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Abstract. Police departments worldwide are eager to develop better pa-
trolling methods to manage the complex and evolving crime landscape.
Surprisingly, the problem of spatial police patrol allocation to optimize
expected crime response time has not been systematically addressed in
prior research. We develop a bi-level optimization framework to address
this problem. Our framework includes novel linear programming patrol re-
sponse formulations. Bender’s decomposition is then utilized to solve the
underlying optimization problem. A key challenge we encounter is that
criminals may respond to police patrols, thereby shifting the distribution
of crime in space and time. To address this, we develop a novel itera-
tive Bender’s decomposition approach. Our validation involves a novel
spatio-temporal continuous-time model of crime based on survival analy-
sis, which we learn using real crime and police patrol data for Nashville,
TN. We demonstrate that our model is more accurate, and much faster,
than state-of-the-art alternatives. Using this model in the bi-level opti-
mization framework, we demonstrate that our decision theoretic approach
outperforms alternatives, including actual police patrol policies.

Keywords: Decision theoretic policing, crime modeling, survival anal-
ysis, Bender’s decomposition

1 Introduction

Prevention, response and investigation are the three major engagements of po-
lice. Ability to forecast and then effectively respond to crime is, therefore, the
holy grail of policing. In order to ensure that crime incidents are effectively han-
dled, it is imperative that police be placed in a manner that facilitates quick
response. Effective police placement, however, needs crime prediction as a pre-
requisite. This is one of the reasons why predicting crime accurately is of utmost
importance. While a number of techniques have been proposed for characterizing
and forecasting crime, optimizing response times has not been addressed so far,
to the best of our knowledge.

Our goal is to develop a rigorous optimization-based approach for optimal
police placement in space in order to minimize expected time to respond to
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crime incidents as they occur. For the time being, we assume that a generative
model for crime is available; we describe such a model, calibrated on real crime
and police patrol data, in Section 4. The key challenge we face is that crime
locations and timing are uncertain. Moreover, for a given placement of police
resources in space, optimizing crime incident response for a collection of known
incidents is itself a non-trivial optimization problem. What makes this problem
particularly challenging is that criminals are affected by police, as they avoid
committing crimes if the chances of being caught are high; consequently, we
expect that police placement will impact spatial and temporal distribution of
crime incidents. Our model, therefore, has both decision and game theoretic
features, even though we make use of a data-driven generative model of crime
that accounts for the impact of police locations, rather than relying on rationality
as underpinning criminal behavior.

Formally, we frame the problem of police patrol optimization as a regularized
two-stage stochastic program. We show how the second-stage program (comput-
ing optimal response to a fixed set of crime incidents) can be formulated as a
linear program, and develop a Bender’s decomposition method with sample av-
erage approximation for the overall stochastic program. To address the fact that
the top-level optimization decisions actually influence the probability distribu-
tion over scenarios for the second-level crime response optimization problem, we
propose a novel iterative stochastic programming algorithm, IBRO, to compute
approximate solutions to the resulting bi-level problem of finding optimal spa-
tial locations for police patrols that minimize expected response time. We show
that our model outperforms alternative policies, including the response policy
in actual use by a US metropolitan police department, both in simulation and
on actual crime data.

In order to validate our model of police response, we develop a novel crime
forecasting model that is calibrated and evaluated using real crime and police
patrol data in Nashville, TN. Crime prediction has been extensively studied,
and several models for it have been proposed. These include visualization tools,
primarily focused on hotspots, or areas of high crime incidence [2], spatial cluster
analysis tools [17, 15], risk-terrain models [10], leading indicator models [4], and
dynamic spatial and temporal models [9, 19, 23]. A major shortcoming of the ex-
isting methods is that they do not allow principled data-driven continuous-time
spatial-temporal forecasting that includes arbitrary crime risk factors. For exam-
ple, while risk-terrain modeling focuses on spatial covariates of crime, it entirely
ignores temporal factors, and does not offer methods to learn a generative model
of crime from data. The work by Short et al. [19] on dynamic spatial-temporal
crime modeling, on the other hand, does not readily allow inclusion of important
covariates of crime, such as locations of pawn shops and liquor stores, weather,
or seasonal variations. Including such factors in a spatial-temporal model, how-
ever, is critical to successful crime forecasting: for example, these may inform
important policy decisions about zoning and hours of operation for liquor stores,
and will make the tool more robust to environmental changes that affect such
variables. To address these concerns, validate our model, and forecast crimes,
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we propose a stochastic generative model of crime which is continuous in time
and discretized in space, and readily incorporates crime covariates, bridging an
important gap in prior art. Our model leverages survival analysis to learn a prob-
ability density over time for predicting crime. After creating a model to predict
crime, we evaluate its performance by comparing it with a natural adaptation
of the Dynamic Spatial Disaggregation Approach (DSDA) algorithm [9] and an
Dynamic Bayes Network method [23] using automated abstraction [22].

