
Using Computational Game Theory To Guide
Verification and Security in Hardware Designs

Andrew M. Smith∗†, Jackson R. Mayo‡, Vivian Kammler§, Robert C. Armstrong∗, and Yevgeniy Vorobeychik¶
∗Digital and Quantum Information Systems, Sandia National Laboratories, Livermore, California 94551–0969

Email: amsmit@sandia.gov
†Department of Computer Science, University of California, Davis, CA 95616–8562

‡Scalable Modeling and Analysis Systems, Sandia National Laboratories, Livermore, California 94551–0969
§Embedded Systems Analysis, Sandia National Laboratories, Albuquerque, NM 87185
¶Department of Computer Science, Vanderbilt University, Nashville, TN 37235

Abstract—Verifying that hardware design implementations ad-
here to specifications is a time intensive and sometimes intractable
problem due to the massive size of the system’s state space.
Formal methods techniques can be used to prove certain tractable
specification properties; however, they are expensive, and often
require subject matter experts to develop and solve. Nonetheless,
hardware verification is a critical process to ensure security and
safety properties are met, and encapsulates problems associated
with trust and reliability. For complex designs where coverage of
the entire state space is unattainable, prioritizing regions most
vulnerable to security or reliability threats would allow efficient
allocation of valuable verification resources. Stackelberg security
games model interactions between a defender, whose goal is to
assign resources to protect a set of targets, and an attacker,
who aims to inflict maximum damage on the targets after first
observing the defender’s strategy. In equilibrium, the defender
has an optimal security deployment strategy, given the attacker’s
best response. We apply this Stackelberg security framework
to synthesized hardware implementations using the design’s
network structure and logic to inform defender valuations and
verification costs. The defender’s strategy in equilibrium is thus
interpreted as a prioritization of the allocation of verification
resources in the presence of an adversary. We demonstrate this
technique on several open-source synthesized hardware designs.

I. INTRODUCTION

Validation and verification are crucial processes in hardware
design, and directly affect the confidence associated with a
properly functioning, sufficiently reliable and secure system.
Hardware validation involves ensuring design properties and
specifications are accurate for the actual intent of the design;
this process has few objective measures for accuracy or
completeness, and relies heavily on effective communication
between design teams. Verification of a hardware design
typically involves using a mathematical model to prove that
properties in a validated specification hold in the design’s
implementation. Since a complete and correct specification
ideally includes properties of how a system should and should
not behave in desired operating environments, a completely
verified system is also secure and trusted, with respect to
the design’s intent1. Verifying that a design implementation

1Concluding that a design is completely secure and trusted is a strong
statement, but is prefaced with an equally strong, idealistic assumption: that
all inputs into the verification process are flawless. We make this statement
to draw ties between verification, security, and trust.

complies with a validated specification has an exact, objective
measure of completeness for each specification property: an
exhaustive search of the system’s state space, a nontrivial
and extremely costly (sometimes intractable) process. Even
with current state space pruning techniques used in formal
verification tools, expertise in model checkers/theorem provers
and specific design functionality is often required for guiding
complete verification proofs, if possible, and results in up to
80% of the design process [1]. This results in potentially using
valuable resources exploring portions of the design that have
little or no effect on critical elements of the system. The ability
to prioritize particularly vulnerable regions of a design for
further, more costly verification methods will direct efforts
towards critical safety and security requirements and increase
confidence in overall design fidelity

Game theory has been used for securing physical assets,
such as power infrastructure, strategic resources, and airports.
In such settings, Stackelberg game formulations are typically
used, with the assumption that an attacker can observe security
decisions put in place by the defender. These applications
require deployment of costly physical resources, and strategies
are often framed in the form of money allocation (for sensors,
guard salaries, etc.). Verification as a security strategy in
hardware design, however, is more time-sensitive due to strict
deployment schedules. The cost of verifying a hardware design
is a function of how complex (i.e., state space size of the
system) and how critical (i.e., the number of safety and secu-
rity properties must be verified) the design is. Furthermore,
designers’ valuation of a portion of the circuit ultimately
reduces to the logic implementation and how likely failures
are to spread to other, more critical portions of the circuit.

