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Abstract—Current Stackelberg security game models primar-
ily focus on isolated systems where only one defender is present,
despite being part of a more complex system with multiple play-
ers. However, many real systems such as transportation networks
and the power grid exhibit interdependencies between targets
and, consequently, between decision makers jointly charged with
protecting them. To understand such multidefender strategic
interactions present in security, we investigate security games
with multiple defenders. Unlike most prior analysis, we focus on
situations in which each defender must protect multiple targets,
so even a single defenders best response decision is, in general,
non-trivial. We start with an analytical investigation in a special
case of multidefender security games with independent targets,
offer an equilibrium and price-of-anarchy analysis, and show
that defenders have an incentive to over-protect the targets.
Considering interdependencies among targets, we develop a novel
mixed-integer linear programming formulation to compute a
defenders best response, and approximate Nash equilibria of the
game using this formulation. We apply this approach towards
computational strategic analysis of several network models repre-
senting interdependencies, including real-world power networks.
Our analysis shows how network structure and the probability
of failure spread determine the propensity of defenders to over-
or under-invest in security.

I. INTRODUCTION

Security, physical and cyber, has come to the forefront of
national attention, particularly after 9/11. Among the variety
of approaches that are used to tackle security problems, from
risk analysis to red teaming, the Stackelberg Security game
model [1] has had a significant impact, with tools based on
game theoretic analysis having been deployed in LAX airport
to schedule canine patrols [2], by Federal Air Marshall Service
(FAMS) to schedule the air marshals [3], and by the US Coast
Guard to schedule boat patrols [4].

A crucial assumption that all these efforts have in common
is that a single defender is responsible for all the targets that
need protection, and that she has control over all of the security
resources. However, there are many domains in which there
are multiple defender agencies who are in charge of different
subsets of all targets. In practice, numerous parties are respon-
sible for security; indeed, the fact that the basic framework
has been deployed by different entities and agencies makes
this manifest already. If security decisions made by different
parties were entirely independent, both from the defender’s and
the attacker’s perspective, a single-defender model would be
entirely satisfactory. However, the assets protected by different
entities are typically interdependent, or, more generally, have
value to others who are not involved in security decisions.
Additionally, attackers, insofar as they may target different
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sectors under the charge of different defenders, are resource
constrained, implicitly coupling otherwise independent targets.

An important motivating application for our multidefender
security game is security and reliability in the power grid. In-
dependent System Operators (ISOs) and profit-driven indepen-
dent utility operators are largely responsible for operating and
controlling subsystems of the entire grid [5]. These operators
are held responsible for the reliability of their system, and thus
have independent, and possibly even competing, goals with
neighboring ISOs. As such, their security decisions are made
independently, despite the interdependencies present between
subsystems. As a result of this organization, cascading failures
in the power grid can present a great threat to the entire system,
particularly when subsystems are under attack.

In this paper, we investigate a Stackelberg game model, in
which there are multiple defenders charged with protecting
disjoint subsets of targets, which may be interdependent (for
example, failures at one target may cascade to another).
First, we examine a case where the values of the targets are
independent and homogeneous among the defenders, and pro-
vide equilibrium and price-of-anarchy analysis. Specifically,
we show that a Nash equilibrium among defenders in this
two-stage game model need not always exist, even when
the defenders utilize randomized strategies (i.e., probability
distributions over target protection levels); this is distinct
from a model in which the attacker moves simultaneously
with the defenders, where a mixed strategy equilibrium is
guaranteed to exist. When an equilibrium does exist, we show
that the defenders protect all of their targets with probability
1, whereas the socially optimal protection levels are generally
significantly lower. When no equilibrium exists, we charac-
terize the best approximate Nash equilibrium (that is, one
in which defenders have the least gain from deviation) and
corresponding (approximate) Price of Anarchy, showing that
over-investment is substantial in this case as well.

For the general case in which targets are interdependent, we
propose a novel mixed-integer linear programming approach
for computing a defender’s best response, combined with a
novel heuristic method to approximate equilibrium behavior.
Interdependent multidefender games feature two competing
externalities of security decisions: a positive externality, where
greater security implies reduced contagion risk to other de-
fenders, and a negative externality, which arises because high
security investment by one defender incentivizes the attacker
to attack someone else’s assets. We study the impact of
competing externality effects of defense on the resulting Nash
equilibrium outcomes as a function of network topology (using
both synthetic and real networks), interdependent risk, and
the level of system decentralization. One of our key findings
is that the impact of system decentralization on security
and welfare can be non-monotonic when systems are highly



2

interdependent: high levels of decentralization can yield near-
optimal outcomes, even as moderate decentralization results
in significant underinvestment. With weak interdependencies,
on the other hand, an increasingly decentralized system tends
more strongly to over-invest in security.

