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Abstract

Submodular optimization, particularly under cardinal-
ity or cost constraints, has received considerable atten-
tion, stemming from its breadth of application, ranging
from sensor placement to targeted marketing. However,
the constraints faced in many real domains are more
complex. We investigate an important and very general
class of problems of maximizing a submodular func-
tion subject to general cost constraints, especially fo-
cusing on costs coming from route planning. Canoni-
cal problems that motivate our framework include mo-
bile robotic sensing, and door-to-door marketing. We
propose a generalized cost-benefit (GCB) greedy al-
gorithm for our problem, and prove bi-criterion ap-
proximation guarantees under significantly weaker as-
sumptions than those in related literature. Experimental
evaluation on realistic mobile sensing and door-to-door
marketing problems, as well as using simulated net-
works, show that our algorithm achieves significantly
higher utility than state-of-the-art alternatives, and has
either lower or competitive running time.

Introduction
There has been much work on submoduar maximization
with cardinality constraints (Nemhauser, Wolsey, and Fisher
1978) and additive/modular constraints (Khuller, Moss, and
Naor 1999; Sviridenko 2004; Krause and Guestrin 2005;
Leskovec et al. 2007). In many applications, however, cost
constraints are significantly more complex. For example, in
mobile robotic sensing domains, the robot must not only
choose where to take measurements, but to plan a route
among measurement locations, where costs can reflect bat-
tery life. As another example, door-to-door marketing cam-
paigns involve not only the decision about which households
to target, but the best route among them, and the constraint
reflects the total time the entire effort takes (coming from
work schedule constraints). Unlike the typical additive cost
constraints, such route planning constraints are themselves
NP-Hard to evaluate, necessitating approximation in prac-
tice.

We tackle the problem of maximizing a submodular func-
tion subject to a general cost constraint, c(S) ≤ B, where
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c(S) is the optimal cost of covering a set S (for example,
by a walk through a graph that passes all nodes in S). We
propose a generalized cost-benefit greedy algorithm, which
adds elements in order of marginal benefit per unit marginal
cost. A key challenge is that computing (marginal) cost of
adding an element (such as computing the increased cost
of a walk when another node is added to a set) is often it-
self a hard problem. We therefore relax the algorithm to use
a polynomial-time approximation algorithm for computing
marginal cost. We then show that when the cost function is
approximately submodular, we can achieve a bi-criterion ap-
proximation guarantee using this modified algorithm, which
runs in polynomial time. To our knowledge, this offers the
most generally applicable theoretical guarantee in our do-
main known to date.

Our experiments consider two applications: mobile
robotic sensors and door-to-door marketing. In the former,
we use sensor data on air quality in Beijing, China collected
from 36 air quality monitoring stations, with a hypothetical
tree-structured routing network among them. The objective
in this case is to minimize conditional entropy of unobserved
locations, given a Gaussian Process model of joint sensor
measurements. In the door-to-door marketing domain, we
use rooftop solar adoptions from San Diego county as an
example, considering geographic proximity as a social in-
fluence network and the actual road network as the rout-
ing network. In both these domains, we show that the pro-
posed algorithm significantly outperforms competition, both
in terms of achieved utility, and, often, in terms of running
time. Remarkably, this is true even in cases where the as-
sumptions in our theoretical guarantees do not meaningfully
hold.

In summary, this paper makes the following contributions:

1. a formulation of submodular maximization under general
cost constraints (routing constraints are of particular in-
terest);

2. a novel polynomial-time generalized cost-benefit algo-
rithm with provable approximation guarantees;

3. an application of our algorithm to two motiving real-
world optimization problems, mobile robotic sensing and
door-to-door marketing, illustrating that our algorithm
significantly outperforms state of the art.