1.1 Related Work

There has been an extensive literature devoted to understanding and predict-
ing crime incidence, involving both qualitative and quantitative approaches. For
example, a number of studies investigate the relationship between liquor out-
lets and crime [20, 21]. Many of the earlier quantitative models of crime focus on
capturing spatial crime correlation (hot spots), and make use of a number of sta-
tistical methods towards this end [17, 15]; these are still the most commonly used
methods in practice. An alternative approach, risk-terraine modeling, focuses on
quantifiable environmental factors as determinants of spatial crime incidence,
rather than looking at crime correlation [10]. These two classes of models both
have a key limitation: they ignore the temporal dynamics of crime. Moreover,
environmental risk factors and spatial crime analysis are likely complementary.
Our approach aims to merge these ideas in a principled way.

Recently, a number of sophisticated modeling approaches emerged aiming
to tackle the full spatio-temporal complexity of crime dynamics. One of these is
based on a spatio-temporal differential equation model that captures both spatial
and temporal crime correlation [18, 16]. These models have two disadvantages
compared to ours: first, they do not naturally capture crime co-variates, and
second, they are non-trivial to learn from data [16], as well as to use in making
predictions [18]. Another model in this general paradigm is Dynamic Spatial
Disaggregation Approach (DSDA) [9], which combines an autoregressive model
to capture temporal crime patterns with spatial clustering techniques to model
spatial correlations. The model we propose is significantly more flexible, and
combines spatial and temporal predictions in a principled way by using well-
understood survival analysis methods. Recently, an approach has been proposed
for modeling spatial and temporal crime dynamics using Dynamic Bayes Net-
works [23, 22]. This approach necessitates discretization of time, as well as space.
Moreover, despite significant recent advances, scalability of this framework re-
mains a challenge.

2 Optimizing Police Placement

Our goal is to address a fundamental decision theoretic question faced by police:
how to allocate limited police patrols so as to minimize expected response time
to occurring crime. In reality, this is a high-dimensional dynamic optimization
problem under uncertainty. In order to make this tractable in support of practical
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decision making, we consider a simplified two-stage model: in the first stage,
police determines spatial location of a set of patrol vehicles, P , and in the second
stage, vehicles respond to crime incidents which occur. The decisions in the first
stage are made under uncertainty about actual crime incidents, whereas for
second-stage response decisions, we assume that this uncertainty is resolved. A
key strategic consideration in police placement is its impact on crime incidence.
In particular, it is well known that police presence has some deterrence effect on
crime, which in spatio-temporal domains takes two forms: reduced overall crime
frequency, and spatial crime shift [12, 19]. We assume below that the effect of
police presence on crime distribution is captured in a stochastic crime model.
Later, we describe and develop the stochastic crime model where we use real
crime and police patrol data.

We present the problem formulation of allocating police given a stochastic
generative model of crime. We divide the available area under police patrol into
discrete grids. Formally, we define q as the vector of police patrol decisions, where
qi is the number of police vehicles place in grid i. Let s be a random variable
corresponding to a batch of crime incidents occurring prior to the second stage.
The two-stage optimization problem for police placement then has the following
form:

min
q

Es∼f [D(q; s)], (1)

where D(q; s) is the minimal total response time of police located according
to q to crime incidents in realization s, which is distributed according to our
crime distribution model f described in Section 4, associated with each grid
(and the corresponding spatial variables). The model implicitly assumes that
crime occurrence is distributed i.i.d. for each grid cell, conditional on the feature
vector, where the said feature vector captures the inter-dependence among grids.
While the crime prediction model is continuous in time, we can fix a second-stage
horizon to represent a single time zone (4-hour interval), and simply consider
the distribution of the crime incidents in this interval.

The optimization problem in Equation (1) involves three major challenges.
First, even for a given s, one needs to solve a non-trivial optimization problem of
choosing which subset of vehicles to send in response to a collection of spatially
dispersed crime incidents. Second, partly as a consequence of the first, comput-
ing the expectation exactly is intractable. Third, the probability distribution of
future crime incidents, f , depends on police patrol locations q through the fea-
tures that capture deterrence effects as well as spatial crime shift to avoid police.
We address these problems in the following subsections.

2.1 Minimizing Response Time for a Fixed Set of Crime Incidents

While our goal is to minimize total response time (where the total is over the
crime incidents), the information we have is only about spatial locations of crime
and police in discretized space. As a result, we propose using distance traveled
as a proxy. Specifically, if a police vehicle located at grid i is chosen to respond
to an incident at grid j, the distance traveled is dij , distance between grids i and
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j. Assume that these distances dij are given for all pairs of grids i, j. Next, we
assume that a single police vehicle is sufficient to respond to all crime incidents
in a particular grid j. This is a reasonable assumption, since the number of crime
incidents in a given cell over a 4-hour interval tends to be relatively small, and
this interval is typically sufficient time to respond to all of them.

Given this set up, we now show how to formulate this response distance
minimization problem as a linear integer program by mapping it to two classical
optimization problems: the transportation [1] and k-server problems [3].

In the transportation problem, there are m suppliers, each with supply si, n
consumers, each with demand rj , and transportation cost cij between supplier i
and consumer j. The goal is to transport goods between suppliers and consumers
to minimize total costs. To map crime response to transportation, let police
vehicles be suppliers, crime incidents be consumers, and let transportation costs
correspond to distances dij between police vehicle and crime incident grids, with
each grid being treated as a node in the network. While the transportation
problem offers an effective means to compute police response, it requires that
the problem is balanced: supply must equal demand. If supply exceeds demand,
a simple modification is to add a dummy sink node. However, if demand exceeds
supply, the problem amounts to the multiple traveling salesman problem, and
needs a different approach.