Related Work
Among the earliest multidefender models is in the literature

on interdependent security games [7], in which interactions
among multiple defenders are modeled as an n-player, 2-
action game, where a player decides whether to invest in secu-
rity; however, no attacker is considered. More recently, time-
dependent scenarios where coordination of defender resources
amongst multiple defenders is assumed have been studied
using Markov decision processes [8]. Since total cooperation
is assumed, this model effectively reduces to a single defender
game in which the defender controls all resources. A recent
extension, interdependent defense games [9], does consider an
attacker who acts simultaneously with the defenders, rather
than after observing the joint defense configuration, as in
our model. Interdependent defense games have also been
studied in the context of traffic infrastructure defense [10].
Two recent efforts studying multidefender games explicitly
model interdependence among targets through a probabilistic
contagion process [11], [12]. Like our paper, they consider
attackers who observe the joint defense prior to making a
decision, but each defender is restricted to secure a single
node, and the strategy space is assumed to be continuous. [13]
is, to our knowledge, the only other attempt to study strategic
settings related to security in which each player’s decision
space is combinatorial. However, this work does not consider
a strategic attacker.

II. MULTIDEFENDER MODEL

In the multidefender security game model, there are a
collection of defenders N = {1, 2, 3, . . . , n}, and a single
attacker. A collection of targets T will be protected by these
defenders. Each defender i is in charge of a set of targets Ti,
such that Ti ⊆ T . We assume Ti ∩ Ti′ = ∅ when i 6= i′, and
∪i∈NTi = T .

Strategies Suppose that each defender i can choose from a
finite set O = {o1, o2, . . . , o|O|} of security configurations for
each target t ∈ Ti. A pure strategy of defender i is oi =<
oi,ti1 , oi,ti2 , . . . , oi,tik . . . , oi,ti|Ti|

>, in which tik is the kth
target of defender i, and oi,j (here j = ti1, ti2, . . ., etc.) means
defender i’s security configuration on target j s.t. j ∈ Ti. We
assume the attacker is resource constrained and can only attack
one target in the game. That is, a pure strategy of the attacker
is j, s.t. j ∈ T .

A Mixed Strategy of a defender i is a matrix

qi =


qo1i,ti1 qo1i,ti2 . . . qo1i,ti|Ti|

qo2i,ti1 qo2i,ti2 . . . qo2i,ti|Ti|

...
...

. . .
...

q
o|O|
i,ti1

q
o|O|
i,ti2

. . . q
o|O|
i,ti|Ti|


In which, qoi,j (here o = o1, o2, . . ., o|O| and j = ti1, ti2, . . .,
ti|Ti|) is the probability that the defender i chooses o at target
j, and

∑
o∈O q

o
i,j = 1.

In our model, we assume a single strategic attacker that
observes the defenders’ coverage probabilities and chooses
a target that maximizes its utility. A mixed strategy of the
attacker can be denoted by p =< pt1 , pt2 , . . . , ptk . . . , pt|T | >,
in which, tk is the kth target in target set T , and pj (here
j = t1, t2, . . . , t|T |) is the probability of attacking target j ∈ T .

We let q =< q1,q2, . . . ,qn > denote the strategy profile
of the defenders, and (q,p) denote the strategy profile of the
defenders and the attacker.

Payoffs A configuration o ∈ O for target j ∈ Ti incurs a cost
coj to the defender i. If the attacker attacks a target j ∈ T while
configuration o is in place, the expected value to a defender
i is denoted by Uoi,j , while the attacker’s value is V oj . We
assume in this model that each player’s utility depends only
on the target attacked and its security configuration [3], [14].

Solution Concepts Traditionally, in single defender Stack-
elberg security games, the solution concept used is Strong
Stackelberg Equilibrium (SSE). A SSE is characterized by an
assumption that the attacker breaks ties in defender’s favor.
However the notion of “breaking ties in defender’s favor” is
no longer well defined when there are multiple defenders, as
we must specify which defender will receive the favor. In
our paper, we adopt a natural tie-breaking rule in which the
attacker chooses a target uniformly at random from the set of
all best responses. We call the corresponding solution concept
(which is a refinement of the subgame perfect equilibrium of
our game) the Average-case Stackelberg Equilibrium (ASE).

Definition 1. (Average-case Stackelberg Equilibrium) A strat-
egy profile (q,p) is ASE if each defender’s strategy is a
best response, taking other defenders’ strategies as given
and assuming that the attacker will always play a best-
response strategy, breaking ties uniformly at random if there
are multiple best-response strategies.

As we demonstrate below, ASE is not guaranteed to exist, in
which case we focus on ε-ASE (a refinement of ε-equilibrium),
in which no defender gains more than ε by deviating; in
particular, we will consider ε-ASE with the smallest attainable
ε.