Related Work

Submodular optimization has received much attention due
to its breadth of applicability, with applications includ-
ing viral marketing, information gathering, image seg-
mentation, and document summarization (Fujishige 2005;
Krause and Golovin 2012). A number of efforts con-
sider submodular optimization under cardinality or addi-
tive cost constraints (Nemhauser, Wolsey, and Fisher 1978;
Khuller, Moss, and Naor 1999; Sviridenko 2004; Krause
and Guestrin 2005; Leskovec et al. 2007), demonstrating the
theoretical and practical effectiveness of simple greedy and
cost-benefit algorithms in this context. The problem of min-
imizing travel cost to cover a set of nodes on a graph, which
gives rise to our constraints, is a variant of the Traveling
Salesman Problem (TSP), although in our variations we al-
low visiting the same nodes multiple times (this variation is
sometimes called the Steiner TSP, or STPS) (Lam and New-
man 2008). We adopt a well-known algorithm for approxi-
mating the shortest coverage route, referred to as a nearest-
neighbor heuristic (Rosenkrantz, Stearns, and Lewis 1977).
However, our results and approach are general, and admit
alternative approximation algorithms, such as that proposed
by Christofides (1976) which offers a 3/2 approximation fac-
tor. Moreover, it is known that TSP has submodular walk
length on tree-structured graphs (Herer 1999), which mo-
tivates our relaxed submodularity assumption on the cost
function due to (Alkalay-Houlihan and Vetta 2014).

A variation on the problem we study is the Orienteering
Problem (OP), in which the goal is to maximize a total score
collected from visiting vertices on a graph, subject to a travel
time constraint (Golden, Levy, and Vohra 1987; Vansteen-
wegen, Souffriau, and Van Oudheusden 2011). Chekuri and
Pal (2005) propose a quasi-polynomial time approximation
algorithm that yields a logarithmic approximation guarantee
for a more general submodular objective function. Singh et
al. (2007) show that how this algorithm can be scaled up,
and present results on planning informative paths for robotic
sensors. However, our experimental results suggest that the
running time of this algorithm is orders of magnitude slower
than alternatives (including our proposed algorithm), and we
therefore do not consider it in detail.

Perhaps the closest, and most practical, alternative to
our algorithm is the framework proposed by Iyer and
Bilmes (2013). Specifically, they consider submodular max-
imization under a submodular cost constraint, and propose
several algorithms, including a greedy heuristic (GR) and
iterative submodular knapsack (ISK) (their third proposed
algorithm, involving ellipsoidal approximation of the sub-
modular cost, scales poorly and we do not consider it). Our
approach is a significant extension compared to Iyer and
Bilmes (2013) and Iyer (2015): we present a new gener-
alized cost-benefit algorithm, and demonstrate bi-criterion
approximation guarantees which relax the submodularity as-
sumption on the cost function made by Iyer. This generaliza-
tion is crucial, as routing costs are in general not submodu-
lar (Herer 1999). Moreover, we demonstrate that our algo-
rithm outperforms that of Iyer and Bilmes in experiments.

Problem Statement
Let V be a collection of elements and f : 2V → R≥0 a
function over subsets of V , and assume that f is monotone
increasing. For any S ⊆ V , define f(j|S) = f(S ∪ j) −
f(S), that is, the marginal improvement in f if element j ∈
V is added to a set S ⊂ V . Our discussion will concern
submodular functions f , which we now define.
Definition 1. A function f : 2V → R≥0 is submodular if
for all S ⊆ T ⊆ V , f(j|S) ≥ f(j|T ).

Our goal is to find a set S∗ ⊆ V which solves the follow-
ing problem:

f(S∗) = max{f(S) | c(S) ≤ B}, (1)

where c : 2V → R≥0 is the cost function, which we assume
is monotone increasing.

An important motivating setting for this problem is when
the cost function represents a least-cost route through a set of
vertices S on a graph. Specifically, suppose thatGR(V,E) is
a graph in which V are nodes and E edges, and suppose that
traversing an edge e ∈ E incurs a cost ce, whereas visiting
a vertex v ∈ V incurs a cost cv . For a given set of nodes
S ⊆ V , define a cost cR(S) as the shortest walk in GR that
passes through all nodes in S at least once. The cost function
for S then becomes

c(S) = cR(S) +
∑
s∈S

cs,

that is, the total coverage cost (by a shortest walk through
the graph), together with visit cost, for nodes in S.