To address excess-demand settings, we convert the police response to a more
general k-server problem. The k-server problem setting involves k servers in space
and a sequence of m requests. In order to serve a request, a server must move
from its location to the location of the request. The k-server problem can be
reduced to the problem of finding minimum cost flow of maximum quantity in
an acyclic network [3]. Let the servers be s1, ..., sk and the requests be r1, ..., rm.
A network containing (2 + k + 2m) nodes is constructed. In the formulation
described in [3], each arc in the network has capacity one. The arc capacities
are modified in our setting, as described later in the problem formulation. The
total vertex set is {a, s1, ..., sk, r1, ..., rm, r

′

1, ..., r
′

m, t}. a and t are source and sink
respectively. There is an arc of cost 0 from a to each of si. From each si, there is
an arc of cost dij to each rj , where dij is the actual distance between locations
i and j. Also, there is an arc of cost 0 from each si to t. From each ri, there
is an arc of cost −K to each r

′

i, where K is an extremely large real number.

Furthermore, from each r
′

i, there is an arc of cost dij to each rj where i < j
in the given sequence. In our setting, servers and requests correspond to grids
with police and crime respectively. In the problem setting we describe, G is the
set of all the nodes in the network. We term the set {si ∀i ∈ G} as G1, the set
{ri ∀i ∈ G} as G2 and the set {r′

i ∀i ∈ G} as G3. The structure of the network is
shown in Fig. 1, which shows how the problem can be framed for a setting with
6 discrete locations. Shaded nodes represent the presence of police and crime in
their respective layers.

The problem of finding placement of k-servers in space to serve an unordered
set of requests is the same as the multiple traveling salesperson problem (mTSP),
a generalization of the TSP problem, which is NP-hard. The offline k-server prob-
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lem gets around this by having a pre-defined sequence of requests. By sampling
crimes from the spatio-temporal model, although we can create a sequence of
crimes by ordering them according to their times of occurrence, this sequence
need not necessarily provide the least time to respond to all the crimes. In order
to deal with this problem, we leverage the fact that crimes are relatively rare
events. In order to find the ordering of crimes that provides the least response
time, we solve the problem for each possible ordering of crimes. Despite this, the
k-server solution approach is significantly less scalable than the transportation
formulation. Consequently, we make use of it only in the (rare) instances when
crime incidents exceed the number of available police.
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Source 

Sink 

s1 s2 s3 s4 s5 s6 

r1 r2 r3 r4 r5 r6 
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Fig. 1: Network Structure

2.2 Stochastic Programming and Sample Average Approximation
for Police Placement

Now that we have two ways of addressing the problem of minimizing response
time given a known set of crime incidents, we consider the original problem of
optimizing allocation of police patrols. As a first step, we point out that the
resulting stochastic program is intractable in our setting because of the large
space of possible crime incident realizations. We therefore make use of sample
average approximation, whereby we estimate the expectation using a collection
of i.i.d. crime incident realization samples (henceforth, scenarios) generated ac-
cording to f . For each scenario, we represent the presence of crimes in the grids
by a binary vector z and total available police by k. The decision variable, xsij
refers to the number of police vehicles traveling from grid i to grid j in scenario
s. Under such a setting, the optimization program with transportation problem
in the second level can be formulated as:
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min
q

∑
s∈S

min
xs≥0

∑
ij

dijx
s
ij

 (2a)

s.t. : qi ∈ Z+ ∀i ∈ G∑
i∈G

qi = k (2b)∑
j∈G

xsij = qi, ∀i ∈ G,∀s ∈ S (2c)

∑
i∈G

xsij = zsj , ∀j ∈ G,∀s ∈ S, (2d)

xsij ≥ 0 ∀i, j ∈ G (2e)

The optimization program leveraging the k-server problem, on the other
hand, can be formulated as:

min
q

∑
s∈S

min
xs≥0

∑
ij

dijx
s
ij

 (3a)

(3b)

s.t. : qi ∈ Z+ ∀i ∈ G∑
j∈{G2,t}

xsij = qi ∀i ∈ G1,∀s ∈ S (3c)

∑
i∈G

xsij = zsj ∀j ∈ G2,∀s ∈ S (3d)

∑
j∈G

xsij −
∑
l∈G

xsli = si ∀i ∈ G,∀s ∈ S where si =


k if i = a

−k if i = t

0 otherwise

(3e)

xsij ≤ 1 ∀i, j ∈ {i, j ∈ G} \ {{i, j ∈ G and i = a and j ∈ G1}
∪ {i, j ∈ G and i ∈ G1 and j = t}},∀s ∈ S (3f)

xsij ≥ 0 ∀i, j ∈ G,∀s ∈ S (3g)

The overall optimization problem then becomes

min
q≥0

Es∼f

1(k ≥ ms) min
xs∈Cs(q)

