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Abstract—Cheap ubiquitous computing enables the collection of massive amounts of personal data in a wide variety of domains.
Many organizations aim to share such data while obscuring features that could disclose personally identifiable information. Much of this
data exhibits weak structure (e.g., text), such that machine learning approaches have been developed to detect and remove identifiers
from it. While learning is never perfect, and relying on such approaches to sanitize data can leak sensitive information, a small risk is
often acceptable. Our goal is to balance the value of published data and the risk of an adversary discovering leaked identifiers. We
model data sanitization as a game between 1) a publisher who chooses a set of classifiers to apply to data and publishes only
instances predicted as non-sensitive and 2) an attacker who combines machine learning and manual inspection to uncover leaked
identifying information. We introduce a fast iterative greedy algorithm for the publisher that ensures a low utility for a resource-limited
adversary. Moreover, using five text data sets we illustrate that our algorithm leaves virtually no automatically identifiable sensitive
instances for a state-of-the-art learning algorithm, while sharing over 93% of the original data, and completes after at most 5 iterations.
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1 INTRODUCTION

VAst quantities of personal data are now collected in
a wide variety of domains, including personal health

records, emails, court documents, and the Web [1]. It is
anticipated that such data can enable significant improve-
ments in the quality of services provided to individuals and
facilitate new discoveries for society. At the same time, the
data collected is often sensitive, and regulations, such as the
Privacy Rule of the Health Insurance Portability and Ac-
countability Act of 1996 (when disclosing medical records)
[2], Federal Rules of Civil Procedure (when disclosing court
records) [3], and the European Data Protection Directive [4]
often recommend the removal of identifying information.
To accomplish such goals, the past several decades have
brought forth the development of numerous data protection
models [5]. These models invoke various principles, such
as hiding individuals in a crowd (e.g., k-anonymity [6])
or perturbing values to ensure that little can be inferred
about an individual even with arbitrary side information
(e.g., ε-differential privacy [7]). All of these approaches are
predicated on the assumption that the publisher of the
data knows where the identifiers are from the outset. More
specifically, they assume the data has an explicit represen-
tation, such as a relational form [8], where the data has at
most a small set of values per feature [9], [10], [11], [12].

However, it is increasingly the case that the data we
generate lacks a formal relational or explicitly structured
representation. A clear example of this phenomenon is the
substantial quantity of natural language text which is cre-
ated in the clinical notes in medical records [13]. To protect
such data, there has been a significant amount of research
into natural language processing (NLP) techniques to detect
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and subsequently redact or substitute identifiers [14], [15],
[16], [17]. As demonstrated through systematic reviews [18]
and various competitions [19], [20], the most scalable ver-
sions of such techniques are rooted in, or rely heavily upon,
machine learning methods, in which the publisher of the
data annotates instances of personal identifiers in the text,
such as patient and doctor name, Social Security Number,
and a date of birth, and the machine attempts to learn a
classifier (e.g., a grammar) to predict where such identifiers
reside in a much larger corpus. Unfortunately, generating
a perfectly annotated corpus for training purposes can be
extremely costly [21]. This, combined with the natural im-
perfection of even the best classification learning methods
implies that some sensitive information will invariably leak
through to the data recipient. This is clearly a problem if,
for instance, the information leaked corresponds to direct
identifiers (e.g., personal name) or quasi-identifiers (e.g.,
ZIP codes or dates of birth) which may be exploited in re-
identification attacks, such as the re-identification of Thelma
Arnold in the search logs disclosed by AOL [22] or the Social
Security Numbers in Jeb Bush’s emails [23].

Rather than attempt to detect and redact every sensitive piece
of information, our goal is to guarantee that even if identifiers
remain in the published data, the adversary cannot easily find
them. Fundamental to our approach is the acceptance of
non-zero privacy risk, which we view as unavoidable. This
is consistent with most privacy regulation, such as HIPAA,
which allows expert determination that privacy “risk is very
small” [2], and the EU Data Protection Directive, which
“does not require anonymisation to be completely risk-
free” [24]. Our starting point is a threat model within which
an attacker uses published data to first train a classifier to
predict sensitive entities based on a labeled subset of the
data, prioritizes inspection based on the predicted positives,
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and inspects and verifies the true sensitivity status of B of
these in a prioritized order. Here, B is the budget available
to inspect (or read) instances and true sensitive entities
are those which have been correctly labeled as sensitive
(for example, true sensitive entities could include identifiers
such as a name, Social Security Number, and address). An
illustration of such a setting is depicted in Figure 1. In

Fig. 1. An example of sensitive and non-sensitive instances that need to
be distinguished via manual inspection.

this threat model, we consider an idealized adversary with
several elements of omniscience. First, we assume that the
adversary can always correctly assess the true sensitivity
for any manually inspected instance. Second, we assume
that the adversary computes an optimal classifier, that is, a
classifier with maximum accuracy within a given hypothesis
class, with respect to published data.

We use this threat model to construct a game between
a publisher, who 1) applies a collection of classifiers to an
original data set, 2) prunes all the positives predicted by any
classifier, and 3) publishes the remainder, and an adversary
acting according to our threat model. The data publisher’s
ultimate goal is to release as much data as possible while at
the same time redacting sensitive information to the point
where re-identification risk is sufficiently low. In support of
the second goal, we show that any locally optimal publish-
ing strategy exhibits the following two properties when the
loss associated with exploited personal identifiers is high:
a) an adversary cannot learn a classifier with a high true
positive count, and b) an adversary with a large inspection
budget cannot do much better than manually inspecting and
confirming instances chosen uniformly at random (i.e., the
classifier adds little value).

Moreover, we introduce a greedy publishing strategy
which is guaranteed to converge to a local optimum and
consequently guarantees the above two properties in a
linear (in the size of the data) number of iterations. At a high
level, the greedy algorithm iteratively executes learning
and redaction. It repeatedly learns the classifier to predict
sensitive entities on the remaining data, and then removes
the predicted positives, until a local optimum is reached.
The intuition behind the iterative redaction process is that,
in each iteration, the learner essentially checks to determine
if an adversary could obtain utility by uncovering residual
identifiers; if so, these instances are redacted, while the
process is terminated otherwise. Our experiments on two
distinct electronic health records data sets demonstrate the
power of our approach, showing that 1) the number of
residual true positives is always quite small, addressing
the goal of reducing privacy risk, 2) confirming that the
attacker with a large budget cannot do much better than
uniformly randomly choosing entities to manually inspect,
3) demonstrating that most (> 93%) of the original data is

published, thereby supporting the goal of maximizing the
quantity of released data, and 4) showing that, in practice,
the number of required algorithm iterations (< 5) is a small
fraction of the size of the data. Additional experiments,
involving three datasets that are unrelated to the health
domain corroborate these findings, demonstrating general-
izability in our approach.

