = 0, ‖W‖2 ≤ 1
}
,

where X = UΣV> is the singular value decomposition of X. Suppose {ui}, {ũi} and {vj} are
rows of U, Ũ,V and W = {wij}. We can then re-formulate the KKT condition Eq. (14) as follows:

∀(i, j) ∈ Ω, Mij = u>i (Σ + λIρ)vj + λwij ;

∀(i, j) ∈ Ω̃, M̃ij = ũ>i (Σ + λIρ)vj + λw̃ij .

Now we can derive∇
M̃

Θ = ∇
M̃

(u, ũ,v, σ); the full derivation is deferred to the extended version.

4.3 Mimicing Normal User Behaviors

Normal users generally do not rate items uniformly at random. For example, some movies are
significantly more popular than others. As a result, malicious users that pick rated movies uniformly
at random can be easily identified by running a t-test against a known database consisting of only
normal users, as shown in Sec. 5. To alleviate this issue, in this section we propose an alternative
approach to compute data poisoning attacks such that the resulting malicious users M̃ mimics normal
users M to avoid potential detection, while still achieving reasonably large utility R(M̂,M) for
the attacker. We use a Bayesian formulation to take both data poisoning and detection avoidance
objectives into consideration. The prior distribution p0(M̃) captures normal user behaviors and is
defined as a multivariate normal distribution

p0(M̃) =
m′∏
i=1

n∏
j=1

N (M̃ij ; ξj , σ
2
j ),

where ξj and σ2
j are mean and variance parameters for the rating of the jth item provided by normal

users. In practice both parameters can be estimated using normal user matrix M as ξj = 1
m

∑m
i=1 Mij

and σ2 = 1
m

∑m
i=1 (Mij − ξj)2. On the other hand, the likelihood p(M|M̃) is defined as

p(M|M̃) =
1

Z
exp

(
β ·R(M̂,M)

)
, (15)

where R(M̂,M) = R(M̂(Θλ(M̃; M)),M) is one of the attacker utility functions defined in Sec. 3,
Z is a normalization constant and β > 0 is a tuning parameter that trades off attack performance and
detection avoidance. A small β shifts the posterior of M̃ toward its prior, which makes the resulting
attack strategy less effective but harder to detect, and vice versa.

6



(a) (b) (c) (d)

Figure 1: RMSE/Average ratings for alternating minimization with different percentage of malicious
profiles; (a) µ1 = 1, µ2 = 0, (b) µ1 = 1, µ2 = −1, (c)µ1 = 0, µ2 = 1, (d)µ1 = −1, µ2 = 1.

Given both prior and likelihood functions, an effective detection-avoiding attack strategy M̃ can be
obtained by sampling from its posterior distribution:

p(M̃|M) = p0(M̃)p(M|M̃)/p(M) ∝ exp

− m′∑
i=1

n∑
j=1

(M̃ij − ξj)2

2σ2
j

+ βR(M̂,M)

 . (16)

Posterior sampling of Eq. (16) is clearly intractable due to the implicit and complicated dependency
of the estimated matrix M̂ on the malicious data M̃, that is, M̂ = M̂(Θλ(M̃; M))). To circumvent
this problem, we apply Stochastic Gradient Langevin Dynamics (SGLD, [10]) to approximately
sample M̃ from its posterior distribution in Eq. (16). More specfically, the SGLD algorithm iteratively
computes a sequence of posterior samples {M̃(t)}t≥0 and in iteration t the new sample M̃(t+1) is
computed as

M̃(t+1) = M̃(t) +
st
2

(
∇M̃ log p(M̃|M)

)
+ εt, (17)

where {st}t≥0 are step sizes and εt ∼ N (0, stI) are independent Gaussian noises injected at each
SGLD iteration. The gradient∇

M̃
log p(M̃|M) can be computed as

∇M̃ log p(M̃|M) = −(M̃−Ξ)Σ−1 + β∇M̃R(M̂,M),

where Σ = diag(σ2
1 , · · · , σ2

n) and Ξ is an m′ × n matrix with Ξij = ξj for i ∈ [m′] and j ∈ [n]. The
other gradient∇

M̃
R(M̂,M) can be computed using the procedure in Sections 4.1 and 4.2. Finally,

the sampled malicious matrix M̃(t) is projected back onto the feasible set M by selecting B items
per user with the largest absolute rating and truncating ratings to the level of {±Λ}. A high-level
description of the proposed method is given in Algorithm 2.