1

∑
ij

dijx
s
ij + 1(k < ms) min

xs∈Cs(q)
2

∑
ij

dijx
s
ij

 (4)

where C
s(q)
1 includes the Constraints 2c, 2d, and C

s(q)
2 includes Constraints

3c 3d and 3e, as well as the capacity constraints, for all realizations of crime
incidents s, that are drawn from the distribution f .
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We propose to solve this stochastic program using Bender’s decomposition [1].
The first step is to represent the inner (lower-level) optimization problems using
their duals, which for the transportation problem, is represented as:

max
α,β

∑
i∈G

qiα
s
i +

∑
j∈G

zsjβ
s
j (5a)

s.t. : dij − αsi − βsj ≥ 0 ∀i, j ∈ G, (5b)

where {αs1, ..., αsg} are the dual variables for Constraints 2c and βs1, ..., β
1
g are dual

variables for Constraints 2d. The dual for the k-server problem is represented
as:

max
λ,δ,f,c

−
∑
i∈G1

λsi qi −
∑
j∈G2

δsjzj −
∑
i,j∈Cc

csij −
∑
i∈G

fsi si (6a)

s.t. (6b)

1(i, j ∈ Cλ)λsi + 1(i, j ∈ Cδ)δsj + fsi − fsj + 1(i, j ∈ Cc)csij + dij ≥ 0 ∀i, j ∈ G
(6c)

where
i, j ∈ Cλ if i, j ∈ G and i ∈ G1, j ∈ {G2, t}

i, j ∈ Cδ if i, j ∈ G and i ∈ G2

i, j ∈ Cc if i, j ∈ {i, j ∈ G} \ {{i, j ∈ G and i = a and j ∈ G1}

∪{i, j ∈ G and i ∈ G1 and j = t}}

We introduce dual variables λsi , ..., λ
s
k for constraints 3c, δsi , ..., δ

s
m for constraints

3d, fsi , ..., f
s
n for constraints 3e and cs11, c

s
12..., c

s
nn for constraints 3f.

By construction, the primal transportation problem always has a feasible
solution as it is balanced, and the primal k-server problem always has a feasible
solution provided

∑
i qi > 0, which is ensured by always having a budget greater

than 0. Consequently, there always exists an optimal dual solution which is
one of the (finite number of) extreme points of the polyhedron comprised from
Constraints 5b and 6c for the corresponding problems. Since these constraints
do not depend on the police patrol allocation decisions q, the set of extreme
points of the constraint polyhedra Es = {(λs, δs, fs, cs)} and Es = {αs, βs} for
both the problems are independent of q. Thus, we can then rewrite the stochastic
program as

min
q

∑
s∈S

1(k < ms){ max
(λs,δs,fs,cs)∈Es

−
∑
i∈G1

λsi qi −
∑
j∈G2

δsjzj −
∑
i,j∈Cc

csij−

∑
i∈G

fsi si}+ 1(k ≥ ms){max
α,β

∑
i∈G

qiα
s
i +

∑
j∈G

zsjβ
s
j}


(7)
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Since Es is finite, we can rewrite it as

min
q,us

∑
s

us (8a)

s.t. : qi ∈ Z+ ∀ i ∈ G

us ≥ −
∑
i∈G1

λsi qi −
∑
j∈G2

δsjzj −
∑
i,j∈Cc

csij −
∑
i∈G

fsi si ∀ s, (λs, δs, fs, cs) ∈ Ẽs

(8b)

us ≥
∑
i∈G

qiα
s
i +

∑
j∈G

zsjβ
s
j ∀ s, (αs, βs) ∈ Ẽs (8c)

where Ẽs is a subset of the extreme points which includes the optimal dual solu-
tion and Constraints 8b and 8c are applicable based on whether the particular
scenario is mapped to the transportation problem or the k-server problem. Since
this subset is initially unknown, Bender’s decomposition involves an iterative al-
gorithm starting with empty Ẽs, and iterating solutions to the problem with this
subset of constraints (called the master problem), while generating and adding
constraints to the master using the dual program for each s, until convergence
(which is guaranteed since Es is finite).

A problem remains with the above formulation: if police vehicles signifi-
cantly outnumber crime events, we only need a few of the available resources to
attain a global minimum, and the remaining vehicles are allocated arbitrarily.
In practice, this is unsatisfactory, as there are numerous secondary objectives,
such as overall crime deterrence, which motivate allocations of police which are
geographically diverse. We incorporate these considerations informally into the
following heuristic objectives:

– There should be more police coverage in areas that observe more crime, on
average, and

– Police should be diversely distributed over the entire coverage area.

We incorporate these secondary objectives by modifying the objective function
in (3) to be

min
q
−γhiqi + κqi + min

xs≥0

∑
s∈S

∑
ij

dijx
s
ij (9)

where hi is the observed frequency of crimes in grid i and γ and κ are parameters
of our model. The first term γhiqi forces the model to place police in high crime
grids. The second term κqi penalizes the placement of too many police vehicles
in a grid and thus forces the model to distribute police among grids.