Generalized Cost-Benefit Algorithm
Maximizing submodular functions in general is NP-
hard (Khuller, Moss, and Naor 1999). Moreover, even com-
puting the cost function c(S) is NP-hard in many settings,
such as when it involves computing a shortest walk through
a subset of vertices on a graph (a variant of the travel-
ing salesman problem). Our combination of two hard prob-
lems seems hopeless. We now present a general cost-benefit
(GCB) algorithm (Algorithm 1) for computing approximate
solutions to Problem 1. In the sections that follow we present
theoretical guarantees for this algorithm under additional as-
sumptions on the cost function, as well as empirical evidence
for the effectiveness of GCB. At the core of the algorithm is
the following simple heuristic: in each iteration i, add to a
set G an element Xi such that

Xi = arg max
X∈E\Gi−1

f(X|Gi−1)

c(X|Gi−1)
, (2)

where G0 = ∅ and Gi = {X1, . . . , Xi}. The simple heuris-
tic alone has an unbounded approximation ratio, which is
shown for a modular cost function by Khuller, Moss, and
Naor (1999). The key modification is to return the better of
this solution and the solution produced by a greedy heuristic
that ignores the cost altogether. Next, we observed that c(·)
may not be computable in polynomial time. We therefore
make use of an approximate cost function ĉ(·) in its place
which can be computed in polynomial time. The nature of



Data: B > 0
Result: Selection S ⊆ V
A := arg max{f(X)|X ∈ V, ĉ(X) ≤ B};
G := ∅;
V
′

:= V ;
while V

′ 6= ∅ do
foreach X ∈ V do

∆X
f := f(G ∪X)− f(G);

∆X
c := ĉ(G ∪X)− ĉ(G);

end
X∗ = arg max{∆X

f /∆
X
c |X ∈ V

′};
if ĉ(G ∪X∗) ≤ B then

G := G ∪X∗;
end
V
′

:= V
′\X∗

end
return arg maxS∈{A,G} f(S)

Algorithm 1: Generalized Cost-benefit Algorithm.

our results will then depend on the quality of this approxi-
mation. Observe that, the greedy solution,A, in Algorithm 1
contains only a single element. However, a variant of this is
to continue adding more elements until we violate the budget
constraint. Similarly, when the budget constraint in GCB is
saturated, we can continue adding elements that are not first-
best, until no elements can be added. We show below that
these variations yield the same approximation guarantees.
Our implementations, however, use these enhancements.

Theoretical Analysis
A major limitation of prior work on cost-constrained sub-
modular maximization is that the cost function itself was as-
sumed to be submodular. In most practical problems where
the cost function is generated by routing problems (such
as coverage of nodes on a graph, or TSP), the optimal
cost is not submodular (Herer 1999). On the other hand,
TSP has submodular special cases, such as when the graph
is a tree (Herer 1999). Motivated by this observation, we
make use of a natural relaxation of cost submodularity, α-
submodularity.

Definition 2. For a cost function c, we define it as α-
submodular for

α = min
x

min
A,B:A⊂B

c(x|A)

c(x|B)
.

In addition, just as in prior work, we need another no-
tion for a function c, termed curvature, which essentially
measures deviations from linearity (Conforti and Cornuéjols
1984; Iyer, Jegelka, and Bilmes 2013).

Definition 3. For a submodular function c over subsets of
V , total curvature kc is defined as

kc = 1−min
j∈V

c(j|V \j)
c(j)

,

As mentioned earlier, since optimal cost is often infeasi-
ble to compute, our GCB algorithm makes use of approxi-
mate cost function, ĉ. We now make this notion of approxi-
mation formal: we assume that ĉ is a ψ(n)-approximation
of the optimal cost, where n = |V |. In other words,
c(X) ≤ ĉ(X) ≤ ψ(n)c(X). For example, if an algo-
rithm for TSP is a 3/2-approximation (as is the algorithm
by Christofides (1976)), ψ(n) = 3/2 (independent of prob-
lem size). Below we use a much faster and simpler algo-
rithm, nearest neighbor, which is a log(n)-approximation.

Finally, we introduce another useful piece of notation,
defining

Kc = max{|X| : c(X) ≤ B},
that is, Kc is the largest set X ⊆ V which is feasible for our
problem.

Armed with these notions, we are now ready to prove a bi-
criterion approximation guarantee on GCB, which presents
a bound on the solution quality compared to the optimal so-
lution with a slightly relaxed budget constraint.

Suppose the GCB algorithm starts with an empty set
G0 = ∅, and keeps adding nodes the set by the greedy rule
(Equation 2). It generates a sequence of intermediate sets,
G1, . . . , Gl, until iteration l + 1 when it violates the budget
constraint and stops with set Gl+1.