5 Experimental Results

To evaluate the effectiveness of our proposed poisoning attack strategy, we use the publicly available
MovieLens dataset which contains 20 millions ratings and 465,000 tag applications applied to 27,000
movies by 138,000 users [23]. We shift the rating range to [−2, 2] for computation convenience. To
avoid the “cold-start” problem, we consider users who have rated at least 20 movies. Two metrics are
employed to measure the relative performance of the systems before and after data poisoning attacks:
root mean square error (RMSE) for the predicted unseen entries2 and average rating for specific items.
We then analyze the tradeoff between attack performance and detection avoidance, which is controled
by the β parameter in Eq. (15). This serves as a guide for how β should be set in later experiments.
We use a paired t-test to compare the distributions of rated items between normal and malicious users.
We present the trend of p-value against different values of β in the extended version of the paper. To
strive for a good tradeoff, we set β = 0.6 at which the p-value stablizes around 0.7 and the poisoning
attack performance is not significantly sacrificed.

We employ attack models specified in Eq. (9), where the utility parameters µ1 and µ2 balance two
different malicious goals (availability and integrity) an attacker wishes to achieve. For the integrity
utility Rin

J0,w
, the J0 set contains only one item j0 selected randomly from all items whose average

predicted ratings are around 0.8. The weight wj0 is set as wj0 = 2. Figure 1 (a) (b) plots the RMSE

2defined as RMSE =
√∑

(i,j)∈ΩC (Mij − M̂ij)2/|ΩC |, where M is the prediction of model trained on
clean dataRΩ(M) only (i.e., without data poisoning attacks).

7



(a) (b) (c) (d)

Figure 2: RMSE/Average ratings for nuclear norm minimization with different percentage of mali-
cious profiles; (a) µ1 = 1, µ2 = 0, (b) µ1 = 1, µ2 = −1, (c)µ1 = 0, µ2 = 1, (d)µ1 = −1, µ2 = 1.

after data poisoning attacks. When µ1 = 1, µ2 = 0, the attacker is interested in increasing the RMSE
of the collaborative filtering system and hence reducing the system’s availability. On the other hand,
when µ1 = 1, µ2 = −1 the attacker wishes to increase RMSE while at the same time keeping the
rating of specific items (j0) as low as possible for certain malicious purposes. Figure 1 (b) shows
that when the attackers consider to both objectives (µ1 = 1, µ2 = −1), the RMSE after poisoning is
slightly lower than that if only availability is targeted (µ1 = 1, µ2 = 0). In addition, the projected
gradient ascent (PGA) strategy generates the largest RMSE score compared with the other methods.
However, PGA requires malicious users to rate each item uniformly at random, which might expose
the malicious profiles to an informed defender. More specifically, the paired t-test on those malicious
profiles produced by PGA rejects the null hypothesis that the items rated by the attacker strategies
are the same as those obtained from normal users (p < 0.05). In contrast, the SGLD method leads
to slightly worse attacker utility but generates malicious users that are hard to distinguish from the
normal users (for example, the paired t-test leads to inconclusive p-values (larger than 0.7) with
β = 0.6. Finally, both PGA and SGLD result in higher attacker utility compared to uniform attacks,
where both ratings and rated items are sampled uniformly at random for malicious profiles.

Apart from the RMSE scores, we also plot ratings of specific items against percentage of malicious
profiles in Figure 1 (c) (d). We consider two additional attack utility settings: µ1 = 0, µ2 = 1, in
which the attacker wishes to push the ratings of some particular items (specified in w and J0 of Rin)
as high as possible; and µ1 = −1, µ2 = 1, where the attacker also wants to leave a “light trace" by
reducing the impact on the entire system resulted from malicious activities. It is clear that targeted
attackes (both PGA and SGLD) are indeed more effective at manipulating ratings of specific items
for integrity attacks.