2.3 Iterative Stochastic Programming

Bender’s decomposition enables us to solve the stochastic program under the
assumption that f is stationary. A key challenge identified above however, is
that the distribution of future crime actually depends on the police placement
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policy q. Consequently, a solution to the stochastic program for a fixed set of
samples s from a distribution f is only optimal if this distribution reflects the
distribution of crime conditional on q, turning stochastic program into a fixed
point problem. We propose to use an iterative algorithm, IBRO (Iterative Ben-
der’s Response Optimization) (Algorithm 1), to address this issue. Intuitively,
the algorithm provides police repeated chances to react to crimes, while updat-
ing the distribution of crimes given current police positions. In the algorithm,
MAX ITER is an upper limit on the number of iterations, e is the set of all
evidence (features) except police presence and τ |z is the response time to crime
z. q and z, as before, refer to vectors of police placements and crime locations
and qi|zi refers to police placement given a particular set of crimes.

Algorithm 1 IBRO

1: INPUT: q0: Initial Police Placement
2: OUTPUT: q∗: Optimal Police Placement
3: for i = 1..MAX ITER do
4: Sample Crime zi from f(t|e, qi−1)
5: Find Optimal Police Placement qi|zi by Stochastic Programming.
6: Calculate Ei(τ |zi)
7: if Ei(τ |zi) > Ei−1(τ |zi−1) then
8: Return qi−1

9: end if
10: if |Ei(τ |zi)−Ei−1(τ |zi−1)| ≤ ε then
11: Return qi
12: end if
13: end for
14: Return qi

3 Crime and Police Data

In order to validate the decision theoretic model above, we used the following
data to learn the parametric model of crime described in Section 4. We use
burglary data from 2009 for Davidson County, TN, a total of 4,627 incidents,
which includes coordinates and reported occurrence times. Observations that
lacked coordinates were geo-coded from their addresses. In addition, we used
police vehicle patrol data for the same county, consisting of GPS dispatches sent
by county police vehicles, for a total of 31,481,268 data points, where each point
consists of a unique vehicle ID, time, and spatial coordinates. A total of 624
retail shops that sell liquor, 2494 liquor outlets, 41 homeless shelters, and 52
pawn shops were taken into account. We considered weather data collected at
the county level. Additional risk-terrain features, included population density,
housing density, and mean household income at a census tracts level.



Optimal Allocation of Police Patrol Resources 11

4 Continuous-Time Crime Forecasting

4.1 Model

Crime models commonly fall into three categories: purely spatial models, which
identify spatial features of previously observed crime, such as hot spots (or crime
clusters), spatial-temporal models which attempt to capture dynamics of attrac-
tiveness of a discrete set of locations on a map, and risk-terrain models, which
identify key environmental determinants (risk factors) of crime, and create an
associated time-independent risk map. A key gap in this prior work is the lack of
a spatial-temporal generative model that can capture both spatial and temporal
correlates of crime incidents, such as time of day, season, locations of liquor out-
lets and pawn shops, and numerous others. We propose to learn a density f(t|w)
over time to arrival of crimes for a set of discrete spatial locations G, allowing
for spatial interdependence, where w is a set of crime co-variates.

A natural choice for this problem is survival analysis [6] which allows us
to represent distribution of time to events as a function of arbitrary features.
Formally, the survival model is ft(t|γ(w)), where ft is a probability distribution
for a continuous random variable T representing the inter-arrival time, which
typically depends on covariates w as log(γ(w)) = ρ0+

∑
i ρiwi. A key component

in a survival model is the survival function, which is defined as S(t) = 1−Ft(t),
where Ft(t) is the cumulative distribution function of T . Survival models can
be parametric or non-parametric in nature, with parametric models assuming
that survival time follows a known distribution. In order to model and learn
f(t) and consequently S(t), we chose the exponential distribution, which has
been widely used to model inter-arrival time to events and has the important
property of being memoryless. We use Accelerated Failure Model (AFT) for
the survival function over the semi-parametric Cox’s proportional hazard model
(PHM) and estimate the model coefficients using maximum likelihood estimation
(MLE), such that in our setting, S(t|γ(w)) = S(γ(w) t). While both the AFT and
PHM models measure the effects of the given covariates, the former measures it
with respect to survival time and the latter does so with respect to the hazard.
The AFT model thus allows us to offer natural interpretations regarding how
covariates affect crime rate.

A potential concern in using survival analysis in this setting is that grids
can experience multiple events. We deal with this by learning and interpreting
the model in a way that the multiple events in a particular grid are treated as
single events from multiple grids and prior events are taken into consideration
by updating the temporal and spatial covariates.

In learning the survival model above, there is a range of choices about its
spatial granularity, from a single homogeneous model which captures spatial het-
erogeneity entirely through the model parameters w, to a collection of distinct
models fi for each spatial grid i ∈ G. For a homogeneous model it is crucial to
capture most of the spatial variation as model features. Allowing for a collec-
tion of distinct models fi, on the other hand, significantly increases the risk of
overfitting, and reduces the ability to capture generalizable spatially-invariant
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Table 1: Variables for Crime Prediction

Type of
Feature

Sub-Type Variable Description

Temporal

Temporal
Cycles

Time of Day
Each day was divided into 6 equal time zones with
binary features for each.