In this work, we develop a game-theoretic model for pri-
oritizing components of a hardware netlist implementation to
guide costly verification efforts. To achieve this, we make 3
main contributions:

1) we inform defender’s utility via abstraction of hardware
netlists into Boolean networks, using functional influ-
ence as a measure of expected failure propagation;

2) we extend Stackelberg security games (SSGs) to hard-
ware implementations (hardware SSGs), interpreting
defender equilibrium strategies as a prioritization of

verification effort;
3) we apply our game model to synthesized open-source

hardware designs popular in the trust community.
The rest of this paper is laid out as follows. In Section II, we
discuss previous related research. Section III describes in detail
our extension of Stackelberg security games to verification
prioritization in hardware designs, including formulation of
player utilities. Section IV applies our game theoretic model
to open-source hardware design. Finally, Section V further
discusses the implications of our model and future work.

II. PREVIOUS WORK

Security games have been used to guide protection strategies
in physical and cyber security [2]. In both settings, Stackelberg
games (also known as leader-follower or defender-attacker
games) are commonly used to model the fact that the attacker
can often observe realizations of a defense strategy over
time before attacking. Existence of equilibria in Stackelberg
games, and their equivalence with Nash equilibria (under
certain reasonable constraints) have been well studied [3].
Interdependencies between defenders and their targets have
also been considered in Stackelberg security games. How-
ever, these models often assume a defender only controls
one target [4]. Synthesized hardware designs are complex
logic networks, that are usually analyzed by one or many
verification engineers. Game theoretic models of such large,
complex systems often require computational methods to gain
insight into equilibrium bounds. Vorobeychik, et al. developed
a computational model for solving and estimating single
defender security games on networks [5]. Smith, et al. extend
this approach to approximating average-case equilibrium in
general multi-defender, multi-target settings [6]. Lou, et al.
prove formal equilibrium bounds of average-case equilibria (in
certain settings) and provide a more in-depth computational
analysis [7]. We specialize the framework for approximat-
ing average-case Stackelberg equilibria to a hardware design
setting, and interpret defender strategies to be applicable to
verification.

Few game theoretic models have been applied to hardware
design settings. Games applied to trust in hardware design
abstract away the design itself in lieu of understanding the
interactions of categories of Trojans (attacker actions) and their
corresponding detection methods (defender actions) [8], [9].
Security games in deployed FPGAs have also been studied,
where an attacker attempts to gain access to a defender’s
bitstream for reverse engineering [10]. However, each player’s
utility depends only on an abstract notion of design value. To
our knowledge, our model is the first to consider hardware
design structure and functionality in a game theoretic setting.

Previous work in guiding formal verification of hardware
circuits over the past couple decades has overcome several
hurdles associated with design complexity. Relevant works
include leveraging interdependencies between complex veri-
fication tasks, informative interaction between various proof
methods, and guidance from automated test generation meth-
ods. Jones, et al. develop a verification framework for large

scale designs, allowing (among other significant organizational
tasks) decomposition of verification tasks and reusability of ar-
tifacts between proofs [11]. Bhadra, et al. provide an overview
of hybrid techniques for guiding verification, combining the
strength of mathematical provability of formal methods and
the scalability of simulation, testing, and other more informal
methods [12]. Recently, automated use of state space cover-
age from past simulations is used to guide simulation-based
verification (sometimes referred to as informal verification)
via machine learning techniques [13]. Such methods can also
work as hybrid techniques for assisting formal methods. Our
proposed prioritization metric would be of use upstream from
any of the previously discussed methods, providing an efficient
ordering of critical design components to cover.

III. MODEL

For our problem, we are interested in finding regions in
a complex hardware design (represented as a netlist) that
are the most vulnerable to attack. Since potential targets in
synthesized netlists represent logic gates, the primary property
of interest is a gate’s propensity to propagate a failure or attack
to the output of the system itself, or to some predetermined
high value signal. We apply the general Stackelberg security
game (SSG) model on interdependent targets of Lou, et. al [6],
[7] to scenarios specific to security in hardware designs. It is
important to note that we define security to mean protection
against any fault in the system (with respect to the design’s
specification), from inadvertent design flaws to malicious
attacks.