A short version of this paper was presented at the
IEEE International Conference on Data Mining [25]. This
extended paper offers a number of significant additional
contributions, including 1) extended theoretical analysis of
locally optimal data publishing policies, 2) finite sample
bounds to significantly generalize the theoretical results,
and 3) a significantly augmented experimental evaluation.

2 RELATED WORK

Approaches for Anonymizing Structured Data
There has been a substantial amount of research conducted
in the field of privacy-preserving data publishing (PPDP)
over the past several decades [5], [26]. Much of this work is
dedicated to methods that transform well-structured (e.g.,
relational) data to adhere to a certain criterion or a set of
criteria, such as k-anonymization [6], l-diversity [27], m-
invariance [28], and ε-differential privacy [7], among a mul-
titude of others. These criteria attempt to offer guarantees
about the ability of an attacker to either distinguish between
different records in the data or make inferences tied to a
specific individual. There is now an extensive literature aim-
ing to operationalize such PPDP criteria in practice through
the application of techniques such as generalization, sup-
pression (or removal), and randomization (e.g., [29], [30],
[31], [32], [33], [34]). All of these techniques, however, rely
on a priori knowledge of which features in the data are
either themselves sensitive or can be linked to sensitive
attributes. This is a key distinction from our work: we aim to
automatically discover which entities in unstructured data are
sensitive, as well as formally ensure that whatever sensitive
data remains cannot be easily unearthed by an adversary.

Traditional Methods for Sanitizing Unstructured Data
In the context of privacy preservation for unstructured data,
such as text, various approaches have been proposed for
the automatic discovery of sensitive entities, such as iden-
tifiers. The simplest of these rely on a large collection of
rules, dictionaries, and regular expressions (e.g., [35], [36]).
[37] proposed an automated data sanitization algorithm
aimed at removing sensitive identifiers while inducing the
least distortion to the contents of documents. However,
this algorithm assumes that sensitive entities, as well as
any possible related entities, have already been labeled.
Similarly, [38] have developed the t-plausibility algorithm
to replace the known (labeled) sensitive identifiers within
the documents and guarantee that the sanitized document
is associated with least t documents.

Machine Learning Methods for Sanitizing Unstructured
Data
A key challenge in unstructured data that makes it qual-
itatively distinct from structured is that even identifying



3

(labeling) which entities are sensitive is non-trivial. For
example, while a structured portion of electronic medical
records would generally have known sensitive categories,
such as a patient’s name, physician’s notes do not have such
labels, even though they may well refer to a patient’s name,
date of birth, and other potentially identifying information.
While rule-based approaches, such as regular expressions,
can automatically identify some of the sensitive entities,
they have to be manually tuned to specific classes of data,
and do not generalize well. A natural idea, which has
received considerable traction in prior literature, is to use
machine learning algorithms, trained on a small portion
of labeled data, to automatically identify sensitive entities.
Numerous classification algorithms have been proposed for
this purpose, including decision stumps [39], support vector
machines (SVM) [40], conditional random fields (CRFs) [14],
[17], [41], hybrid strategies that rely on rules and statistical
learning models [42], [43] ensemble methods [18]. Unfortu-
nately, such PPDP algorithms fail to formally consider the
adversarial model, which is crucial for the decision making
of the data publisher. A recent work by Carrell et al. [44]
considers enhancing such redaction methods by replacing
removed identifiers with fake identifiers which appear real
to a human reader.

Our approach builds on this literature, but is quite
distinct from it in several ways. First, we propose a novel
explicit threat model for this problem, allowing us to make
formal guarantees about the vulnerability of the published
data to adversarial re-identification attempts. Our model
bears some relationship to a recent work by Li et al. [45]
who also consider an adversary using machine learning to
re-identify residual identifiers. However, our model com-
bines this with a budget-limited attacker who can manually
inspect instances; in addition, our publisher model involves
the choice of a redaction policy, whereas Li et al. focus on the
publisher’s decision about the size of the training data, and
use a traditional learning-based redaction approach. Second,
we introduce a natural approach for sanitizing data that
uses machine learning in an iterative framework. Notably,
this approach performs significantly better than a standard
application of CRFs, which is the leading approach for
text sanitization to date [46], but can actually make use of
arbitrary machine learning algorithms.

Game Theory in Security and Privacy
Our work can be seen within the broader context of game
theoretic modeling of security and privacy [47], [48], [49],
[50], [51], including a number of efforts that use game theory
to make machine learning algorithms robust in adversarial
environments [52], [53], [54], [55], [56], [57]. In both of these
genres of work, a central element is an explicit formal threat
(i.e., attacker) model, with the game theoretic analysis gen-
erally focused on computing defensive privacy-preserving
strategies. None of this work to date, however, addresses
the problem of PPDP of unstructured data with sensitive
entities not known a priori.

3 MODEL

Before delving into the technical details, we offer a brief
high-level intuition behind the main idea in this paper.

Suppose that a publisher uses a machine learning al-
gorithm to identify sensitive instances in a corpus, these
instances are then redacted, and the residual data is shared
with an attacker. The latter, aspiring to uncover residual
sensitive instances (e.g., identifiers) can, similarly, train a
learning algorithm to do so (using, for example, a subset
of published data that is manually labeled). At the high
level, consider two possibilities: first, the learning algorithm
enables the attacker to uncover a non-trivial amount of
sensitive information, and second, the learning algorithm
is relatively unhelpful in doing so. In the latter case, the
publisher can perhaps breath freely: few sensitive entities
can be identified by this attacker, and the risk of published
data is low. The former case is, of course, the problem.
However, notice that, in principle, the publisher can try out
this attack in advance of publishing the data, to see whether
it can in fact succeed in this fashion. Moreover, if the attacker
is projected to be sufficiently successful, the publisher has a
great deal to gain by redacting the sensitive entities an attacker
would have found.