To measure how the efficiency of the game degrades due to
selfish behavior of the defenders, we consider Utilitarian So-
cial Welfare and (ε)-Price of Anarchy in our paper. Utilitarian
Social Welfare is the sum of all defenders’ payoffs. For the
smallest attainable ε, we define ε-Price of Anarchy (ε-PoA) as
follows:

ε-PoA =
SWO

ε-SWE

where SWO is the optimal (utilitarian) social welfare that can
be obtained (i.e., if there was a single defender), and ε-SWE

is the worst-case (utilitarian) social welfare in ε-ASE. An
underlying assumption of this definition is that the value of
SWO and ε-SWE are both positive. If they are both negative,
then ε-PoA will be the reciprocal of above equation. Note that
the ordinary Price of Anarchy is a special case of ε-Price of
Anarchy with ε = 0.
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III. EQUILIBRIUM ANALYSIS OF INDEPENDENT
MULTIDEFENDER SECURITY GAMES

Before investigating the multidefender security game gen-
erally, we first consider a special case of the model to reveal
some useful insights. We consider scenarios in which the
values of the targets are independent and homogeneous among
the defenders. Our equilibrium and Price of Anarchy analysis
will show that a Nash equilibrium among defenders in the
Stackelberg game model (equivalently, ASE) 1 need not always
exist, even when the defenders utilize randomized strategies
(i.e., probability distributions over target protection levels). For
cases when there is no Nash equilibrium, we make use of
approximate Nash (ASE) equilibrium and the associated (ε)-
Price of Anarchy.

A. Problem Setting

In this model, we assume all targets in T are homogeneous,
and each target has the same value to the defender. In the
game model, each defender protects k targets, i.e. |T1| =
|T2| = . . . = |Tn| = k. The security configuration space is
O = {0, 1}, i.e., the defender’s decision is binary. For exam-
ple, 1 can correspond to the decision to protect an asset, while
the configuration 0 would leave the asset unprotected. The pure
strategy of defender i is oi =< oi,ti1 , oi,ti2 , . . . , oi,tik >, in
which oi,j (here j = ti1, ti2, . . .) is a binary value. The mixed
strategy of a defender i is qi =< qi,ti1 , qi,ti2 , . . . qi,tik >, in
which qi,j is the probability of protecting target j for defender
i (coverage probability). The cost to defend each target is
denoted by c.

If the attacker chooses to attack a target controlled by
defender i and the defender chooses to protect the target, we
define the value of the target to defender i to be U c, and if the
attacker attacks the target but it is not protected, then the value
of the target to the defender is Uu. It is reasonable to assume
that U c ≥ Uu. If the target of defender i is not attacked, the
value of the target for defender i is Ω ≥ U c. In this setting, we
assume that the attacker aims to maximize expected damage to
the defender, so that the attacker’s utility is −Uu, −U c, and
−Ω for the three outcomes above, respectively. Since these
values are uniform across targets, equivalently the attacker
attacks a target with lowest coverage probability (breaking ties
uniformly at random).

B. Equilibrium Analysis and Price of Anarchy

Our first result presents necessary and sufficient conditions
for the existence of a Nash equilibrium among defenders
(ASE) in the independent multidefender setting, and charac-
terizes it when it does exist.

Theorem 1. In the Independent Multidefender setting, Nash
equilibrium among defenders (ASE) exists if and only if U c−
Uu ≥ kc − (n−1)(Ω−Uc)

n . In this equilibrium all targets are
protected with probability 1.

1If we treat attacker as externality, we could see an ASE as a Nash
equilibrium among defenders. For ease of exposition, we will also use “Nash
equilibrium among defenders” to denote ASE in the paper.

Thus, if a Nash equilibrium does exist, it is unique, with
all defenders always protecting their targets. But what if the
equilibrium does not exist? Next, we characterize the (unique)
ε-equilibrium (ε-ASE) with the minimal ε that arises in such a
case. We will use this approximate equilibrium strategy profile
as a prediction of the defenders’ strategies.

Theorem 2. In Independent Multidefender setting, in the
optimal ε-equilibrium (ε-ASE) all targets are protected with
probability Ω−Uu

kc . The corresponding ε is (Ω−Uu)(kc−Uc+Uu)
cnk .

Armed with a complete characterization of predictions of
strategic behavior among the defenders, we can now consider
how this behavior is related to socially optimal protection
decisions. Since the solutions are unique, there is no distinction
between the notions of price of anarchy and price of stability;
we term the ratio of socially optimal welfare to welfare in
equilibrium as the price of anarchy for convenience.

Theorem 3. In the Independent Multidefender setting, the
optimal social welfare SWO is

SWO =

{
U c − nkc+ (nk − 1)Ω, if U c − Uu ≥ nkc;
Uu + (n− 1)Ω, if U c − Uu < nkc.

Proof sketch. First, we claim that we could get optimal social
welfare only if all targets have the same coverage probability
q. Otherwise, some target j, which is influenced by defender
i has probability 0 of being attacked, and we can decrease
qi,j to improve social welfare. Consequently, we need only
to consider an optimal symmetric coverage probability q to
maximize social welfare, which can be done in a relatively
straightforward way.

If U c − Uu ≥ kc − (n−1)(Ω−Uc)
n , the Nash equilibrium

is unique, with all targets protected with probability 1. The
corresponding social welfare is

SWE = U c − nkc+ (nk − 1)Ω.