Lemma 1. For i=1, . . . , l+1, it holds that

f(Gi)− f(Gi−1) ≥ ĉ(Gi)− ĉ(Gi−1)

B
(f(X̃)− f(Gi−1))

where ĉ is an α submodular ψ(n)-approximation of the α-
submodular function c and X̃ is the optimal solution of
max{f(X)|c(X) ≤ αB(1+α(Kc−1)(1−kc))

ψ(n)Kc
}.

The proof of this lemma is quite involved, making use of a
series of auxiliary results, and is provided in the Appendix.

Lemma 2. For i = 1, . . . , l + 1 it holds that

f(Gi) ≥

[
1−

i∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

B
)

]
f(X̃)

where ĉ is an α-submodular ψ(n)-approximation of an α-
submodular function c, and X̃ is the optimal solution of
max{f(X)|c(X) ≤ αB(1+α(Kc−1)(1−kc))

ψ(n)Kc
}.

Proof. For i = 1, we need to prove that

f(G1) ≥ ĉ(G1)− ĉ(G0)

B
f(X̃).

Clearly, this follows from Lemma 1. Let i > 1, we have

f(Gi) = f(Gi−1) + [f(Gi)− f(Gi−1)] ≥

f(Gi−1) +
ĉ(Gi)− ĉ(Gi−1)

B
(f(X̃)− f(Gi−1))

=

(
1− ĉ(Gi)− ĉ(Gi−1)

B

)
f(Gi−1) +

ĉ(Gi)− ĉ(Gi−1)

B
f(X̃)



≥
(

1− ĉ(Gi)− ĉ(Gi−1)

B

)
[(

1−
i−1∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

B
)

)
f(X̃)

]
+

ĉ(Gi)− ĉ(Gi−1)

B
f(X̃)

=

(
1−

i∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

B
)

)
f(X̃)

Theorem 1. The GCB algorithm obtains a set X such that

f(X) ≥ 1

2
(1− e−1)f(X̃),

where X̃ is the optimal solution of max{f(X)|c(X) ≤
αB(1+α(Kc−1)(1−kc))

ψ(n)Kc
}, ĉ is an α-submodular ψ(n)-

approximation of an α-submodular function c.

Proof. Observe that for a1, . . . , an ∈ R+, such that
∑
ai =

A, 1 −
∏n
i=1(1 − ai

A ) achieves its minimum at a1 = . . . =

an = A
n . It follows that

f(Gl+1) ≥

[
1−

l+1∏
k=1

(
1− ĉ(Gk)− ĉ(Gk−1)

B

)]
f(X̃)

≥

[
1−

l+1∏
k=1

(
1− ĉ(Gk)− ĉ(Gk−1)

ĉ(Gl+1))

)]
f(X̃)

≥

[
1−

(
1− 1

l + 1

)l+1
]
f(X̃)

≥
(

1− 1

e

)
f(X̃)

where the first inequality follows from Lemma 2 and the
second inequality follows form the fact that ĉ(Gl+1) > B,
since it violates the budget. Moreover, by submodularity, we
note that f(Gl+1) − f(Gl) ≤ f(Xl+1) ≤ f(X∗), where
X∗ = arg maxX∈E f(X). Therefore,

f(Gl) + f(X∗) ≥ f(Gl+1) ≥ (1− 1/e)f(X̃)

and

max{f(Gl), f(X∗)} ≥ 1

2
(1− 1/e)f(X̃)

Having established a general approximation ratio for
GCB, note that an exactly submodular cost function emerges
as a special case with α = 1, as does exact cost function
when ψ(n) = 1, with the bound becoming tighter in both
instances. Moreover, the bound becomes tighter as we ap-
proach modularity.

Experiments
We implement the GBC algorithm to solve two realistic
submodular maximization problems: mobile robotic sens-
ing and door-to-door solar marketing, using both real and
simulated networks. We show that the proposed GCB algo-
rithm outperforms state-of-the-art alternatives, particularly
when routing problems do not yield a submodular optimal
cost function. We compare GCB to two state-of-the-art algo-
rithms: simple greedy (GR) and iterative submodular knap-
sack (ISK).1 All experiments were performed on an Ubuntu
Linux 64-bit PC with 32 GB RAM and an 8-core Intel Xeon
2.1 GHz CPU. Each experiment used a single thread.