Of course, there is no need to stop at this point: the
publisher can keep simulating attacks on the published data,
and redacting data labeled as sensitive, until these simula-
tions suggest that the risk is sufficiently low. This, indeed,
is the main idea. However, many details are clearly missing:
for example, what does an attacker do after training the
learning algorithm, when, precisely, should the publisher
stop, and what can we say about the privacy risk if data is
published in this manner, under this threat model? Next, we
formalize this idea, and offer precise answers to these and
other relevant questions.

TABLE 1
Table of Notations

n , number of total instances
H , hypothesis class of the publisher
H , the subset of classifiers chosen by the publisher
S , sensitive instances
N , non-sensitive instances

TP (h, P ) , number of true positives by h on P
TN(h, P ) , number of true negatives by h on P
FP (h, P ) , number of false positives by h on P
FN(h, P ) , number of false negatives by h on P

TPA , number of true positives obtained by attacker
TNA , number of true negatives obtained by attacker
FPA , number of false positives obtained by attacker
FNA , number of false negatives obtained by attacker
TPD , number of true positives obtained by defender
TND , number of true negatives obtained by defender
FPD , number of false positives obtained by defender
FND , number of false negatives obtained by defender

α , percent of identifiers in data
hA , the attacker’s classifier

T (H) , loss function of data publisher for H

Table 1 summarizes the notation used throughout this
paper. Imagine that a publisher’s dataset consists of a set
of n entities (or words), X = {x1, . . . , xn}, of which he
will publish a subset P ⊆ X . The publisher may have an
additional data set for training a classifier to predict whether
an entity x is sensitive. We let α denote the fraction of the
original n entities that are sensitive. A learning algorithm
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is designed to select a hypothesis that best supports the
data. Here we consider the hypothesis to be a function f
mapping from the data space D to the response space E ; i.e.,
f : D → E . Of course there are many such hypotheses. We
assume f belongs to a family of hypotheses H. Specifically,
the response space E = {0, 1} within our problem indicates
whether the entity x is sensitive (S, f(x) = 1) or non-
sensitive (N , f(x) = 0), and H represents a set of binary
classifiers.

A crucial assumption in our approach is that the hypoth-
esis class H is known to both the publisher and attackers.
This is a natural assumption, considering that state-of-the-
art machine learning algorithms are well-known and typ-
ically have multiple high-quality open source implemen-
tations. Moreover, even as new approaches are developed
for identifying sensitive entities in unstructured (e.g., text)
data, these approaches can be subsequently incorporated
into our framework. Note that our assumption of common
knowledge of H does not imply that the publisher knows
the actual function f used by the attacker (see threat model
below). The importance of this point is highlighted when
we analyze finite sample bounds in Section 4.

We use h to denote a classifier chosen from the hypothe-
sis class H. For a classifier h and a data set Y , we introduce
the following notation:

• FP (h, Y ) = | ∪x∈Y {x ∈ N |h(x) = 1}|: the number
of false positive instances of h on Y ;

• TP (h, Y ) = | ∪x∈Y {x ∈ P |h(x) = 1}|: the number
of true positive instances of h on Y ;

• FN(h, Y ) = | ∪x∈Y {x ∈ P |h(x) = 0}|: the number
of false negative instances of h on Y ; and

• TN(h, Y ) = | ∪x∈Y {x ∈ N |h(x) = 0}|: the number
of true negative instances of h on Y .

Clearly, if |Y | = m, then FP (h, Y )+TP (h, Y )+FN(h, Y )+
TN(h, Y ) = m ∀h ∈ H. Finally, we define FP (h, ∅) =
FN(h, ∅) = TP (h, ∅) = TN(h, ∅) ≡ 0.

Threat Model

Suppose that an adversary obtains the published data
P ⊆ X . We assume that an adversary has a fixed inspection
budget, B, which can be thought of as manual inspection
of actual instances to verify whether or not they are sensi-
tive (and, consequently, have value to the adversary). If a
sensitive instance is found, we assume the adversary gains
L, which is identical to the publisher’s loss. Thus, when the
attacker selects a set I ⊆ P of instances for inspection, such
that |I| ≤ B, his utility is

UA(I) = L|{sensitive instances ∈ I}| = L
∑
x∈I

S(x), (1)

where S(x) = 1 iff x is sensitive. A central aspect of the
threat model is the specific way that the attacker chooses
the set I of instances to inspect. A simple baseline is to
choose I uniformly at random from P . We use UA to denote
the utility that the attacker obtains when using this simple
baseline. Presumably, however, the attacker can do better
by using a more sophisticated strategy. In particular, we
suppose that a sophisticated attacker proceeds as follows:

1) Choose a classifier

hA(P ) ∈ arg min
h∈H

FP (h, P ) + FN(h, P )

|P |
. (2)

In other words, the attacker chooses an optimal
classifier from H in terms of accuracy. From the
publisher’s perspective, this is a very pessimistic
limit of an attacker who uses a subset of P for
training a standard classification algorithm, such as
an SVM.

2) Prioritize instances in P by ranking all x ∈ P with
h∗(x) = 1 first, followed by those with h∗(x) = 0.
Within each class, the order is arbitrary.

3) Choose I in this ranked order until it contains B in-
stances. In other words, first the attacker will choose
the predicted positives, followed by predicted neg-
atives (if there is any budget remaining).

We simply refer to hA where P is clear from context. We
let U∗A denote the attacker’s utility when using this more
sophisticated learning-based strategy. A technical caveat is
that, depending on the quality of the classifier, U∗A is not
necessarily higher than UA. Below, we provide a sufficient
condition for U∗A ≥ UA.

As an illustration, let us return to Figure 1, which
presents an example of the behavior of an attacker given a
published dataset containing sensitive and non-sensitive in-
stances. Assume the circled words are classified as positives
by hA. The attacker would inspect these words and their
surrounding context first. However, in this setting, some of
the words inspected are not sensitive instances (i.e., false
positives; shown in dashed ovals). For example, the first
dashed “He” is a pronoun, while the solid circled “He” is
actually the name of a person. Therefore, if the attacker has
sufficient budget to inspect all of the circled instances, he
would gain 3 units of utility (i.e., true positives, shown in
solid ovals), and waste 3 units of budget (again, in dashed
ovals).