Weekend
Binary features to consider whether crime took
place on a weekend or not.

Season
Binary features for winter, spring, summer and
fall seasons.

Weather
Mean Temperature Mean Temperature in a day
Rainfall Rainfall in a day
Snowfall Snowfall in a day

Effect of
Police

Police Presence
Number of police vehicles passing through a grid
and neighboring grids over past 2 hours

Spatial
Risk-

Terrain

Population Density Population density (Census Tract Level)
Household Income Mean Household Income (Census Tract Level)
Housing Density Housing Density (Census Tract Level)

Spatial-
Temporal

Spatial
Correlation

Past Crime

Separate variables considered for each discrete
crime grid representing the number of crimes in
the last two days, past week and past month. We
also looked at same crime measures for neighbors
of a grid.

Effect of
Police

Crime Spillover
Number of police vehicles passing in the past two
hours through grids that are not immediately ad-
jacent, but farther away.

knowledge about crime co-variates. To balance these considerations, we split the
discrete spatial areas into two coarse categories: high-crime and low-crime, and
learned two distinct homogeneous models for these. We do this by treating the
count of crimes for each grid as a data point and then splitting the data into
two clusters using k-means clustering.

The next step in the modeling process is to identify a collection of features
that impact crime incidence, which will comprise the co-variate vector w. In
doing this, we divide the features into temporal (those that only change with
time), spatial (those capturing spatial heterogeneity), and spatio-temporal (fea-
tures changing with both time and space).

4.2 Temporal Features

Temporal Crime Cycles: Preliminary analysis and prior work [7, 13] were
used to identify the set of covariates, such as daily, weekly and seasonal cycles,
that affect crime rate. Crime rates have also been shown to depend on seasons
(with more crime generally occurring in the summer) [14]. Thus, we consider
seasons as binary features. In order to incorporate crime variation throughout
the day, each day was divided into six zones of four hours each, captured as
binary features. Similarly, another binary feature was used to encode weekdays
and weekends.

Temporal Crime Correlation: It has previously been observed that crime
exhibits inter-temporal correlation (that is, more recent crime incidents increase
thelikelihood of subsequent crime). To capture this aspect, we used recent crime
counts in the week and month preceding time under consideration.
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Weather: It is known that weather patterns can have a significant effect on
crime incidence [5]. Consequently, we included a collection of weather-related
features, such as rainfall, snowfall, and mean temperature.
Police Presence: The final class of features that are particularly pertinent
to our optimization problem involves the effect of police presence on crimes.
Specifically, it is often hypothesized that police presence at or near a location
will affect future crime at that location [12]. We try to capture this relationship,
by including a feature in the model corresponding to the number of police vehicles
passing within the grid, as well as its immediate neighboring grid cells, over the
previous two hours.

4.3 Spatial and Spatio-Temporal Features

Risk-Terrain Features: We leveraged the risk-terrain modeling framework [10],
as well as domain experts, to develop a collection of spatial features such as pop-
ulation density, mean household income, and housing density at the census tract
level. We used the location of pawn shops, homeless shelters, liquor stores, and
retail outlets that sell liquor as the observed spatial-temporal variables (note
that temporal variation is introduced, for example, as new shops open or close
down).
Spatial Crime Correlation: One of the most widely cited features of crime
is its spatial correlation (also referred to as repeat victimization [11]), a phe-
nomenon commonly captured in hot-spotting or spatial crime clustering tech-
niques. We capture spatial correlation as follows. For each discrete grid cell in
the space we first consider the number of crime incidents over the past two days,
past week, and past month, as model features, capturing repeat victimization
within the same area. In addition, we capture the same features of past crime
incidents for neighboring grid cells, capturing spatial correlation.
Spatial Effects of Police Presence: Aside from the temporal effect of po-
lice on crime (reducing its frequency at a particular grid cell), there is also a
spatial effect. Specifically, in many cases criminals may simply commit crime
elsewhere [8]. To capture this effect, we assume that the spillover of crime will
occur between relatively nearby grid cells. Consequently, we add features which
measure the number of police patrol units over the previous two hours in grid
cells that are not immediately adjacent, but are several grid cells apart. In effect,
for a grid cell, we hypothesize that cells that are very close push crime away or
reduce it, whereas farther away grids spatially shift crime to the concerned grid,
causing spillover effects. The list of all the variables is summarized in Table 1.

5 Results

5.1 Experiment Setup

We used python and R to learn the model parameters, with rpy2 acting as
the interface between the two. We make direct comparison of our model to the
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discrete-time non-parametric Dynamic Bayes Network model [23, 22] and the
DSDA continuous-time model [9]. We used CPLEX version 12.51 to solve the
optimization problem described in Section 2. The experiments were run on a
2.4GHz hyperthreaded 8-core Ubuntu Linux machine with 16 GB RAM.