A. Defining the Game

In SSGs, there are typically 2 players: a defender, who
aims to protect a set of resources, and an attacker that aims
to corrupt a target that maximizes their expected utility. The
players move sequentially, with the defender leading, and the
attacker observing the defender’s (possibly mixed) strategy
before responding. Such games are representative of security
scenarios in hardware development, since we can assume the
attacker has the ability to run the same set of vulnerability
analysis tools on a particular implementation as the defender.

For our model, there are 2 players: an attacker, A, and a
defender (or hardware designer/verification engineer), D. The
defender has a continuous action space q = 〈q1, q2, · · · , q|T |〉,
where qt ∈ [0, 1], for all sequential logic nodes in the netlist,
t ∈ T , which represents the level of effort given to verifying
node t. Each sequential node has a cost to verify, ct, ∀t ∈ T ,
relative to the number of inputs, and an inherent value, vt,
∀t ∈ T , that the defender loses if an attack is successful on
node t. The defender’s utility function, u, selects a strategy, q,
that minimizes total loss, considering both loss from attack and
cost to verify (with respect to certain equilibrium constraints,
given in Section III-D). The attacker’s action space is defined
as p ∈ {1, · · · , |T |}, representing a choice of one of the
defender’s targets to attack. The attacker’s utility function, v,
maximizes total loss for the defender. Note that the attacker
can be modeled to represent other forms of attack (i.e.,

a random failure, avoiding detection, etc.), however, in the
interest of prioritizing critical regions, we wish to find defender
strategies that reflect protection against maximum damage.

In the rest of this section, we discuss (i) the computation of
defender node values and defense costs, (ii) utility calculation
for the defender and the attacker, and (iii) a mixed integer
linear program (MILP) based equilibrium solution for solving
SSGs in hardware design scenarios.

B. Computing Defender Values

The defender’s value of a target in a network combines
the inherent, independent value of a target, as well as how
a successful attack on that target propagates to other targets.
To capture this in our hardware setting, we perform a static
analysis of a Boolean network constructed from the netlist im-
plementation of a hardware design to represent the defender’s
targets. To make this transformation, we select each output
wire of each flip-flop to be a Boolean node. We then construct
the sequential fan-in of each output wire to be the input
to each node, terminating once another flip-flop is reached.
Connections between nodes are maintained as edges, such that
if a flip-flop output node i is an input to a node j, there is a
directed edge (i, j). This process results in a Boolean network
G = (T,E), where T is the set of nodes or targets, and E is
the set of directed edges between nodes. The Boolean function
(transfer function) of each node is represented as a truth table
defined by the combinational logic gates contained within
each Boolean node, which can be obtained from the target
technology’s specification or through independent simulation.
Figure 1 illustrates the conversion process.

Computing defender values based on this Boolean network
relies on two well-studied concepts, influence2 and indepen-
dent cascade contagion.

Influence — The probability that changing the value of bit i
of an input vector y changes the output of the transfer function
fj(y) for Boolean node j. Formally, Infi(fj) = Pr[fj(y) 6=
fj(y

(i))], where y(i) indicates an input vector y with the ith bit
flipped. Relatively low influence inputs are more likely to get
overlooked in standard coverage tests, and therefore can serve
as points of failure or malicious insertion [14], [15]. High
influence inputs are of more interest in critical applications,
however, due to their propensity to spread failure throughout
the system. Influence can be calculated exactly by enumerat-
ing the truth table, or via harmonic analysis [16]. Influence
calculation for a node scales exponentially with respect to the
number of inputs. Sequential logic segments with particularly
large fan-in, such as counters, can cause this calculation to
become a bottleneck (or even intractable). Partitioning and
parallel, independent computation of nodes, and estimation
via truth table row sampling or Fourier coefficient set size
reduction [17] can be used in these cases.

Independent cascade contagion — A process for deter-
mining contagion spread, typically used in disease spread

2The influence of an individual input on a transfer function is also known
as control value (CV).

(a) A sample netlist schematic, partitioned into sequential regions.

(b) Boolean network of the sample netlist above, with corresponding
cascade probabilities, p; nodes indexed by flip-flop IDs.