So far we have not yet added any constrains to value of Ω,
U c, and Uu (except that Ω ≥ U c ≥ Uu). In order to make
Price of Anarchy well-defined, we need to add constraints
that values of Ω, U c, and Uu are all non-positive or all non-
negative. We add constraints that U c, Uu and Ω are all non-
positive (little changes if all are non-negative).

In the case of a unique Nash equilibrium, the price of
anarchy is

PoA =


1, if U c − Uu ≥ nkc;
Uc−Uu−nkc
Uu+(nk−1)Ω + 1, if kc− (n−1)(Ω−Uc)

n ≤
U c − Uu < nkc.

If U c − Uu < kc − (n−1)(Ω−Uc)
n , there is no Nash

equilibrium. The Social Welfare in the optimal approximate
equilibrium is

ε-SWE = (U c − Uu − nkc)Ω− Uu

kc
+ Uu + (nk − 1)Ω,

and the (Ω−Uu)(kc−Uc+Uu)
cnk -Price of Anarchy is

(Uc−Uu−nkc)(Ω−Uu)
kcUu+(nk−1)kcΩ + 1.
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Fig. 1. (Approximate) Price of Anarchy when c = 1,Ω = −1, Uc = −2
and Uu = −10

From this result, it is already clear that defenders system-
atically over-invest in security. This stems from the fact that
the attacker creates a negative externality of protection: if a
defender protects his target with higher probability than others,
the attacker will have an incentive to attack another defender.
In such a case, we can expect a “dynamic” adjustment pro-
cess with defenders increasing their security investment well
beyond what is socially optimal.

We now analyze the relationship between (ε-)PoA and the
values of n and k. First we consider (ε-)PoA as the function of
n. If Ω = 0, (ε-)PoA linearly increases in n, and is therefore
unbounded. However, if Ω 6= 0, while PoA and ε-PoA are
increasing in n, as n→∞, they approach 1− c

Ω and 1+Uu−Ω
kΩ ,

respectively. In other words, PoA (exact and approximate) is
bounded by a constant, for a constant k.

Consider now approximate price of anarchy as a function of
k. If Ω = 0, it is bounded by n+ 1. However, if Ω 6= 0, when
kc− (n−1)(Ω−Uc)

n ≤ U c − Uu, it is an increasing function of
k. When kc− (n−1)(Ω−Uc)

n > U c−Uu, it may at first increase
or decrease in k, depending on the the values of the model
parameters. However, when k is large enough, price of anarchy
will invariably be decreasing in k, and as k →∞, ε-PoA→ 1.
Figure 1 provides an example of the relationship between ε-
PoA and k. Observe that all the curves begin to decrease when
k > 10, and they all approach 1 as k → ∞. Thus, price
of anarchy in the independent multidefender setting is only
unbounded in the special case when Ω = 0, whereas when
Ω 6= 0, price of anarchy is always bounded by a constant.
This observation is particularly surprising considering the fact
that the Ω = 0 is a natural and seemingly innocuous restriction
of the general case.

IV. COMPUTING AVERAGE-CASE STACKELBERG
EQUILIBRIUM

We now develop and analyze a computational framework
for approximating Nash equilibria in multidefender security
games in the general case (which can include interdepen-
dencies between targets). A crucial step in computing (or
approximating) a Nash equilibrium of a game is to consider
the problem of computing a best response for an arbitrary
player (in our case, defender, since the attacker’s best response

is straightforward). Next, we develop a novel mixed-integer
linear programming formulation for computing ASE best
response, and then propose an effective heuristic method for
approximating ASE in multidefender games.

A. Computing Defender Best Response: A Mixed-Integer Lin-
ear Programming Formulation

While ASE seems a natural alternative to SSE in multiplayer
security games, we are not aware of any proposals for com-
puting it. Below, in equations 1-11, we present the first (to our
knowledge) mixed-integer linear programming formulation for
computing ASE. The solution to the MILP below is a best
response for an arbitrary defender i when the strategies of all
other players, q−i, are fixed.

max
a,qi,s,u,v

u−
∑
j∈Ti

∑
o∈O

cojq
o
i,j (1)

s.t.

0 ≤ qoi,j ≤ 1 ∀ j ∈ Ti, ∀o (2)∑
o∈O

qoi,j = 1 ∀j ∈ Ti (3)

aj ∈ {0, 1} ∀ j ∈ T (4)∑
j∈T

aj ≥ 1 (5)

0 ≤ v −
∑
o

qoi,jV
o
j ≤ (1− aj)M ∀ j ∈ Ti (6)

0 ≤ v −
∑
o

qo−i,jV
o
j ≤ (1− aj)M ∀ j ∈ T−i (7)

sj = v −
∑
o

qoi,jV
o
j ∀ j ∈ Ti (8)

sj = v −
∑
o

qo−i,jV
o
j ∀ j ∈ T−i (9)

aj +Msj ≥ 1 ∀ j ∈ T (10)
u = f(q, a), (11)

where M is a very large number, aj = 1 if the attacker chooses
to attack target j, and

f(q, a) =
1∑

j∈T aj

∑
j∈Ti

aj
∑
o∈O

qoi,jU
o
i,j+

∑
j∈T−i

aj
∑
o∈O

qo−i,jU
o
i,j

 .