We also plot RMSE/Average ratings against malicious user percentage in Figure 2 for the nuclear norm
minimization under similar settings based on a subset of 1000 users and 1700 movies (items), since
it is more computationally expensive than alternating minimization. In general, we observe similar
behavior of both RMSE/Average ratings under different attacking models µ1, µ2 with alternating
minimization.

6 Discussion and Concluding Remarks

Our ultimate goal for the poisoning attack analysis is to develop possible defensive strategies based
on the careful analysis of adversarial behaviors. Since the poisoning data is optimized based on the
attacker’s malicious objectives, the correlations among features within a feature vector may change
to appear different from normal instances. Therefore, tracking and detecting deviations in the feature
correlations and other accuracy metrics can be one potential defense. Additionally, defender can also
apply the combinational models or sampling strategies, such as bagging, to reduce the influence of
poisoning attacks.

Acknowledgments

This research was partially supported by the NSF (CNS-1238959, IIS-1526860), ONR (N00014-15-
1-2621), ARO (W911NF-16-1-0069), AFRL (FA8750-14-2-0180), Sandia National Laboratories,
and Symantec Labs Graduate Research Fellowship.

8



References
[1] Jun Wang, Arjen de Vires, and Marcel Reinders. Unifying user-based and item-based collaborative filtering

approaches by similarity fusion. In SIGIR, 2006.

[2] Emmanuel Candès and Ben Recht. Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 9(6):717–772, 2007.

[3] Jian-Feng Cai, Emmanuel Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[4] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. Effective attack models for
shilling item-based collaborative filtering systems. In Proceedings of the 2005 WebKDD Workshop, held in
conjuction with ACM SIGKDD’2005, 2005.

[5] Michael P O’Mahony, Neil J Hurley, and Guenole CM Silvestre. Promoting recommendations: An attack
on collaborative filtering. In Database and Expert Systems Applications, pages 494–503. Springer, 2002.

[6] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating
minimization. In STOC, 2013.

[7] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning. In ICML, 2015.

[8] Shike Mei and Xiaojin Zhu. The security of latent dirichlet allocation. In AISTATS, 2015.

[9] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on machine
learners. In AAAI, 2015.

[10] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learning (ICML-11), pages 681–688, 2011.

[11] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adversarial classification. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 99–108. ACM, 2004.

[12] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pages 641–647. ACM, 2005.

[13] Bo Li and Yevgeniy Vorobeychik. Feature cross-substitution in adversarial classification. In Advances in
Neural Information Processing Systems, pages 2087–2095, 2014.

[14] Bo Li and Yevgeniy Vorobeychik. Scalable optimization of randomized operational decisions in adversarial
classification settings. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, pages 599–607, 2015.

[15] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine learning
be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and communications
security, pages 16–25. ACM, 2006.

[16] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In
ICML, 2012.

[17] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autoregressive models. In
AAAI, 2016.

[18] Olga Klopp, Karim Lounici, and Alexandre Tsybakov. Robust matrix completion. arXiv:1412.8132, 2014.

[19] Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust matrix completion and
corrupted columns. In ICML, 2011.

[20] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Constantine Caramanis. Low-rank matrix recovery from
errors and erasures. IEEE Transactions on Information Theory, 59(7):4324–4337, 2013.

[21] Feiping Nie, Hua Wang, Xiao Cai, Heng Huang, and Chris Ding. Robust matrix completion via joint
schatten p-norm and lp-norm minimization. In ICDM, 2012.

[22] Yu-Xiang Wang and Huan Xu. Stability of matrix factorization for collaborative filtering. In ICML, 2012.

[23] Research GroupLens. www.grouplens.org.