Fig. 1: Illustrates a simple transformation from a netlist to a
Boolean network. Cascade probabilities, p, are determined by
the influence (control value) of each input.

or information propagation in social network contexts. More
recently this has been used as a method for calculating failure
spread in interdependent systems [5]–[7]. The independent
cascade contagion process takes as input a graph G = (T,E)
with targets T , and a set of edges E, where (i, i′) ∈ E
indicates that a successful attack on i may affect i′ with some
probability pii′ . The process starts at some target i ∈ T and
spreads to each to each outgoing node i′ with probability
pii′ , which then spreads to i′’s neighbors, et cetera, affecting
each node only once. With enough samples of this process, an
expected affliction value can be obtained for each node given
various starting points.

Once a Boolean network is created, we calculate the in-
fluence of each input on each node, assuming independently
and identically distributed values (i.e., we assume each row
in a truth table is equally likely). For each edge (i, j) in the
Boolean network, we set pij , the cascade probability, equal
to Infi(fj), the input influence of the input corresponding
to node i on node j. Using inherent valuations of each
node combined with cascade probabilities on each edge,
an independent cascade contagion process is applied to the
network to determine the valuations of each node as a result
of potential failure propagation. Final defender valuations are
ultimately determined by running this process K times for
each node, and is expected to converge quickly in tree-like
network structures [5]. As a result of this iterative process,
defender valuations now inherently include network structure
and functional dependence. We will now describe how the
defender’s (and attacker’s) utility is computed using these
target valuations.

C. Player Utilities

The defender’s utility at a particular target t depends on
three variables: (i) qt, the level of verification effort applied
to t, (ii) vt, the initial valuation of t, and (iii) ρt′(t), for some
t′ ∈ T , the probability that a successful attack on t spreads to

t′. We model the defender’s utility function as a loss function,
so that successfully attacked nodes result in negative utility.
Formally, if a node t is successfully attacked,

Ut = E[
∑
t′∈T

(−vt′)ρt′(t)].

While interesting utility functions can result from initially
uniform valuations (as in the previous work in [5]–[7]),
hardware design experts may have preliminary knowledge that,
regardless of network structure, some nodes are more critical
than others. For instance, nodes within a controlling state
machine may be an expected target for attack or a known
source of harmful design flaws. Such nodes may include output
signals that are susceptible to data leakage (system security)
or denial of service (system availability). If this information
is available, higher prior values can be given to these targets.

Since we are aiming to prioritize the most critical compo-
nents with respect to failure or attack, we wish to model an
attacker that maximizes loss for the defender. As such, we
assume the attacker’s utility is Vt = −Ut, for a target node t.

D. Computing Stackelberg Equilibrium in Hardware SSGs

Given the above SSG model, our solution method aims
to find equilibrium strategies such that neither the defender
nor the attacker wish to deviate from their strategy. This
assumes the defender knows the attacker’s utility function (to
maximize damage), and the attacker observes the probability
of complete verification at each of the defender’s targets prior
to selecting a node to attack. Such an equilibrium is known
as the Stackelberg equilibrium. We adopt the average-case
Stackelberg equilibrium (ASE) proposed in Smith, et al. [6].
ASE demonstrates the equilibrium properties stated above, and
enforces that if the attacker is ever indifferent over which target
node to attack, then one is selected uniformly at random. We
suggest using ASE to include uncertainty over attacker actions
for equally attractive targets, and the potential to include
multiple (potentially noncooperative) hardware design teams
in future work.

To compute ASE for hardware SSGs, we use a special-
ized version of the mixed-integer linear program (MILP)
formulation developed in Smith, et al. [6]. While the orig-
inal formulation includes multiple defenders and arbitrary
security configurations, we model one centralized hardware
designer/verification engineer and one security configuration
(verification effort).

The objective function, shown in Equation 1, ultimately
maximizes the defender’s utility, considering the verification
costs, c for each node. Solutions of this maximization function
must adhere to equilibrium constraints 2-8.