While constraint 11 is non-linear, we can linearize it using
McCormick inequalities. Constraints 2 and 3 ensure that the
defender’s strategy is a valid probability distribution. Con-
straint 5 ensures that at least one target is chosen by the
attacker, since ASE allows for the attacker to choose uniformly
at random from a set of optimal targets to attack. Constraints 6
and 7 compute the optimal attacker utility v; alone, they ensure
that this utility corresponds to some attack target. For example,
if aj = 1 for some target j ∈ Ti, this forces the difference
between the optimal attacker value v and the attacker value
at the target j to be 0 (this is an optimal target to attack).
Constraints 8 and 9 compute an auxiliary variable sj , which
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is 0 if and only if attacking a target j yields an optimal utility
to the attacker. These variables, together with constraints 10
and 6-7 ensure that the binary variable aj = 1 if and only if the
attacker (weakly) prefers to attack target j; that is, these jointly
compute the set of optimal attack targets. Finally, constraint 11
computes the expected utility to the defender if the attacker
chooses one of his most preferred targets uniformly at random.
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Fig. 2. Comparison of NE approximation algorithms (|N | = 5 and |T | = 20,
c = 0.2.)

B. Approximating ASE

Scenarios with a large set of targets and/or interdepen-
dencies, which arise frequently in realistic complex systems,
may be intractable to compute the ASE exactly. As a re-
sult, formal equilibrium analysis for general scenarios with
interdependencies is not feasible. Previously, [16] presented
a convergent equilibrium approximation algorithm based on
simulated annealing (SA) that would be applicable in our
setting. They additionally showed in simulation that SA is
outperformed by a heuristic based on iterated best response
(IBR) dynamics. We interpret IBR as a local search heuristic,
with the property that if the starting point is a Nash equilib-
rium, IBR will never deviate from it (i.e., Nash equilibrium is
a fixed point). Clearly, then, the choice of a starting point can
be significant for the performance of IBR, making it natural
to consider coupling it with random restarts. Our contribution
in this section is to present evidence that IBR with random
restarts is an effective equilibrium approximation approach in
our setting (and outperforms several alternatives). We use this
algorithm for our analyses below.

We compare the following Nash equilibrium approximation
algorithms executed for 1000 iterations: random search (RS),
which generates 1000 strategy profiles randomly, computes
the game theoretic regret of each, and chooses a profile with
the smallest regret; simulated annealing (SA), with the tem-
perature exponentially increasing with iterations; and iterated
best response (IBR). We also include two additional variations
of IBR: the first uses SA for the first 100 iterations, and
then switches to IBR for the remainder (starting with the
best approximation produced by SA); the second is IBR with
random restarts (RIBR). RIBR includes initial corner cases
that may be hard to converge to in a limited amount of
time (i.e., all defenders not defending, all defenders defending

completely). We execute our comparison on games with 2
players and 10 targets and games with 5 players and 20
independent, randomly valued targets. We found that RIBR
outperforms other alternatives in both settings. Figure 2 shows
the comparison visually for the setting with 5 players and 20
targets.

V. ANALYSIS OF INTERDEPENDENT MULTIDEFENDER
SECURITY GAMES

In many practical applications, a defender may have an
indirect valuation of targets not under their control as a
result of functional dependence, or the possibility of a failure
cascading from another defender’s target(s) to a target of
explicit value. Interdependence can also be present within a
defender’s controlled targets, which may reshape the original
valuations in nontrivial ways. As a result, we analyze inter-
dependent multidefender games empirically to gain insight
into the strategic behavior of defenders in realistic, complex
systems.

To model interdependencies, we construct a graph (T,E)
with T the set of targets (nodes) as above, and E the set
of edges (j, j′), where an edge from j to j′ means that a
successful attack on j may have impact on j′. Each target j
has associated with it a value, vij , for the defender i, which
is the loss to i if j is affected (e.g., compromised, broken).
The security configuration determines the probability zoj (j)
that target j is affected if the attacker attacks it directly and
the defense configuration is o. We model the interdependencies
between the nodes as independent cascade contagion [14],
[15]. The contagion proceeds starting at an attacked node j,
affecting its network neighbors j′ each with probability rj,j′ ,
the contagion then spreads from the newly affected nodes
j′ to their neighbors, and so on. The contagion can only
occur one time along any network edge, and once a node is
affected it stays affected through the diffusion process. Each
player’s valuation for each target is then updated based on
the probability of a failure cascading to one of the player’s
owned targets. Figure 3 illustrates a sample scenario with
interdependencies, with defenders’ utilities before and after
the interdependent cascade contagion process. Initially each
defender only values their own target; however, after observing
that an attack’s consequences can be transmitted from another
previously unvalued target to their target with probability r,
the defender’s now also have a non-zero value for the target
outside of their control. Note that after the contagion process,
even though Defender 1 has completely covered their node,
there is still negative utility associated with Defender 2 being
attacked as a result of the interdependency.