Case Study 1: Mobile Robotic Sensing
Consider the following problem. A mobile robot equipped
with sensors wants to optimally choose a subset of locations
in a 2-D space to make measurements. A common criterion
guiding such a choice is to minimize conditional entropy of
unobserved locations of interest or, equivalently, maximize
entropy of selected locations (Krause, Singh, and Guestrin
2008).2 We suppose that the robot faces two kinds of costs
(e.g., reflecting battery life or time): costs of moving be-
tween a pair of neighboring locations, and costs of making
measurements at a particular location.

Our experiments use sensor data representing air quality
measurements for 36 air quality monitoring stations in Bei-
jing, China (Zheng, Liu, and Hsieh 2013), where we limit
attention to temperature. We fit a multivariate Gaussian dis-
tribution to this data, and focus on a random subset of loca-
tions as the focus of prediction. We generated a hypothetical
a tree-structure routing network (see the Supplement), and
assume that the robot must return to the starting location.

The GCB algorithm starts with an empty set A0 = ∅ and
iteratively adds toAi a location x∗ with highest ratio of con-
ditional entropy to marginal cost,

x∗ = arg max
x

H(x|Ai)
c(x|Ai)

,

where
H(x|Ai) =

1

2
log(2πeσ2

x|Ai
)

is the conditional entropy of x given selection of Ai and
c(x|Ai) is the marginal cost of covering x if we already
cover Ai. We use the Nearest Neighbor (NN) algorithm to
compute approximately optimal routing cost (Rosenkrantz,
Stearns, and Lewis 1977). The conditional variance, σ2

x|Ai
,

can be obtained as follows:

σ2
x|Ai

= K(x, x)− ΣxAi
Σ−1AiAi

ΣAix,

where K(x, x) is the variance of location x, ΣxAi
is a vec-

tor of covariances K(x, u),∀u ∈ Ai, ΣAiAi
the covariance

submatrix corresponding to measurements Ai, and ΣAix is
the transpose of ΣxAi

. Figure 1 shows the results of entropy

1We have attempted to apply several other algorithms, but these
two are the only candidates that scale to non-trivial problem in-
stances.

2This objective is known to be submodular.
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Figure 1: Entropy (a)-(c) & run time (d)-(f) comparison among algorithms for mobile robotic sensing scenario. (a), (d) As a
function of visit (sensing) cost, fixing budget at 200. (b), (e) As a function of budget, fixing visit cost = 0. (c), (f) As a function
of budget, fixing visit cost = 10.

(performance) and running time comparison between GCB
and the two previous approaches (GR and ISK). GCB nearly
always outperforms the other two, often by a large margin,
in terms of entropy; GR is particularly weak in most com-
parisons. Moreover, GCB has competitive running time with
GR, and scales far better than ISK.

Case Study 2: Door-to-door Marketing of Rooftop
Solar Photovoltaic Systems
Our next investigation focuses on door-to-door market-
ing problem, which we cast as social influence maximiza-
tion (Kempe, Kleinberg, and Tardos 2003) under rout-
ing constraints. We formalize this problem by considering
two interdependent networks: the social influence network,
which captures the influence adopters (of a product) have
on the likelihood that others adopt, and the routing network,
which represents routes taken by a marketer to visit house-
holds of choice. The goal of the marketer is to select a subset
of individuals on a network maximizing overall social in-
fluence, subject to cost (e.g., time) constraints. Below we
consider both real and simulated networks. Whatever the
choice of the network, we use the well-known independent
cascade (IC) model to compute social influence of a subset
of nodes (Kempe, Kleinberg, and Tardos 2003). In the IC
model, given a subset of nodes initially seeded, each neigh-
bor w of an adopter v is independently influenced to adopt
with probability pvw, and this adoption cascade process it-
eratively repeats until no new nodes adopt. The expected fi-
nal number of adopters after this process terminates is de-
noted by σ(A), where A is the set of initially seeded nodes.
Kempe, Kleinberg, and Tardos (2003) showed that the func-
tion σ(A) is monotone submodular. In our experiments be-
low, we used pvw = 0.1 for all network edges (v, w). Since
the IC model is stochastic in nature, we run it 1000 times to
estimate σ(A).