9



A Computation of∇ΘR(M̂,M)

We provide details on how to compute the “easy" gradient ∇Θ̃R(M̂,M), M̂ = M̂(Θ) is the
prediction based on the learnt model Θ. Applying the chain rule of differentiation we get

∇ΘR(M̂,M) =
(
∇ΘM̂

)(
∇

M̂
R(M̂,M)

)
. (18)

We first focus on the second term∇
M̂
R(M̂,M)). This is easy to compute because all malicious utility

functions R considered in this paper are smooth and differentiable. More specifically, the availability
attack utility Rav and the integrity attack utility Rin admit the following gradient computations:

∂Rav

∂M̂ij

= 2(M̂ij −Mij) · I[(i, j) /∈ Ω];

∂Rin
J0,w

∂M̂ij

= w(j) · I[j ∈ J0].

Here I[·] is the indicator function that equals one if the corresponding condition holds true and zero
otherwise. The gradient for the hybrid utility Rhybrid can then be expressed as a linear combination
of the gradients of Rav and Rin:

∇Rhybrid
µ,J0,w

= µ1∇Rav + µ2∇Rin
J0,w.

We next turn to the computation of ∇ΘM̂, which is model specific. Alternating minimization and
nuclear norm minimization are considered separately for this gradient:

Alternating minimization In alternating minimization the learnt model Θ is parameterized by
Θ = (U, Ũ,V), where U ∈ Rm×k, Ũ ∈ Rm′×k and V ∈ Rn×k. Since M̂ = UV> for normal
users, we have

∂M̂ij

∂U`t
= Vjt · I[i = `],

∂M̂ij

∂V`t
= Uit · I[j = `].

Nuclear norm minimization In nuclear norm minimization the learnt model Θ is parameterized
by Θ = (U, Ũ,V,Σ) where U ∈ Rm×k, Ũ ∈ Rm′×k, V ∈ Rn×k and Σ = diag(σ1, · · · , σk).
The estimation M̂ for normal users is then expressed as M̂ = UΣV>. As a result, we have

∂M̂ij

∂U`t
= σtVjt · I[i = `];

∂M̂ij

∂V`t
= σtUit · I[j = `];

∂M̂ij

∂σt
= UitVjt.

B Derivation of∇M̃Θ = ∇M̃(u, ũ,v, σ) for nuclear norm minimization

Evaluation of ∇
M̃
ui Because ui does not depend on M̃, we have∇

M̃
ui = 0.

Evaluation of∇
M̃
ũi Let Ω̃i be all (i, j) pairs such that (i, j) ∈ Ω̃. Suppose we are computing the

gradient of ũi with respect to M̃i`, where ` can be either in or not in Ω̃i. Define Ω̃`i = Ω̃i∪{`} be the
extended set of observations and denote r = |Ω̃`i | as the size of the extended observation set. Define
M̃i = (M̃ij)j∈Ω̃`

i
∈ Rr, w̃i = (w̃ij)j∈Ω̃`

i
∈ Rr and V`

i = (vj)j∈Ω̃`
i
∈ Rρ×r. By KKT condition,[

(Σ + λIρ) V`
i

]>
ũi = M̃i − λw̃i. (19)

10



The above linear system can be either over-determined or under-determined, depending on the
relationship between ρ and r. When the system is under-determined (e.g., r < ρ), the solution to
Eq. (19) is not unique and could be instable if the matrix Ai =

[
(Σ + λIρ) V`

i

]>
is ill-conditioned.

On the other hand, when the system is over-determined (e.g., r > ρ) an exact solution ũi may
not exist. To force unique solutions in full generality, we compute ũi by solving the following
Ridge-regularized system:

min
ũi

‖M̃i − λw̃i −Aiũi‖22 + 2τ‖ũi‖22,

where τ > 0 is a smoothing parameter. Subsequently,

ũi ≈ (A>i Ai + τIρ)
−1A>i (M̃i − λw̃i);

∂ũi

∂M̃i`

≈ (A>i Ai + τIρ)
−1(Σ + λIρ)v`.