In this model, the defender i’s utility Uoi,j =
E[zoj (j)

∑
k(−vik)ρk(j)], where ρk(j) is the probability

that a target k is affected by the contagion process if
the attacked target j is successfully compromised. In the
experiments below, we restrict O to be binary (corresponding
to coverage decisions), and let zoj (j) = 0 when the target is
covered when attacked, and zoj (j) = 1 if it is not covered,
for all targets j. We also let V oj = −

∑
i U

o
ij .

We now (approximately) compute ASE for several synthetic
classes of interdependency networks popular in network sci-
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t1,1 t2,1

Defender 1 Defender 2

r = 0.5

Target Values: v1,t1,1 = 1 v2,t1,1 = 0
v1,t2,1 = 0 v2,t2,1 = 1

Utilities before contagion: U1,t1,1 = 0 U2,t1,1 = 0
U1,t2,1 = 0 U2,t2,1 = −1

Utilities after contagion: U1,t1,1 = 0 U2,t1,1 = 0
U1,t2,1 = −0.5 U2,t2,1 = −1

Fig. 3. Simple interdependency graph with 2 defenders, 2 targets in T =
{t1,1, t2,1}, and interdependency edges E = {(t1,1, t2,1) , (t2,1, t1,2)}.
The probability of a failure spread between the targets is r = rt1,1,t2,1 =
rt2,1,t1,1 = 0.5. Defenders’ values (vik) are shown for each target k. Target
t1,1 is fully defended, while target t2,1 is not defended, and is attacked.
Utilities of both players are shown before contagion (if contagion does not
occur) and after contagion (if one does occur).

ence and graph theory literature, and for networks derived
from real power grid systems.

A. Analysis of Multi-Defender Games on Synthetic Networks

For our first set of experiments, we use RIBR on 3 artifi-
cially generated networks, with 40 samples for each parameter
variation. First, we will illustrate and compare the results of
our interdependent multidefender game on artificial networks.
We use 3 commonly analyzed network structures: a grid,
Erdős-Rényi networks, and preferential attachment networks.
In all of the generated networks, there are 64 nodes or
targets. For the latter two, we use the Metis graph partitioning
software to partition the nodes (targets) among defenders. This
software partitions nodes to minimize connectivity among the
targets belonging to different defenders, a property that we
expect to commonly hold in real networks due to efficiency
considerations.

We begin by considering average strategies and social
welfare for the three different synthetic networks (grid, Erdős-
Rényi, and preferential attachment), as a function of the
number of players (degree of decentralization) and the cascade
probability (interdependent risk). These results are shown in
Figure 4. The first rather stark observation is that network
structure makes little difference when each node is controlled
by a single player, but it makes a significant qualitative
difference both for social welfare and actual strategies utilized
by the players in all other cases.

We first discuss social welfare in greater detail (shown
in Figure 4, top). When interdependent risk is low (0.1 ≤
r ≤ 0.3), social welfare follows a relatively simple pat-
tern: increasing decentralization makes initially almost no
difference, until sufficiently many players are involved, at
which point social welfare falls dramatically; this pattern
is roughly monotonic with increasing decentralization, with
worst outcomes emerging when each player controls a single
node, and mirrors previous findings [13]. Both Erdős-Rényi
and preferential attachment networks are less susceptible to

the negative effects of decentralization in this case than the
grid network, where the dropoff occurs with fewer players
(less decentralization). This may be largely a consequence
of the fact that network partitioning tools we use attempt to
minimize interdependence among players—something that is
likely to mirror reality—and far more opportunities for doing
so exist in Erdős-Rényi and preferential attachment models.

When r is higher (greater interdependencies), the results ex-
hibit an entirely new phenomenology. Across all three network
models, for sufficiently large r, the impact of decentralization
is non-monotonic: an intermediate level of decentralization
has the most detrimental impact on security, while a highly
decentralized system becomes near-optimal!

Investigating actual (average) strategic decisions by the
players yields deeper insights into the findings above. When
interdependencies are weak, optimal decision is to invest
relatively little in security, in any generative model. Increas-
ing decentralization, therefore, gives rise primarily to over-
investment, mirroring our analytical results for the limiting
case when targets were independent. The tendency to over-
invest, however, is quite weak until the network is ex-
tremely decentralized, except in the grid network. When r
is high, positive externalities prevail, and the predominant
phenomenon is underinvestment. What is surprising is, again,
non-monotonicity in the level of decentralization: when decen-
tralization is moderate, underinvestment can be quite dramatic.
On the other hand, a high level of decentralization often
appears to dull this effect, and the level of investment in
security becomes much closer to optimal.