Data Publisher Model
To develop some intuition for our publisher model, let us
first consider the typical approach for sanitizing data (we
assume for now that the defender is able to learn an optimal
classifier; we relax this assumption below):

1) Learn a classifier

h̄ ∈ arg min
h∈H

FP (h,X) + FN(h,X)

|X|
. (3)

Let X1 = {x ∈ X|h̄(x) = 1} (i.e., X1 is the set of
predicted positives).

2) Publish the data set P = X \X1.

Essentially all of the approaches in the literature assume
this, or a similar, form. To apply our threat model above, we
consider two possibilities: a) the attacker’s classifier hA can
successfully identify residual sensitive instances, or b) the
attacker’s classifier cannot detect residual positives. If we
are in situation (b), the publisher can view the sanitization
as a success. Situation (a), on the other hand, is clearly
problematic, but it also suggests a natural solution: the pub-
lisher can apply hA to residual data, remove the sensitive
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instances, and only then publish the data. Indeed, this is
where the symmetry between the publisher and attacker,
taking advantage of the common knowledge ofH, is pivotal.
Specifically, the publisher can simulate anything that the attacker
would do.

Moreover, there is no reason to stop at this point. In
fact, the publisher should continue as long as the simulated
classifier that would be used by the attacker is sufficiently
good. This observation also offers the key intuition for
our results. Whenever the publisher chooses to stop, the
attacker’s ability to identify sensitive instances must inher-
ently be relatively weak. Of course, this will depend on
the relative loss to the publisher from correctly identified
sensitive entities and the value of publishing data.

Using the developed intuition, we model the publisher
as selecting a finite set of classifiers H ⊆ H, where H =
{h1, h2, ..., hD}. Figure 2 shows the process of generating
and publishing the data in Figure 1. After applying each
classifier hi, the positive instances are replaced with the fake
tokens, such as “[NAME]” replacing an individual’s name.

Let X1(H) = ∪h∈H{x ∈ X|h(x) = 1}, that is, the set
of all positives predicted by the classifiers in H , and let
P (H) = X \ X1(H); we use P with no argument where
H is clear from context. The publisher’s approach is:

1) Choose a collection of classifiers H (we address this
choice below).

2) Publish the data set P (H) = X \X1(H).

Let FN(H) be the number of false negatives of H in X ,
which we define as all residual sensitive instances in P ,
and let FP (H) be the number of false positives in X ,
that is, all predictive positives by any h ∈ H which are,
in fact, not sensitive. It directly follows that for any H ,
FN(H) ≤ αn (i.e., the number of false negatives is, at most,
the total number of sensitive entities in the original data)
and TN(H) ≤ (1 − α)n (i.e., the number of true negatives
is, at most, the total number of non-sensitive entities). If we
allow the attacker to have an infinite budget, then every
false negative will be exploited, resulting in the total loss
of L · FN(H). In addition, each false positive costs the
publisher a fixed amount C , which we can interpret as the
value of publishing the data. Thus, we define the (worst-
case) total loss to the publisher from using a set of classifiers
H as

T (H) = L · FN(H) + C · FP (H), (4)

where FN(H) = | ∩h∈H {x ∈ S|h(x) = 0}|, FP (H) =
| ∪h∈H {x ∈ N |h(x) = 1}|, and S,N represent the sensi-
tive and non-sensitive instances, respectively. TN(H) and
TP (H) are defined similarly.

Contextual Information and Inference Attacks
A significant amount of work in privacy and data sanitiza-
tion deals with linkage attacks [58], [59], [60]. Of particular
relevance to our purpose are correlations among words in
documents which enable an attacker to recover some sensi-
tive information that has been removed [16]. Our methods
can be extended directly to consider contextual information
in two ways. First, we can use previous methods to discover
entities in training data correlated with identifiers, and label
these as identifiers as well. We can then apply our methods

separately for different categories of identifiers as well as
derived (correlated) words and phrases to remove both
identifying information and any contextual data. Alterna-
tively, we can first apply our methods to learn a collection
of classifiers predicting identifiers in test data, and use
association-based methods, such as [16], to remove addi-
tional contextual information from the test data. Henceforth,
we focus on the core problem of predicting identifiers.

4 A GREEDY ALGORITHM FOR AUTOMATED DATA
SANITIZATION

Given a formal model, we can now present our iterative
algorithm for automated data sanitization, which we term
GreedySanitize. Our algorithm (shown as Algorithm 1) is
simple to implement and involves iterating over the fol-
lowing steps: 1) compute a classifier on training data, 2)
remove all predicted positives from the training data, and 3)
add this classifier to the collection. The algorithm continues
until a specified stopping condition is satisfied, at which
point we publish only the predicted negatives, as above.
While the primary focus of the discussion so far, as well as

Algorithm 1 GreedySanitize(X), X : training data.
H ← {}, k ← 0, h0 ← ∅, D0 ← X ,
repeat
H ← H ∪ hk
k = k + 1
hk ←LearnClassifier(Dk−1)
Dk ←RemovePredictedPositives(Dk−1, hk)

until T (H ∪ hk)− T (H) ≥ 0
return H

the stopping criterion, have been to reduce privacy risk, the
nature of GreedySanitize is to also preserve as much utility as
feasible: this is the consequence of stopping as soon as the
re-identification risk is minimal.

It is important to emphasize that GreedySanitize is quali-
tatively different from typical ensemble learning schemes in
several ways. First, a classifier is retrained in each iteration
on data that includes only predicted negatives from all prior
iterations. To the best of our knowledge this is unlike the
mechanics of any ensemble learning algorithm.1 Second,
our algorithm removes the union of all predicted positives,
whereas ensemble learning typically applies a weighted vot-
ing scheme to predict positives; our algorithm, therefore, is
fundamentally more conservative when it comes to sensitive
entities in the data. Third, the stopping condition is uniquely
tailored to the algorithm, which is critical in enabling prov-
able guarantees about privacy-related performance.

Given the iterative nature of the algorithm, it is not
obvious that it will terminate. The following theorem asserts
that GreedySanitize will always terminate in a linear number
of iterations.