Adoption of Visible Technology Our first influence net-
work was generated to represent adoption of a highly vis-
ible technology, such as rooftop solar (Zhang et al. 2015).
Specifically, when a technology is visible, the primary so-
cial influence effect stems from geographic proximity; thus,
in the case of rooftop solar adoption, adoption has been
shown to have significant influence on geographic neigh-
bors (Zhang et al. 2015). For this use case, we therefore take
a household dataset for San Diego county, and induce a so-
cial influence network based on proximity as measured by a

165 foot radius, giving rise to the influence network shown
in Figure 2 (left). Figure 2 (right) shows the corresponding

Figure 2: Top: social influence network arising from geo-
graphic proximity. Bottom: corresponding routing network.

routing network obtained from OpenStreetMap, where red
dots are way points or intersections in the road networks.
The costs of edges in the routing network correspond to
physical distance.

Figure 3 shows the results of comparing our GCB algo-
rithm to GR and ISK, both in terms of achieved average in-
fluence, and running time. In all cases, we can observe that
GCB outperforms the others on both measures, often by a
substantial margin. Particularly striking is the running time
comparison with ISK, where the difference can be several
orders of magnitude.

Our final experimental investigation involves random
graph models for both social influence propagation and rout-
ing. In particular, we use the well-known Barabasi-Albert
(BA) model (Albert and Barabási 2002) to generate a ran-
dom social network (a natural choice, since BA model has
been shown to exhibit a scale-free degree distribution, which
is a commonly observed feature of real social networks),
and the Erdos-Renyi (ER) model to generate the routing net-
work (Erdos and Renyi 1959).

The BA model is an iterative generative model which
starts with a small seeded network (e.g., a triangle), and
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Figure 3: Influence σ (a)-(c) & run time (d)-(f) comparison among algorithms for the door-to-door marketing scenario with
visible technology. (a), (d) As a function of visit (sensing) cost, fixing budget at 3. (b), (e) As a function of budget, fixing visit
cost = 0. (c), (f) As a function of budget, fixing visit cost = 0.1.
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Figure 4: Influence σ (a)-(c) & run time (d)-(f) comparison among algorithms for the door-to-door marketing scenario on
random graphs. Top row: p = 0.01 in the ER mode. Middle row: p = 0.02. Bottom row: p = 0.03. (a), (d) As a function of
visit (sensing) cost, fixing budget at 10. (b), (e) As a function of budget, fixing visit cost = 0. (c), (f) As a function of budget,
fixing visit cost = 0.5.

adds a node one at a time, connecting it to m vertices,
with each edge using the new node as a source generated
with probability proportional to the target node’s degree.
In our implementation, we generated a BA social network
over 200 nodes, adding m = 2 edges in each iteration.
The ER model is the simplest generative model of net-
works, where each edge is added to the network with a fixed
probability p. In our experiments, we considered values of
p ∈ {0.01, 0.02, 0.03}. To generate routing costs, we ran-
domly assigned coordinates for the 200 nodes in 2-D space,
and use the Euclidean distance between nodes as a proximity
measure.

Figure 4 shows the results for the random graph exper-
iments, which are consistent with the observations so far:
GCB tends to outperform alternative algorithmic approaches
both in terms of objective value (influence, in this case),
and in terms of running time (it is comparable to GR, and

much faster than ISK). Interestingly, in some cases GR or
ISK have comparable objective value to GCB, but in almost
all cases the other algorithm is far worse, and the relative
performance of GR and ISK is not consistent: either one is
sometimes observed to be better than the other. We can also
note that as p increases (and the routing network becomes
more dense), the running time of ISK increases rather dra-
matically, whereas both GCB and GR remain quite scalable.