Evaluation of ∇
M̃
vj This part is similar to the gradient of ũi. Suppose we are computing

∂vj/∂M̃`j . Define Ω̄`j = Ω′j ∪ Ω̃′j ∪ {`} to be the extended set of all i such that (i, j) ∈ Ω ∪ Ω̃. Let
r = |Ω̄`j | be the size of the extended set. We then have[

(Ū`
i)
>(Σ + λIρ)

]
vj = M̃′

j − λw̃′j ,

where Ū`
i is a ρ× r matrix consisting of all ui or ũi for i ∈ Ω̄`j as its columns. On the right-hand

side, we have M̃′
j = (M̃ij)i∈Ω̄`

j
and w̃′j = (wij)i∈Ω̄`

j
. Let Bj = (Ū`

i)
>(Σ + λIρ) ∈ Rr×ρ and

τ > 0 be a smoothing parameter. We then have

∂vj

∂M̃`j

≈ (B>j Bj + τIρ)
−1(Σ + λIρ)ũ`.

Evaluation of ∇
M̃
σk By KKT condition we have

M̃ij = ũikvjk · σk + c,

where c is a constant that does not depend on σk. Subsequently, we get

∂σk

∂M̃ij

=
1

ũikvjk
.

C Additional experimental results

Here we analyze the trend of p-value against different values of β. Figure 3 plots P-values and
RMSE/Average ratings against different values of β. When B = 25 (recall that B is the maximum
number of items a malicious user is allowed to rate), with the increase of β, the P-value decreases
while both RMSE and average per-item ratings increase.

We then plot ratings of specific items against percentage of malicious profiles by setting µ2 =
−1 to evaluate the performance of attacker reducing the popularity of the item, whose original
predicted average rating is 0.8. Figure 5 and 6 both show two settings of µ1 = 0, µ2 = −1 and
µ1 = −1, µ2 = −1 for alternating minimization and nuclear norm minimization, respectively. For
alternating minimization algorithm, when µ1 = 0, µ2 = −1, the attacker tries to reduce the average
rating for certain item without caring about the availability error of the whole recommendation
system. This way, the attacker has better control of the item and can decrease the average rating
of the item from 0.8 to around -0.3. While, if µ1 = −1, µ2 = −1, the attacker want to reduce the
popularity of the item and at the same time reduce the availability error for the whole system to avoid
detection; therefore the attacker can only decrease the average rating of the item to about -0.1 under
this setting.We obtain the similar observations for the nuclear norm minimization.

11



(a) (b)
(c) (d)

Figure 3: P values and RMSE/Averge ratings for alternating minimization with different β values; (a)
µ1 = 1, µ2 = 0, (b) µ1 = 1, µ2 = −1, (c) µ1 = 0, µ2 = 1, (d) µ1 = −1, µ2 = 1.

(a) (b)
(c) (d)

Figure 4: P values and RMSE/Averge ratings for nuclear norm minimization with different β values;
(a) µ1 = 1, µ2 = 0, (b) µ1 = 1, µ2 = −1, (c) µ1 = 0, µ2 = 1, (d) µ1 = −1, µ2 = 1.

(a) (b)

Figure 5: Average ratings of certain items using alternating minimization; (a) µ1 = 0, µ2 = −1, (b)
µ1 = −1, µ2 = −1.

12



(a) (b)

Figure 6: Average ratings of certain items using nuclear norm minimization; (a) µ1 = 0, µ2 = −1,
(b) µ1 = −1, µ2 = −1.

13


	Introduction
	Preliminaries
	The Attack Model
	Computing Optimal Attack Strategies
	Attacking Alternating Minimization
	Attacking Nuclear Norm Minimization
	Mimicing Normal User Behaviors

	Experimental Results
	Discussion and Concluding Remarks
	Computation of R(M"0362M,M)
	Derivation of M"0365M= M"0365M(bold0mu mumu uuprogram@epstopdfuuuu,,bold0mu mumu vvprogram@epstopdfvvvv,) for nuclear norm minimization
	Additional experimental results