B. Results on power grid networks

Although Erdős-Rényi and preferential attachment models
were developed in part to resemble real networks, the approx-
imate equilibrium results applied to three snippets of actual
power networks most resemble the phenomena observed for
the grid, (shown in Figure 5). In particular, just as in the
grid above, over-investment in security appears to dominate,
even at relatively high levels of interdependence, but only
when decentralization is significant. Most other levels of
decentralization remain relatively near-optimal (these are, in
fact, more robust to decentralization than the grid network
above).

To dig somewhat deeper into the rather complex phe-
nomenology we have observed, Figure 6 shows several ex-
amples of actual strategy realizations. First, consider the top
series of plots for the grid with cascade probability r = 0.1. As
previously described, we can clearly see that the optimal se-
curity configuration involves no security investment (leftmost
grid), whereas an increasing level of decentralization gives
rise to increased security investment, culminating, ultimately,
with full protection in the extreme level of decentralization.
The contrast between the two extremes offers some guidance:
even though optimal global configuration involves no security,
when each player controls (and values) only a single node,
the best response of an attacked node is to defend it just
enough to force the attacker to attack another; for example,
slightly more than the next weakest node. Iterating on this
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for the three synthetic networks. Top: Social welfare. Bottom: Average strategy (higher strategy corresponds to higher average probability of defense).
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1 player 4 players 64 players

Fig. 6. Strategic realizations for representative games on grid and distribution network topologies. Top: Grid, r = 0.1, middle: Grid, r = 0.4, bottom: Power
Network, r = 0.7. Darker node colors indicate higher probability of defense (coverage). Dotted red lines indicate the partition of nodes among players (except
in the rightmost case, when each player controls a single node).

idea, strategies “cascade” to full defense. When the player
controls more than one node, however, there is suddenly
strategic tension: higher security on one node may well push
the attacker to attack another node under this player’s control.
Positive externalities become more significant as well: pushing
the attacker to attack another node “nearby” is likely to gain
little when cascade probabilities are high and multiple nodes
owned by the defender could be affected. For sufficiently high
cascade probabilities, and sufficiently low number of players,
such positive network effects can actually sway players to
under-invest in security, as we can see both in the middle
and last rows of Figure 6 (the 4-player case). Here, strategic
complementarities make security investment not worthwhile in
equilibrium: the nodes that need to be defended are relatively
central, and cut across different players (i.e., the critical central
nodes create a kind of “buffer” between defenders). This
behavior diminishes as decentralization increases.

VI. CONCLUSION

In this work, we have extended the current state of Stack-
elberg security games to include multiple defenders in non-
cooperative scenarios with independent or interdependent tar-
gets. For the independent case with homogeneous targets, we
provided complete characterizations of Nash and approximate
equilibria, socially optimal solutions, and price of anarchy
(PoA). Our analysis showed that defenders generally overpro-
tect the targets. For the interdependent case, we developed a
novel computational framework to overcome the difficulties of
providing a concise formal analysis of such a complex model.
One of our most stark findings is the non-monotonicity of
welfare and strategic choices as a function of the number of
players: in a number of cases, higher levels of decentralization
become near-optimal, even while intermediate decentralization
leads to very poor outcomes. Our findings enable a deeper
understanding of practical security considerations, highlighting
the importance of both, over- and under-investment in security,
and the dependence of each on network structure, the magni-
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tude of network externalities, and the level of decentralization.
Finally, we have shown how security behavior in our model
on real-world power networks relates to those in synthetic
networks, highlighting similar behaviors with grid networks.
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APPENDIX

Theorem 1. In the Independent Multidefender setting, Nash
equilibrium among defenders (ASE) exists if and only if U c−
Uu ≥ kc − (n−1)(Ω−Uc)

n . In this equilibrium all targets are
protected with probability 1.

Proof. We firstly claim that Nash equilibrium can appear only
if coverage probabilities of all of targets tij are identical.
Otherwise, there will be a target tik which has the probability
0 of being attacked, and the defender i has an incentive to
decrease qik. To determine a Nash equilibrium, we therefore
need only consider scenarios in which all targets have the same
coverage probability.

When all targets have the same coverage probability q to
be protected, the utility of each defender is

u =
(U c − Uu − nkc)q + Uu + (nk − 1)Ω

n
.

If q < 1, then some defender i could increase q to q+δ for all
of her targets to ensure none of them are attacked, and obtain
utility of u′ = kΩ− k(q + δ)c, so that

u′ − u =
(U c − Uu)(1− q) + (Ω− U c)− nkcδ

n
.

As U c ≥ Uu, Ω ≥ U c, and δ can be arbitrarily small, u′ −
u > 0 when q < 1, which means that this cannot be a Nash
equilibrium. Thus, the only possible equilibrium can be qij =
1 for all targets tij .

When all targets have the same coverage probability q = 1,
each defender’s utility is

u =
U c − nkc+ (nk − 1)Ω

n
.