Conclusion
We considered a very general class of problems in which
a monotone increasing submodular function is maximized
subject to a general cost constraint. This problem is mo-
tivated by two very different applications: one is mobile
robotic sensing, in which a robot moves through an envi-
ronment with the goal of making select sensor measure-
ments to make predictions about a location which is in-



feasible to measure, and another in door-to-door market-
ing. In both of these applications, the cost constraints arise
from routing costs, as well as costs to visit nodes (e.g., to
make sensor measurements or to make a marketing pitch).
Our algorithmic contribution was a novel generalized cost-
benefit algorithm, for which we showed bi-criterion approxi-
mation guarantees with a relaxed notion of cost submodular-
ity as well as allowing optimal cost to be only approximately
computed. Through an extensive experimental evaluation on
both real and synthetic graphs we showed that our algorithm
outperforms state-of-the-art alternatives both in terms of ob-
jective value achieved (often significantly) and running time.
Moreover, we dramatically outperform an iterative submod-
ular knapsack algorithm in terms of runtime, and have a
competitive runtime with a greedy algorithm, which tends
to perform poorly in terms of objective.
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Appendix
Building Blocks
First, the following result that establishes relation among
k̂c(S), kc(S), and kc,
Lemma 3. For any monotone α submodular function and
set S ⊆ V ,

k̂c(S) ≤ kc(S) ≤ kc
Proof.

1− kc(S) = min
j∈S

c(j|S\j)
c(j)

≤ c(j|S\j)
c(j)

,∀j ∈ S

Also we note that

1− k̂c(S) =

∑
j∈S c(j|S\j)∑
j∈S c(j)

≥ 1− kc(S)f(j)∑
j∈S c(j)

≥ 1− kc(S)

Thus, k̂c(S) ≤ kc(S). By monotonicity, it holds that
kc(S) ≤ kc, since S ⊆ E.

Next, we generalize the fundamental properties of sub-
modular functions (Nemhauser, Wolsey, and Fisher 1978) to
α submodular functions.
Lemma 4. For any α submodular function c, the following
statements hold.

(i) c(j|S) ≥ αc(j|T ),∀S ⊆ T ⊆ E and j ∈ E\T .
(ii) c(T ) ≤ c(S) + 1

α

∑
j∈T\S c(j|S)− α

∑
j∈S\T c(S ∪

T\j),∀S, T ⊆ E.
(iii) c(T ) ≤ c(S) + 1

α

∑
j∈T\S c(j|S),∀S ⊆ T ⊆ E.

(iv) c(T ) ≤ c(S)− α
∑
j∈S\T c(j|S\j),∀T ⊆ S ⊆ E.

Proof. (i) follows directly from the definition of α sub-
modularity. Since α = minj minS,T :S⊆T

c(j|S)
c(j|T ) , c(j|S)

c(j|T ) ≥
α,∀j ∈ E\T

(i)⇒(ii). For arbitrary S ans T with T −S = {j1, . . . , jr}
and S − T = {k1, . . . , kq} we have

c(S ∪ T )− c(S) =
r∑
t=1

[c(S ∪ {j1, . . . , jt} − c(S ∪ {j1, . . . , jt−1}))]

=

r∑
t=1

c(jt|S ∪ {j1, . . . , jt−1}) ≤
1

α

r∑
t=1

c(jt|S)

=
1

α

∑
j∈T\S

c(j|S) (3)

where the inequality holds due to (i). Similarly, we know

c(S ∪ T )− c(T )

=

q∑
t=1

[c(T ∪ {k1, . . . , kt} − c(T ∪ {k1, . . . , kt−1}))]

=

q∑
t=1

c(kt|T ∪ {k1, . . . , kt}\kt)

≥ α
q∑
t=1

c(kt|T ∪ S\kt)

= α
∑
j∈S\T

c(j|S ∪ T\j) (4)

By subtracting (3) and (4), we obtain (ii).
(ii)⇒ (iii). If S ⊆ T, S\T = ∅ and the last term of (ii)

diminishes.
(ii)⇒ (iv). If T ⊆ S, T\S = ∅, S∪T = S and the second

term of (ii) vanishes.

Base on Lemma 3 and 4, the following statement holds.