5.2 Evaluation of Crime Prediction

Our first step is to evaluate the ability of our proposed continuous-time model
based on survival analysis to forecast crime. Our parametric model is simpler (in
most cases, significantly) than state-of-the-art alternatives, and can be learned
using standard maximum likelihood methods for learning survival models. More-
over, it is nearly homogeneous: only two distinct such models are learned, one
for low-crime regions, and another for high-crime regions. This offers a signif-
icant advantage both in interpretability of the model itself, as well as ease of
use. Moreover, because our model incorporates environmental factors, such as
locations of pawn shops and liquor stores, it can be naturally adapted to situ-
ations in which these change (for example, pawn shops closing down), enabling
use in policy decisions besides police patrolling. On the other hand, one may
expect that such a model would result in significant degradation in prediction
efficacy compared to models which allow low-resolution spatial heterogeneity. As
we show below, remarkably, our model actually outperforms alternatives both in
terms of prediction efficacy, and, rather dramatically, in terms of running time.

For this evaluation, we divided our data into 3 overlapping datasets, each of
7 months. For each dataset, we used 6 months of data as our training set and
1 month’s data as the test set. For spatial discretization, we use square grids of
sides 1 mile throughout, creating a total of 900 grids for the entire area under
consideration. While our model is continuous-time, we draw a comparison to
both a continuous-time and a discrete-time models in prior art. However, since
these are not directly comparable, we deal with each separately, starting with the
continuous-time DSDA model. We refer to the DSDA model simply as DSDA,
the model based on a Dynamic Bayes Network is termed DBN, and our model
is referred to as PSM (parametric survival model).

Prediction Effectiveness Comparison with DSDA Our first experiments
involve a direct performance comparison to a state-of-the-art DSDA model due
to Ihava et al. [9]. We chose this model for two reasons. First, DSDA provides
a platform to make a direct comparison to a continuous time model. Second, it
uses time series modeling and CrimeStat, both widely used tools in temporal
and spatial crime analysis.

We introduce the underlying concept of the model before comparing our
results. DSDA segregates temporal and spatial aspects of crime prediction and
learns them separately. In the temporal model, days like Christmas, Halloween,
and football match days that are expected to show deviation from the usual crime
trend are modeled using hierarchical profiling (HPA) by using the complement
of the gamma function:

y = ap − bptcp−1e−dpt
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where y is observed count, t is time and ap, bp, cp and dp are the parameters to
be estimated using ordinary least squares (OLS).

All other days are initially assumed to be part of a usual average weekly
crime rate, which is modeled using the following harmonic function

y = aa − bat+ cat
2 +

26∑
i=1

[
da cos

(
iπt

26

)
+ ea sin

(
iπt

26

)]
where ya is the weekly crime average, t is time and aa, ba, ca, da and ea are the
parameters that are estimated using OLS. Then, the deviations are calculated
from the observed data and these are again modeled using the harmonic func-
tion. This forms the deterministic part of the model f(t). The error Z from
the observed data is modeled using seasonal ARIMA, and the final model is
y = f(t) + Z. The spatial component of DSDA was evaluated using STAC [9],
which is now a part of CrimeStat [15].

In order to make a comparative analysis, we considered a natural adaptation
of the HPA-STAC model, which enables us to compare likelihoods. We use the
outputs (counts of crime) from the HPA model as a mean of a Poisson random
variable, and sample the number of crimes from this distribution for each day. For
the spatial model, HPA-STAC outputs weighted clusters in the form of standard
deviation ellipses, a technique used commonly in crime prediction. Here, we
consider that:

P (xi) = P (c(xi))P (x
c(xi)
i )

where P (xi) is the likelihood of a crime happening at a spatial point xi which
belongs to cluster ci, P (c(xi)) is the probability of choosing the cluster to which

point xi belongs from the set of all clusters and P (x
c(xi)
i ) is the probability of

choosing point xi from its cluster ci. We assume that P (xcii ) ∝ 1
Areac(xi)

. Finally,

we assume that the total likelihood is proportional to the product of the spatial
and temporal likelihoods.
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Fig. 2: Likelihood comparison of PSM vs DSDA.

Figure 2 shows the comparison of DSDA log-likelihood (on test data) for
the three datasets described above. Indeed, our model outperforms DSDA in
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both the temporal and the spatial predictions by a large margin (overall, the
improvement in log-likelihood is 25-30%).

Prediction Effectiveness Comparison with the Dynamic Bayes-Network
Model Next, we compare our model to the framework proposed by Zhang
et al. [23], which looks at crime prediction by learning a non-parametric Dy-
namic Bayes Network (DBN) representation, and applying abstraction tech-
niques to improve scalability [22]. The DBN includes three sets of state vari-
ables: numbers of police vehicles in each grid i at time t, denoted by Dit, the
number of criminals in grid i at time t, Xit, and the number of crimes Yit
in each grid i at time t. The main assumptions of this DBN are that a) po-
lice vehicle dynamics are known (so they are not random variables), b) loca-
tions of criminals at time t + 1 only depends on patrol and criminal (but not
crime) locations at time t, and c) crime incidents at time t only depend on
locations of criminals and police at time t. Consequently, the problem involves
learning two sets of transition models: P (Xi,t+1|D1,t, ..., DN,t, X1,t, ..., XN,t) and
P (Yi,t|D1,t, ..., DN,t, X1,t, ..., XN,t) for all grid cells i, which are assumed to be
independent of time t. Since the model involves hidden variables X, Zhang et
al. learn it using the Expectation-Maximization framework. While the model is
quite general, Zhang et al. treat X, Y , and D as binary.