Constraints 4- 7 enforce that the defender’s utility is being
maximized with respect to the attacker’s best strategy after
observing verification efforts. Individually, constraint 4 forces
the attacker to attack at least one node. Constraints 6 creates
a variable, st, indicating the gap between the optimal attacker
value v and the value of attacking target node t. If st = 0,
t is an optimal node to attack. Constraints 7 together with

constraints 5 ensure that the attacker chooses to attack a
target t if and only if it is the maximum utility target to
attack given the defender’s strategy q. Finally, constraint 8
computes the defender’s utility, u, given defender strategy q
and attacker strategy a. Note that this is a nonlinear constraint,
but can be linearized, resulting in a more computationally
efficient mixed-integer linear program. Sorting the resulting
q∗ from this optimization from highest to lowest results in
a prioritization of components for which we can allocate
verification resources.

max
a,q,s,u,v

u−
∑
t∈T

ctqt (1)

s.t.

0 ≤ qt ≤ 1 ∀ t ∈ T (2)
at ∈ {0, 1} ∀ t ∈ T (3)∑
t∈T

at ≥ 1 (4)

0 ≤ v − (1− qt)Vt ≤ (1− at)M ∀ t ∈ T (5)
st = v − (1− qt)Vt ∀ t ∈ T (6)
at +Mst ≥ 1 ∀ t ∈ T (7)

u =
1∑

t∈T at

(∑
t∈T

at(1− qt)Ut

)
, (8)

(9)

where M is some sufficiently large number, and at = 1 if
node t is attacked.

E. Interpreting equilibrium strategies

We interpret the defender’s strategy in equilibrium, q∗, as
the distribution of verification effort that should be given
to each node in the Boolean network representation of the
synthesized hardware design. A high q∗t value indicates a high
ratio of criticality to cost of verification at node t. While the
exact value of q∗t for each node does not translate into specific
verification tasks, the relative values between targets suggest
a prioritization of verification resources. In other words, if
verification efforts are distributed as prescribed by q∗, the
confidence that target t fully adheres to a validated specifi-
cation (and is therefore trusted and secure) is proportional to
q∗t . If q∗t = 1, this suggests that it would be beneficial for the
defender to be absolutely confident that t functions according
to specification. This does not necessarily mean that targets
with q∗t = 0 should be neglected, however. Certain elements of
safety and security properties present in requirements are not
found in the individual logic gates of the netlist. Prioritization
results can be better represented by assigning more insightful
initial node valuations derived from the design specification
(as discussed in Section III-C).

In our model, we assume the confidence (qt) increases lin-
early with respect to the total cost paid to verify the target (i.e.,
total cost paid at target t is ct∗qt) . As covered in Mayo, et al.,
certain node inputs with relatively low complexity may result

in higher confidence than others, causing the cost-confidence
relationship to scale relative to input complexity [18]. We leave
this analysis for future applications where the cost-confidence
relationship can be better estimated given the specific formal
verification tools used in practice and designs of interest.

IV. EMPIRICAL ANALYSIS

For this case study, we apply our hardware SSG model
to an open-source universal asynchronous receiver/transmitter
(UART) design popular in the hardware trust community3.
Typically, this design suite is used for Trojan detection [14],
[15], however, it also serves as a good testbench for comparing
the results of various synthesized implementations, especially
since the reference design serves as an ideal target specifica-
tion. For our analysis, we select inserted Trojans that could
also represent unintentionally harmful design flaws (i.e., a
portion of the logic that does not comply with the written
specification). We chose the reference design (UART REF),
as well as versions that include three different Trojans (or
“design flaws” in our case): (i) corruption of received data
when a certain input is received (UART T400), (ii) errantly
enabling the “receiver ready” signal (UART T800), and (iii)
blocking of the “transmission signal” (UART T900). Each
design is synthesized to a Verilog netlist of FPGA primitives
using identical processes and target technology, and converted
to a Boolean network via the process described in Section III.
To reemphasize, our empirical analysis should be used to prior-
itize verification efforts, not as a malicious behavior detection
tool. Identification of known design flaws are presented here
as validation that the rankings are reasonable.