We claim that if a defender i has an incentive to deviate, it is
optimal for this defender to use the same coverage probability
for all her targets. Otherwise, for some target tik which has
probability 0 of being attacked, she could decrease q′ik to
obtain higher utility. If probabilities of targets protected by
defender i are all q′ (0 ≤ q′ < 1), then her expected utility is
u′ = (U c − Uu − c)q′ + Uu + (k − 1)(Ω− q′c), and

u′ − u = (U c − Uu − kc)(q′ − 1) +
(n− 1)(U c − Ω)

n
.

We therefore have two cases:
1) If U c−Uu ≥ kc, then u′−u ≤ 0, and q = 1 for all targets

is a Nash equilibrium.
2) If U c−Uu < kc, the maximal value of u′−u corresponds

to q′ = 0:

max
0≤q′<1

u′ − u = −(U c − Uu − kc)− (n− 1)(Ω− U c)
n

.

If kc− (n−1)(Ω−Uc)
n ≤ U c − Uu < kc, u′ − u ≤ 0, it is a

Nash equilibrium; otherwise, it is not.
To sum up, a Nash equilibrium exists if and only if U c −
Uu ≥ kc − (n−1)(Ω−Uc)

n , and the equilibrium corresponds to
all targets having probability 1 of being protected.

Theorem 2. In Independent Multidefender setting, in the
optimal ε-equilibrium (ε-ASE) all targets are protected with
probability Ω−Uu

kc . The corresponding ε is (Ω−Uu)(kc−Uc+Uu)
cnk .

Proof. When all targets have the same coverage probability q,
the expected utility of each defender is

u =
(U c − Uu − nkc)q + Uu + (nk − 1)Ω

n
.

Suppose 0 ≤ q < 1. If some defender i increases q to q + δij
for each of her target tij , then she would obtain utility u′ =∑k
j=1 Ω− (q + δij)c, and

u′ − u =
Ω− (U c − Uu)q − Uu

n
−

k∑
j=1

δijc

≤ Ω− (U c − Uu)q − Uu

n
.

(12)

Now we consider scenarios in which a defender i could obtain
higher utility by decreasing protection probability. We claim
that if a defender i has an incentive to deviate, it is optimal for
this defender to use the same coverage probability for all her
targets. Otherwise, for some target tik which has probability
0 of being attacked, she could decrease q′ik to obtain higher
utility. Thus, we need only consider cases in which a defender
deviates by decreasing coverage probabilities for all her targets
to q − δ. Her utility will become u′′ = (U c − Uu − kc)(q −
δ)+Uu+(k−1)Ω. Since U c−Uu < kc, δ = q (the maximal
value of δ) maximizes u′′ − u:

max
0<δ≤q

u′′−u =
Ω− (U c − Uu)q − Uu

nk
+kcq+Uu−Ω. (13)

By comparing the value of equation (12) and equation (13),
we get different values of ε for ε-equilibrium:

ε =

{
Ω−(Uc−Uu)q−Uu

n , if 0 ≤ q ≤ Ω−Uu

kc ;
Ω−(Uc−Uu)q−Uu

n + kcq + Uu − Ω, if Ω−Uu

kc < q ≤ 1.

When q = Ω−Uu

kc , we get the minimal ε = (Ω−Uu)(kc−Uc+Uu)
cnk .

We claim that the (Ω−Uu)(kc−Uc+Uu)
cnk -equilibrium can ap-

pear only if all targets have the same coverage probability
q. We prove this by contradiction. Suppose that targets have
different coverage probabilities. This gives rise to two cases: 1)
Each defender uses an identical coverage probability for each
target she owns (these may differ between defenders); and
2) Some defender has different coverage probabilities for her
targets. In case 1), there exist β defenders (1 ≤ β < n) who
have the same minimal coverage probability q′. The expected
utility for each defender among these β is

u =
(U c − Uu − kβc)q′ + Uu + (kβ − 1)Ω

β
.

When Ω−Uu

kc < q′ ≤ 1, some defender i among these β could
decrease the coverage probability of all her targets to 0 and
obtain the utility of u1 = Uu + (k − 1)Ω, so that

u1 − u =
Ω− (U c − Uu)q′ − Uu

β
+ kcq′ + Uu − Ω

>
Ω− (U c − Uu)q′ − Uu

n
+ kcq′ + Uu − Ω.
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When 0 ≤ q′ ≤ Ω−Uu

kc , some defender i among these β can
increase coverage probabilities of all her targets to q′ + δ3 to
obtain utility of u2 = kΩ− k(q′ + δ3)c, with

u2 − u =
Ω− (U c − Uu)q′ − Uu − kβcδ3

β

>
Ω− (U c − Uu)q′ − Uu

n
,

where the inequality holds because δ3 can be arbitrarily small.
Thus, no profile in case 1) can be a (Ω−Uu)(kc−Uc+Uu)

cnk -
equilibrium. In case 2), any defender who has different
coverage probabilities among her targets can always increase
her payoff by decreasing the coverage probabilities of the
targets with higher coverage to yield identical coverage for
all targets. Consequently, no profile in case 2) can be a
(Ω−Uu)(kc−Uc+Uu)

cnk -equilibrium.