Since our proposed model is continuous-time, whereas Zhang et al. model
is in discrete-time, we transform our model forecasts into a single probability
of at least one crime event occurring in the corresponding interval. Specifically,
we break time into 8-hour intervals (same temporal discretization as used by
Zhang et al.), and derive the conditional likelihood of observed crime as follows.
Given our distribution f(t|w) over inter-arrival times of crimes, and a given time
interval [t1, t2], we calculate the probability of observing a crime in the interval
as F (t ≤ t2|w)− F (t ≤ t1|w), where F represents the corresponding cumulative
distribution function (cdf).

To draw the most fair comparison to DBN, we use an evaluation metric
proposed by Zhang et al. [22] which is referred to as accuracy. Accuracy is
calculated as a measure of correct predictions made for each grid and each time-
step. For example, if the model predicts a probability of crime as 60% for a
target, and the target experiences a crime, then the accuracy is incremented
by 0.6. Formally, let pi be the predicted likelihood of observing a crime count
for data point i. Then accuracy is defined as 1

m

∑
i pi, where i ranges over the

discrete-time sequence of crime counts across time and grids and m the total
number of such time-grid items.

Figure 3(a) shows the results of accuracy comparison (with the accuracy
measure defined above) between the DBN model and our model (PSM). We
can observe that both models perform extremely well on the accuracy measure,
with our model very slightly outperforming DBN. We also make comparisons by
varying the number of grids, shown in Figure 3 (b), starting around downtown
Nashville and gradually moving outwards. Our model outperforms DBN in all
but one case, in which the accuracies are almost identical.
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Fig. 3: Accuracy comparison between PSM and Abstract DBN. (a) Varying data sub-
sets. (b) Varying the number of grids.
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Fig. 4: Runtime comparison (seconds) between DSDA, Abstract DBN, and PSM.

Runtime Comparison with DSDA and DBN We already saw that our PSM
model, despite its marked simplicity, outperforms two state-of-the-art forecasting
models, representing continuous-time and discrete-time prediction methods, in
terms of prediction efficacy. An arguably more important technical advantage
of PSM over these is running time. Figure 4 shows running times (of training)
for PSM, DSDA, and DBN (using the abstraction scheme proposed by Zhang et
al. [22]). The DBN framework is significantly slower than both DSDA and PSM.
Indeed, PSM running time is so small by comparison to both DSDA and DBN
that it is nearly invisible on this plot.

5.3 Effectiveness of the Response Time Optimization Method

Next, we evaluate the performance of our proposed framework combining itera-
tive stochastic programming with sample average approximation. To do this, we
randomly select timezones of 4 hours each from our dataset and sample 100 sets
of crimes for each. In practice, although the number of police vehicles is signifi-
cantly higher than the number of crimes in a 4-hour zone, all police vehicles are
not available for responding to a specific type of crimes, due to assigned tasks.
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We consider a maximum of a single police vehicle per grid and we consider that
only a fraction (1/6th) of the them are available to respond to burglaries. In
order to simulate the actual crime response by the police department (in order
to evaluate actual spatial allocation policy of police vehicles within our data),
we greedily assign the closest police vehicle to a crime in consideration.

Our first evaluation uses our crime prediction model f to simulate crime
incidents in simulation, which we use to both within the IBRO algorithm, as
well as to evaluate (by using a distinct set of samples) the policy produced
by our algorithm in comparison with three alternatives: a baseline stochastic
programming method (using Bender’s decomposition) which ignores the fact
that distribution of crimes depends on the police allocation (STOCH-PRO), b)
actual police location in the data (Actual), and c) randomly assigning police
vehicles to grids (Random). Figure 5(a) demonstrates that IBRO systematically
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Fig. 5: Response Times (lower is better): (a) using simulated crimes, (b) observed
crimes.

outperforms these alternatives, usually by a significant margin.
Our next experiment evaluates performance of IBRO in comparison to others

with respect to actual crime incident data. Note that this is inherently disad-
vantageous to IBRO in the sense that actual data is not adaptive to the police
location as accounted for by IBRO. Nevertheless, Figure 5(b) shows that IBRO
typically yields better police patrol location policies than either actual (in the
data) or random.

6 Conclusion

We develop a novel bi-level optimization method for allocating police patrols in
order to minimize expected crime incident response time. Our approach makes
use of stochastic programming, with a Bender’s decomposition and constraint
generation framework offering a scalable solution approach. Moreover, we in-
troduce a novel iterative stochastic programming algorithm which allows us to
account for the dependence of the spatio-temporal crime incidence distribution
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on police location. To evaluate this optimization framework, we presented a
novel discrete-space continuous-time model for forecasting crime as a function of
a collection of co-variates which include vehicular police deployment. Our model,
which makes use of survival analysis, allows for spatial as well as temporal crime
correlation, and effectively captures the effect of police presence both temporally
and spatially. This model is learned from burglary incident data in a major US
metropolitan area. Our experiments demonstrate that this model outperforms
state of the art continuous- and discrete-time crime prediction models both in
terms of prediction effectiveness and running time.
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