Theorem 1. Algorithm 1 terminates after at most |X| iterations,
where X is the set of entities in the training data.

1. Typical ensemble learning algorithms will either focus on mistakes
made in prior iterations (e.g., boosting), ignore the performance of other
members of the ensemble (e.g., bagging), or use a fixed set of classifiers
as inputs into a meta-classifier [61].
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Fig. 2. The process for applying a set of classifiers H to data X.

Proof. Let TP (Di), FP (Di), TN(Di), and FN(Di) specif-
ically refer to these quantities computed on training data
Di remaining in iteration i of the algorithm. Suppose that
there exists an iteration i such that TP (Di−1) = 0. It is clear
that Algorithm 1 will stop after this iteration. Now, suppose
instead that TP (Di−1) ≥ 1 in every iteration. In this case, in
at most |X| iterations no data will remain, and TP (∅) = 0 by
definition. Consequently, either TP (Di−1) = 0 for i < |X|
and the algorithm will terminate, or the algorithm will stop
when i = |X|.

Next, we provide additional theoretical analysis of the
proposed GreedySanitize algorithm focusing on two ques-
tions. First, what kinds of privacy guarantees does this
algorithm offer? Second, how can we generalize the privacy
guarantees to account for finite sample approximations in-
herent in the algorithm? To address the first question, we
abstract away the details of our algorithm behind the veil
of its stopping condition, which turns out to be the primary
driver of our results. This also allows us to state the privacy
guarantees in much more general terms.

Analysis of Locally Optimal Publishing Policies

In this section we analyze the adversary’s ability to infer
sensitive information from published data if the defender’s
choice of classifiers H to apply to original data satisfies the
following local optimality condition.

Definition 4.1. A set of classifiers H ⊆ H is a local optimum
if T (H ∪ hA)− T (H) ≥ 0.

In plain terms, a subset is a local optimum if the ad-
versary’s optimal classifier hA (that is, the attacker’s best
classifier choice to apply to the published data), when added
to this subset, does not improve the publisher’s utility.
Under a minor regularity condition that H contains an
identity (which can always be added), there is always a
trivial local optimum of not releasing any data. Notice that
the local optimality condition is exactly the stopping condi-
tion of GreedySanitize. This means that, when the algorithm
terminates, its output set of hypotheses H is guaranteed to
be a local optimum.

We now present a lemma that enables us to characterize
all of the local optima.

Lemma 1. For an arbitrary set of classifiers H ⊆ H,

1) FN(H) = FN(H ∪ h) + TP (h, P (H)), and
2) FP (H ∪ h) = FP (H) + FP (h, P (H)).

Proof. For result 1, define the set

F̃N(H) = ∩h̃∈H{x ∈ S|h̃(x) = 0}.

Thus,

F̃N(H ∪ h) = ∩h̃∈H{x ∈ S|h̃(x) = 0} ∩ {x ∈ S|h(x) = 0}.

We can represent F̃N(H) as

F̃N(H) =(F̃N(H) ∩ {x ∈ S|h(x) = 0})
∪ (F̃N(H) ∩ {x ∈ S|h(x) = 1})

=F̃N(H ∪ h) ∪ (F̃N(H) ∩ {x ∈ S|h(x) = 1}).

Moreover, note that x ∈ F̃N(H) implies that x ∈ P (H), so
that

F̃N(H) =F̃N(H ∪ h) ∪ (F̃N(H)

∩ {x ∈ P (H) ∩ S|h(x) = 1})
=F̃N(H ∪ h) ∪ T̃P (h, P (H)),

where T̃P (h, P (H)) is the set of all true positives of h
on P (H). Moreover, by definition these two sets are non-
overlapping, and thus

FN(H) = FN(H ∪ h) ∪ TP (h, P (H)).

For result 2, define the set

F̃P (H) = ∪h̃∈H{x ∈ N |h̃(x) = 1}.

Therefore,

F̃P (H ∪ h) = ∪h̃∈H {x ∈ N |h̃(x) = 1} ∪ {x ∈ N |h(x) = 1}
=F̃P (H) ∪ {x ∈ N |h(x) = 1}.

By definition, x ∈ N and x /∈ P (H) means that x ∈ F̃P (H).
Thus,

F̃P (H ∪ h) =F̃P (H) ∪ {x ∈ N ∩ P (H)|h(x) = 1}
=F̃P (H) ∪ F̃P (h, P (H)).

Moreover, x ∈ F̃P (H) means that x /∈ P (X), so that these
two subsets do not overlap, and we thus obtain

FP (H ∪ h) = FP (H) + FP (h, P (H)).

We can now state the primary result, which characterizes
all locally optimal solutions H .

Theorem 2. H ⊆ H is a local optimum if, and only if, either
TP (hA, P ) = 0 or FP (hA,P )

TP (hA,P ) ≥
L
C .
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Proof. By definition, H is a local optimum if, and only if,

L(FN(H ∪hA)−FN(H)) +C(FP (H ∪hA)−FP (H)) ≥ 0.

By Lemma 1, FN(H ∪ hA) − FN(H) = −TP (hA, P ) and
FP (H∪hA)−FP (H) = FP (hA, P ), so that a local optimum
is characterized by

C · FP (hA, P ) ≥ L · TP (hA, P ).

If TP (hA, P ) = 0, this inequality clearly holds. Suppose that
TP (hA, P ) ≥ 1. In this case, by rearranging the expression,
it can be seen that H is a local optimum if, and only if,
FP (hA,P )
TP (hA,P ) ≥

L
C .

Below, we simplify notation by defining FPA ≡
FP (hA, P ), and defining FNA TPA, and TNA similarly,
with H becoming an implicit argument throughout. Now,
observe that if L/C > (1−α)n, the only locally optimal so-
lutions have TPA = 0, because otherwise FPA

TPA
≤ (1−α)n <

L/C .
As a direct consequence of Theorem 2, we can bound

TPA in all locally optimal solutions.

Theorem 3. For any locally optimal H ⊆ H, TPA ≤ C
L (1 −

α)n.

Proof. If TPA = 0, the result is trivially true. Suppose TPA ≥
1. Then, since FPA

TPA
≥ L

C , we have TPA = TPA ≤ C
LFPA ≤

C
LTN(H) ≤ C

L (1− α)n.