We focus our analysis on varying the base cost of veri-
fication with respect to the number of inputs at each node,
CBase. CBase indirectly represents the sophistication of for-
mal methods tools available for verification. A low base cost
means it is inexpensive to formally verify a design, which
may indicate advanced heuristics, the availability of large
computing resources, or a large verification team, allowing
more of the system to be verified. Higher base costs correspond
to having less sophisticated tools or dedicated verification
engineers available, resulting in the ability to verify only
extremely critical regions. In other words, Cbase indicates
the amount of total time necessary to verify some node per
input. For a given node, t, with K inputs, we set the cost of
verification, ct = CBase ∗ K. Figure 2 shows a comparison
of the total percentage of nodes covered in each variation of
the UART design, varying the base cost. A node t is said
to be “covered” (at least partially) by verification if q∗t > 0.
Here we see a logarithmic curve, where the gains of using
hardware SSGs for prioritization decrease exponentially when
CBase < 0.1. Less than this value, verification is inexpensive
enough to cover a fairly large portion of the circuit. In the
next sections, we further compare the verification strategies of
each UART implementation.

3Available at http://www.trust-hub.org

Fig. 2: Comparison of total verification coverage for several
implementations of Trust-Hub UART, varying the cost per
node input of verification. Vertical lines indicate maximum
cost to cover the design flaw in the indicated implementation.

A. Prioritization of verification strategies

Figure 3 displays the verification prioritization resulting
from ASE in hardware SSGs run on the various UART
implementations, sampling from CBase values. Perhaps not
surprisingly, the prioritization signatures of each design is
relatively similar (with few exceptions, particularly in the
middle of each spectrum). While we know UART REF to
be the “correct” specification, the deviations in spectrum
alone are not enough to tell us if formal verification of the
prioritized strategies will reveal the design flaws that exist in
the remaining 3 implementations. To investigate deeper, we
will discuss the details of each individual implementation.

1) UART T400: The design flaw present in the
UART T400 gives an incorrect data payload in the receiver
portion of the UART. The specific register associated with
the data affected is named “iRECEIVER/recDatH” in the
synthesized netlist, and is indicated by a dashed red line
in the prioritized strategy plot in Figure 3 (top, right). This
particular register is incredibly crucial to the functionality of
the UART, and appears in similar places in the verification
ordering of the other implementations as well.

2) UART T800: This implementation contains a complex
injection of malicious logic that consisting of a 19-bit combi-
national trigger, resulting in the “receiver ready” (rec readyH)
signal going high against specification. While the trigger is
relatively large, the payload is a primary output to the system,
and encapsulated by the sequential nodes in the receiver’s state
machine. The sequential node representing the least significant
bit in the receiver’s state machine (“iRECEIVER/state[0]”) is
indicated in Figure 3 (bottom, left), and is the lowest priority
of the other 3 bits contained in the state. While this node is
further back in the priority ordering than the node of interest
in the UART T400 implementation, it is covered once the
CBase ≤ 0.15. Referring to Figure 2, this remains in the top
12% of all nodes in the design.

3) UART T900: UART T900 differs from previous im-
plementations in that the injected logic is a state machine
not present in the specification. This state machine blocks

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0
UART_REF

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0
UART_T400

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0
UART_T800

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0
UART_T900

Node ID (Priority sorted)

V
e
ri

fi
ca

ti
o
n
 e

ff
o
rt

 (
q t

)

Fig. 3: Priority sorted strategy spectrum q∗t for each node
t, varying CBase from 0.01 − 1.0; darker lines indicate
higher base costs. Nodes with low IDs represent high priority
verification targets. Dashed red lines indicate the node ID with
a known design flaw.

transmission when particular rare states are reached. Refer-
ring to Figure 3 (bottom, right), the dashed red line in-
dicates the payload of the injected state machine (named
“iXMIT/DataSend ena”, which corresponds to the trigger of
the transmission denial of service). Though the reference
design did not contain this logic, the effect of an attack on this
implementation of the system causes “iXMIT/DataSend ena”
to become covered when CBase ≤ 0.1. Figure 2 shows that
this node is in the top 20% of the design’s components.