Lemma 5. Given a monotone α submodular function c and
kc(X) ≤ 1, it holds that∑

j∈X
c(j) ≤ |X|

1 + α(|X| − 1)(1− kc(X))
c(X)

Moreover, it also holds that,∑
j∈X

c(j) ≤ |X|
1 + α(|X| − 1)(1− k̂c(X))

c(X)

Proof. It follows from Lemma 4 (iii) that

c(X)− c(k) ≥ α
∑
j∈X\k

c(j|X\j),∀k ∈ X

Summing over all instance of k, we get

|X|c(X)−
∑
k∈X

c(k) ≥ α
∑
k∈X

∑
j∈X\k

c(j|X\j)

= α
∑
k∈X

∑
j∈X

c(j|X\j)− c(k|X\k)


= α(|X| − 1)

∑
j∈X

c(j|X\j)

= α(|X| − 1)(1− k̂c)
∑
j∈X

c(j)

≥ α(|X| − 1)(1− kc)
∑
j∈X

c(j)

where the last equality holds due to definition of curvature
k̂c. Notice that, if if kc(X) ≤ 1, by Lemma 3, we have 1 −
k̂c(X) ≥ 1−kc(X) ≥ 0, hence we complete the proof.



Proof of Lemma 1
Lemma 1. For i=1, . . . , l+1, it holds that

f(Gi)− f(Gi−1) ≥ ĉ(Gi)− ĉ(Gi−1)

B
(f(X̃)− f(Gi−1))

where ĉ is an α submodular ψ(n)-approximation of the α-
submodular function c and X̃ is the optimal solution of
max{f(X)|c(X) ≤ αB(1+α(Kc−1)(1−kc))

ψ(n)Kc
}.

Proof. Suppose X̃ is the optimal solution of
max{f(X)|c(X) ≤ αB(1+α(Kc−1)(1−kc))

ψ(n)Kc
} and where

Kc = max{|X| : c(X) ≤ B}. We have

f(X̃)− f(Gi−1) ≤ f(X̃ ∪Gi−1)− f(Gi−1)

= f(X̃\Gi−1 ∪Gi−1)− f(Gi−1)

Assume X̃\Gi−1 = {Y1, . . . , Ym}, and let for j = 1, . . . ,m

Zj = f(Gi−1 ∪ {Y1, . . . , Yj} − f(Gi−1 ∪ {Y1, . . . , Yj−1}

Then f(X̃)− f(Gi−1) ≤
∑m
j=1 Zj . Now notice that

Zj
ĉ(Gi−1 ∪ Yj)− ĉ(Gi−1)

≤ f(Gi−1 ∪ Yj)− f(Gi−1)

ĉ(Gi−1 ∪ Yj)− ĉ(Gi−1)

≤ f(Gi)− f(Gi−1)

ĉ(Gi)− ĉ(Gi−1)

where first inequality holds due to submodularity and second
inequality holds due to the greedy rule.

f(X̃)− f(Gi−1) ≤
m∑
j=1

Zj

≤
m∑
j=1

[ĉ(Gi−1 ∪ Yj)− ĉ(Gi−1)]
f(Gi)− f(Gi−1)

ĉ(Gi)− ĉ(Gi−1)

From α submodularity of ĉ, by Lemma 4 (i), and the fact
that ĉ ψ(n) approximates c, we have

m∑
j=1

[ĉ(Gi−1 ∪ Yj)− ĉ(Gi−1)]

≤ 1

α

m∑
j=1

[ĉ(Yj)− ĉ(∅)]

≤ 1

α

∑
j∈X̃

ĉ(Yj)

≤ ψ(n)

α

∑
j∈X̃

c(Yj) (5)

Since c is α submodular, by Lemma 5, we know that∑
j∈X̃ c(Yj) ≤

|X̃|
1+α(|X̃|−1)(1−kc)

c(X̃) and also notice that

Kc ≥ |X̃|. Therefore, it follows that

f(X̃)− f(Gi−1)

≤ ψ(n)

α

Kc

1 + α(Kc − 1)(1− kc)
c(X̃)

f(Gi)− f(Gi−1)

ĉ(Gi)− ĉ(Gi−1)

=
ψ(n)

α

Kc

1 + α(Kc − 1)(1− kc)

α
(1 + α(Kc − 1)(1− kc))

ψ(n)Kc
B
f(Gi)− f(Gi−1)

ĉ(Gi)− ĉ(Gi−1)

= B
f(Gi)− f(Gi−1)

ĉ(Gi)− ĉ(Gi−1)

Routing Network for Robotic Sensing

Figure 5: Mobile Robot Routing Network

Figure 5 represents the hypothetical routing network for
robotic sensor measurements based on the data from Beijing,
China.