The upshot of Theorem 3 is that when C is small relative
to L, any locally optimal H will guarantee that the attacker
cannot learn a classifier that correctly identifies more than
a few sensitive instances. This result further implies that an
attacker with a small budget B ≤ TPA + FPA (i.e., budget
is exceeded by the total number of predicted positives) can
obtain very little utility from using the classifier in this case.

But what about attackers with a large budget, such
as when B ≥ TPA + FPA? Clearly, when the budget is
sufficiently large, the attacker will identify all the residual
sensitive information in the data. However, we now show
that, even in this case, an attacker can do little better than
the trivial baseline of choosing B instances to inspect in
a uniformly at random manner. An important technical
consideration is that when TPA = 0, an adversary can
actually improve performance by prioritizing the negative
predictions over the predicted positives (which yield no
utility). In this case, an adversary will likely throw away the
classifier altogether. We therefore restrict our attention to the
case when the attacker actually benefits from prioritizing
positives over negatives. The following lemma provides a
sufficient condition for this observation.

Lemma 2. Let B ≥ TPA+FPA. When TPATNA ≥ FPAFNA,
prioritizing positive over negative instances guarantees that
U∗A ≥ UA for the attacker.

Proof. If the attacker prioritizes negatives before positives,
the attacker’s utility is

UA∗ = L ·
(
FNA +

TPA

TPA + FPA
(B − FNA − TNA)

)
,

whereas the utility from the uniform random baseline is

UA = L · TPA + FNA

TPA + FPA + TNA + FNA
B.

Thus, when TPATNA ≥ FPAFNA,
UA∗

UA

=
FPAFNA + TPAB − TPATNA

B

(
TPA + FPA + FNA + TNA

(TPA + FNA)(TPA + FPA)

)
=

(
FPAFNA − TPATNA

B
+ TPA

)(
(TPA + FPA + FNA + TNA)

(TPA + FNA)(TPA + FPA)

)
≤
(

FPAFNA − TPATNA

TPA + aFPA

+ TPA

)(
(TPA + FPA + FNA + TNA)

(TPA + FNA)(TPA + FPA)

)
= 1 +

(FPAFNA − TPATNA)(FNA + TNA)

(TPA + FPA)2(TPA + FNA)
≤ 1.

Since UA cannot be larger than both the utility from
prioritizing positive prioritizing negative instances (being
the average of these), the result follows.

Under the condition in Lemma 2, we can now prove a
bound on the the amount that the attacker can gain over the
trivial baseline by using a classifier to prioritize instances,
or the ratio U∗A/UA.

Theorem 4. Suppose that H is a local optimum, the attacker’s
budget is B ≥ TPA + FPA, and TPATNA ≥ FPAFNA. Then

U∗A
UA
≤ (1− α)n+ 1

1 + L
C

.

In order to prove this theorem, we need another building
block, provided by the following Lemma.

Lemma 3. Suppose that B ≥ TPA + FPA, TPATNA ≥
FPAFNA, and the attacker prioritizes positive instances. Then

UA∗

UA
≤ 1 +

TPATNA − FPAFNA

(TPA + FPA)(TPA + FNA)
.

Proof. Suppose that the attacker prioritizes positives before
negatives. Then the attacker’s utility is

UA∗ = L

(
TPA +

FNA

FNA + TNA
(B − TPA − FPA)

)
.

Thus,
UA∗

UA

=
TPATNA + FNAB − FPAFNA

B

(
TPA + FPA + FNA + TNA

(TPA + FNA)(TNA + FNA)

)
=

(
TPATNA − FPAFNA

B
+ FNA

)(
TPA + FPA + FNA + TNA

(TPA + FNA)(TNA + FNA)

)
≤
(

TPATNA − FPAFNA

TPA + FPA

+ FNA

)(
TPA + FPA + FNA + TNA

(TPA + FNA)(TNA + FNA)

)
= 1 +

TPATNA − FPAFNA

(TPA + FPA)(TPA + FNA)
.

Proof. of Theorem 4 Since TPATNA ≥ FPAFNA, the at-
tacker will prioritize positive instances by Lemma 2. There-
fore, by Lemma 3,

UA∗

UA
≤ 1 +

TPATNA − FPAFNA

(TPA + FPA)(TPA + FNA)

= 1 +
TNA − FPA

TPA
· FNA(

1 + FPA

TPA

)
(TPA + FNA)

≤ 1 +
TNA − L

C · FNA(
1 + L

C

)
(TPA + FNA)

≤ 1 +
(1− α)n− L

C

1 + L
C

=
(1− α)n+ 1

1 + L
C

.
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The upshot of Theorem 4 is that even an attacker with a
large budget cannot do much better than uniformly select-
ing instances to inspect.

Example 1. As an example, again consider Figure 1, which
illustrates the result after the application of the set of classifiers
H . It can be seen that there are 26 instances in total, with
a breakdown of 3 true positives, 6 false positives, 15 true
negatives, and 2 false negatives. Now, if the attacker has a

budget of B = 20, UA∗
UA

=
3+(20−3−6) 2

2+15

20 3+2
26

≈ 1.11.

Finite Sample Bounds
Armed with the idealized generic analysis of locally optimal
classifier subsets H , we can generalize these results to
account for finite sampling error. While the results in the
previous section are applicable for arbitrary locally optimal
subsets, our finite sample analysis is specific to GreedySani-
tize.

Consider the point at which the publisher halts the
greedy data sanitization Algorithm 1 and publishes the data
(after applying the resulting set of classifiers H). If only a
few training data points remain, the publisher’s decision
would entail significant risk because the error in estimating
the relevant decision parameters will be quite high. As such,
in this case, no data should be published. We therefore
consider the case when there is a non-trivial amount of
training data remaining after Algorithm 1 terminates. As
our experiments below demonstrate, this is a reasonable as-
sumption to invoke in practice. In the following discussion,
we denote the size of this residual training data m.2

Our point of departure is the standard learning-theoretic
framework. To simplify the presentation, we assume that the
published data set is sufficiently large, so that the relevant
quantities (e.g., the number of true positives) are close to
their expected values on randomly chosen data sets of the
same size. Now, let our hypothesis class H contain a set of
functions from a set X to {0,1}, and assume H has finite
Vapnik-Chervonenkis dimension v ≥ 1. Suppose that P is
the data set remaining after Algorithm 1 terminates and the
resulting classifiers H are applied to the original data X .
Let the classifier used in the last iteration by Algorithm 1 be
ĥA, which is only optimal on training data. In other words,
ĥA is the publisher’s approximation of the classifier hA that
would subsequently be applied by the attacker to P . Let
F̂NA, F̂PA, T̂PA, T̂NA be the corresponding approximate
counts of false negatives, false positives, etc., applying ĥA
to the training data, whereas FNA, FPA, TPA, and TNA

still denote the corresponding counts for the actual optimal
classifier hA that the attacker would use. The attacker’s
corresponding utility, estimated using the training data, is
denoted by Û∗A, while the actual attacker utility is U∗A. The
utility for the attacker gained from the baseline policy is still
UA.