V. DISCUSSION AND FUTURE WORK

In this work, we apply a recently developed interdependent
security game model to the guidance of hardware design veri-
fication, which we call hardware SSGs. We abstract hardware
netlists into Boolean networks, as seen in previous hardware
modeling work, and apply influence metrics from complexity
theory to inform defender valuations of sequential portions of a
design. Using strategies obtained from computing equilibrium
in hardware SSGs, we interpret sorted defender strategies as a
prioritization of verification efforts. We then apply hardware
SSGs to variants of an open source UART design, showing
that prioritized verification efforts are likely to capture design
flaws known to be present in the specified implementations.

For future work, we are interested in applying this method-
ology to larger scale systems, where the benefits of pri-
oritization are more likely to be leveraged. This involves
using designer insight to assign proper valuations to nodes a
priori, as well as the use of formal verification tools to better
validate prioritization strategies and apply more realistic cost-

to-confidence relationships. As designs scale up, independent
design teams are responsible for verification tasks of subcom-
ponents; to account for such scenarios, we would like to apply
hardware SSGs in the multidefender setting.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-mission laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] R. Drechsler et al., Advanced formal verification. Springer, 2004, vol.
122.

[2] A. Sinha, T. H. Nguyen, D. Kar, M. Brown, M. Tambe, and A. X. Jiang,
“From physical security to cybersecurity,” Journal of Cybersecurity, p.
tyv007, 2015.

[3] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe,
“Stackelberg vs. nash in security games: An extended investigation
of interchangeability, equivalence, and uniqueness.” J. Artif. Intell.
Res.(JAIR), vol. 41, pp. 297–327, 2011.

[4] A. Laszka, M. Felegyhazi, and L. Buttyán, “A survey of interdependent
security games,” CrySyS, vol. 2, 2012.

[5] Y. Vorobeychik and J. Letchford, “Securing interdependent assets,”
Autonomous Agents and Multi-Agent Systems, vol. 29, no. 2, pp. 305–
333, 2015.

[6] A. Smith, Y. Vorobeychik, and J. Letchford, “Multidefender security
games on networks,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 4, pp. 4–7, 2014.

[7] J. Lou, A. M. Smith, and Y. Vorobeychik, “Multidefender security
games,” IEEE Intelligent Systems: Special Issue on Artificial Intelligence
and Economics, 2016.

[8] J. Graf, “Trust games: How game theory can guide the development of
hardware trojan detection methods,” in Hardware Oriented Security and
Trust (HOST), 2016 IEEE International Symposium on. IEEE, 2016,
pp. 91–96.

[9] C. A. Kamhoua, M. Rodriguez, and K. A. Kwiat, “Testing for hardware
trojans: A game-theoretic approach,” in International Conference on
Decision and Game Theory for Security. Springer, 2014, pp. 360–369.

[10] J. Graf and P. Athanas, “How threats drive the development of secure
reconfigurable devices,” in 2008 IEEE National Aerospace and Elec-
tronics Conference. IEEE, 2008, pp. 239–245.

[11] R. B. Jones, C.-J. H. Seger, M. D. Aagaard, and T. Melham, “Practical
formal verification in microprocessor design,” IEEE design & test of
computers, vol. 18, no. 4, 2001.

[12] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray, “A survey of
hybrid techniques for functional verification,” IEEE Design & Test of
Computers, vol. 24, no. 2, pp. 0112–122, 2007.

[13] C. Ioannides and K. I. Eder, “Coverage-directed test generation auto-
mated by machine learning–a review,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 17, no. 1, p. 7, 2012.

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identifi-
cation of stealthy malicious logic using boolean functional analysis,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 697–708.

[15] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[16] C. Seshadhri, A. M. Smith, Y. Vorobeychik, J. R. Mayo, and R. C.
Armstrong, “Characterizing short-term stability for boolean networks
over any distribution of transfer functions,” Phys. Rev. E, vol. 94, p.
012301, Jul 2016.

[17] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits, fourier
transform, and learnability,” Journal of the ACM (JACM), vol. 40, no. 3,
pp. 607–620, 1993.

[18] J. Mayo and R. Armstrong, “Tradeoffs in targeted fuzzing of cyber sys-
tems by defenders and attackers,” in Proceedings of the Seventh Annual
Workshop on Cyber Security and Information Intelligence Research.
ACM, 2011, p. 37.