We start by noting the well-known error bound connect-
ing empirical and actual errors in classification:

F̂PA + F̂NA

m
≤ FPA + FNA

m
+ λ(δ,m) (5)

2. For simplicity, we assume that m is also the size of the residual test
data that is ultimately released. Generalization of the results below is
relatively direct.

with probability at least 1− δ, where

λ(δ,m) =

(
41

m

(
v log

(
2em

v

)
+ log

(
4

δ

))) 1
2

.

For our purposes, however, this result is not sufficient.
For example, there may be two classifiers, h and h′ in H
with a similar error, but with very different numbers of
false positives and false negatives. Thus, in order to bound
the utility of the attacker, we need to call upon several
additional assumptions. Specifically, we make the following
assumptions: F̂PA ≤ pF̂NA, T̂PA ≥ qN̂A, FPA ≥ sFNA,
and TPA ≤ rNA. Since the parameters p, q, s, r can be
arbitrary, these relationships are quite general. However, the
results below are most meaningful if these bounds are tight.

Lemma 4. Suppose that T̂PA ≥ 1 when Algorithm 1 terminates.
Then,

FPA

TPA
≥
(

1

1 + 1
s

)(
(1 +

1

p
) · q · L

C
− λ(m, δ)

)
1

r

with probability at least 1− δ.

Clearly, the bound in Lemma 4 is only meaningful when
λ(m, δ) ≤ (1 + 1

p )q L
C , that is, for a sufficiently large sample

m. Therefore, the results below assume this to be the case.
Building on the result in Lemma 4, we can now extend

the bounds on the attacker’s success developed in Section 4
to account for finite sample error.

Theorem 5. When Algorithm 1 terminates,

TPA ≤ r
(

1 +
1

s

)
(1− α)n

(1 + 1
p ) · q · LC − λ(m, δ)

with probability at least 1− δ.

Theorem 6. Suppose that TPATNA ≥ FPAFNA, and B ≥
TPA + FPA. Then,

U∗A
UA
≤

((1− α)n+ 1) r(1 + 1
s )

r(1 + 1
s ) + (1 + 1

p )q L
C − λ(δ,m)

with probability at least 1− δ.

Proofs of these results are provided in the appendix.

5 EXPERIMENTS

In this section, we assess the performance of GreedySanitize
(GS) on 5 data sets. Two of these are electronic health record
data sets where the goal is to protect personal identifiers;
here we only consider the individuals’ names: 1) publicly
accessible medical records from the I2B2 corpus [19] and 2)
a private electronic medical records (EMR) dataset from the
Vanderbilt University Medical Center (VUMC). In addition,
we evaluate the performance of our model on three more
general data sets to assess its generalizability: 1) Enron
email Corpus, 2) newsgroup Corpus [62] and 3) Reuters
Corpus [63]. In all of these, we also treat individuals’ names
as sensitive entities. The statistics in Table 2 provide some
intuition into the size and complexity of these resources.

Within the i2b2 corpus, we have the synthetic names
in place of actual patient identifiers labeled as sensitive
instances; while we have the real patient identifiers labeled
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TABLE 2
Statistics of Datasets

Dataset Words Documents Sensitive Instances

i2b2 386,736 664 6853
VUMC 226,455 600 5154
Enron 120,131 761 6084

Newsgroup 119,303 597 3525
Reuters 324,950 788 17050

as sensitive in VUMC. User names in Enron, Newsgroup
and Reuters are also labeled as sensitive instances here. We
used four state-of-the-art learning algorithms for sensitive
entity recognition. The first is conditional random fields
(CRF), which consistently ranks as the best method for
identifying personal health information in electronic med-
ical records [14], [19], [20]. The second is support vector
machine (SVM) [64], which makes use of the features of the
word itself, part-of-speech (POS), morphologic information,
and the history class of preceding words assigned by the
classifier. The third is AdaBoost [65], [66] which reweights
the contribution of different data instances. The fourth is
a recently proposed ensemble method [18], which applies
CRF to classify first and then uses SVM to reduce the false
positives.

Each of these approaches play a dual-role in our exper-
iments. First, they serve as a comparison baseline. Second,
they function as the core learning algorithms in our own
Algorithm 1 (GS). In all the experiments, the attacker first
runs all four of these algorithms on the training holdout
from published data, and then chooses the best perform-
ing classifier. Our evaluation is based on four-fold cross-
validation, with GS running on the training data. Note that
GS uses the incidence of true and false negatives on the
training data to determine when to terminate.

Privacy Risk

When the budget of the attacker is small, our theoretical
results provide an upper bound on the expected number
of identified instances. While this bound suggests that risk
becomes arbitrarily small when the associated loss is large,
it is not tight. In Figure 3 we demonstrate that the number

(a) (b)

Fig. 3. The number of residual true positive instances TPA, which is
equivalently the identified instances for an attacker with a small budget
after running GS for the i2b2, VUMC, Enron, Newsgroup, and Reuters
datasets. We evaluate (a) GS using CRF; (b) GS using the best classifier
from {CRF, SVM, AdaBoost, Ensemble}. The dashed lines correspond
to the baseline application of the best classifier from this collection.

of identified instances (which is equivalent to the number of
true positives for the attacker’s classifier) typically becomes

negligible even when L is quite small relative to C . An in-
teresting exception is the VUMC dataset, where the number
of identified instances remains relatively large until the loss
from re-identification is quite high.

To investigate privacy risk more generally, we now con-
sider the expected number of identified instances as a func-
tion of adversary’s budget (and normalized by the budget).
To make a meaningful comparison to the state of the art
classification schemes, we apply them in a cost sensitive
manner, so that L becomes the cost of false negatives and
C the cost of false positives, just as in our model. Figure 4
compares the GS algorithm to the cost sensitive state-of-the-
art CRF, SVM, Adaboost, and Ensemble algorithms using
the same values of L and C in GS and cost sensitive
versions of the classifiers, respectively. We can see that, for
the same values of L/C , the GS algorithm is consistently
competitive with, or better than, the best state-of-the-art
cost sensitive alternatives in terms of privacy risk, except
when adversary’s budget is extremely small. However, with
a small budget, the privacy risk is negligible for sufficiently
high L/C (Figure 3).

Data Utility
Next, we investigated the extent to which data utility can
be retained in the face of a high privacy requirement.
This served as motivation for GS (in comparison to simply
suppressing all data), but we did not explicitly consider
it in the theoretical analysis. Intuitively, GS should strike
a reasonable balance: it stops immediately after a local
optimum is reached. In our model, of course, there may be
multiple local optima thereafter, but these would result in
less data being published. Here, we evaluate the data utility
of the published data using the publish ratio, which is defined
as the proportion of the original number of entities in the
published data.

Figure 5 compares GS to cost-sensitive variants of the
baseline algorithms (CRF, SVM, Adaboost, and Ensemble).
GS preserves most of the data utility even whenL/C is high.
Specifically, in both of the EMR datasets over 98% of the data
is published, even when L/C is quite high. The performance
for the other three data sets is lower, but still, over 93% of the
data is ultimately published, even with large L/C ratios. In
contrast, when the loss due to re-identification is moderate
or high, cost-sensitive algorithms essentially suppress most
of the data, resulting in very low utility. GS therefore offers
a far better balance between risk and utility than the state-
of-the-art alternatives.

Impact of the Size of the Hypothesis Space
When applying GS, it is important to consider that perhaps
the attacker may use a new algorithm that the publisher did
not considered. We now explore this issue by considering
the quality of decisions when the publisher uses only a
single classifier or the best of all four, at the core of GS.

Figures 6 and 7 compare these five options (the four
single-classifier options, and the last, called “Selection”,
where the most accurate of these classifiers is chosen in each
iteration), evaluated when the adversary chooses the most
accurate of these. Figure 6 considers L/C = 5 and Figure 7
presents results for L/C = 10. The overall observation
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(a) (b)

(c) (d) (e)

Fig. 4. The ratio of the average number of sensitive identifiers found by the attacker and the adversarial budget, while the publisher applies different
classifiers with cost sensitive learning with L/C ∈ {5, 10}. (a) i2b2, (b) VUMC, (c) Enron, (d) Newsgroup, (e) Reuters datasets.

(a) (b)

(c) (d) (e)

Fig. 5. Fraction of data published for different classifiers with cost sensitive learning. (a) i2b2, (b) VUMC, (c) Enron, (d) Newsgroup, and (e) Reuters
datasets.

is that increasing the space of classifiers to choose from
is beneficial (indicated by the “Selection”, which chooses
the best classifier of the collection leaving fewer uncovered
identifiers), but the difference is relatively small. Moreover,
the number of identifiers discovered by the attacker as a
fraction of budget in all cases remains extremely small.
Consequently, significant underestimation of the attacker’s
strength appears unlikely to make much impact. It is also re-
vealing that the classifiers tend to perform similarly (except
SVM, which is often substantially worse than the others),
and better classifiers (such as CRF) tend to lead to better
performance of GS.

Number of Greedy Iterations

The final issue we consider is the number of iterations of
GS (and, consequently, the number of classifiers it uses) for
the different data sets. Here we evaluate the convergence
rate for the GS algorithm when applying different baseline
algorithms. It is clear that GS converges in a small number
iterations regardless what underlying algorithm is used.
Specifically, Figure 8 shows that for all five datasets (and
for the entire range of L/C that we consider) the average
number of iterations is less than 5, significantly better than
our |X| bound! Our theoretical upper bound is, therefore,
extremely pessimistic. Indeed, for some datasets, such as
the VUMC EMR dataset, the average number of iterations
is just above 2 - even when the loss from leaking sensi-
tive information is quite high. In practice, it appears, the
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(a) (b)

(c) (d) (e)

Fig. 6. The ratio of the average number of sensitive identifiers found by the attacker and the adversarial budget, while the publisher applies classifiers
CRF, SVM, AdaBoost, Ensemble, and Selection which allows the publisher to choose a learner with highest accuracy from {CRF, SVM, AdaBoost,
Ensemble} for GS (L/C=5). (a) i2b2, (b) VUMC, (c) Enron, (d) Newsgroup, and (e) Reuters datasets.

(a) (b)

(c) (d) (e)

Fig. 7. The ratio of the average number of sensitive identifiers found by the attacker and the adversarial budget, while the publisher applies classifiers
CRF, SVM, Adaboost, Ensemble, and Selection which allows the publisher to choose a learner with highest accuracy from {CRF, SVM, Adaboost,
Ensemble} for GS (L/C=10). (a) i2b2, (b) VUMC, (c) Enron, (d) Newsgroup, and (e) Reuters datasets.

effectiveness of learning degrades quite rapidly, making it
extremely difficult for attackers to obtain any residual re-
identification value from published data.

6 CONCLUSION

Our ability to take full advantage of large amounts of
unstructured data collected across a broad array of domains
is limited by the sensitive information contained therein.
This paper introduced a novel framework for sanitization of
such data that relies upon 1) a principled threat model, 2) a
very general class of publishing strategies, and 3) a greedy,
yet effective, data publishing algorithm. The experimental
evaluation shows that our algorithm is: a) substantially
better than existing approaches for suppressing sensitive

data, and b) retains most of the value of the data, suppress-
ing less than 10% of information on all four data sets we
considered in evaluation. In contrast, cost-sensitive variants
of standard learning methods yield virtually no residual
utility, suppressing most, if not all, of the data, when the
loss associated with privacy risk is even moderately high.
Since our adversarial model is deliberately extremely strong
- far stronger, indeed, than is plausible - our results suggest
feasibility for data sanitization at scale.
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APPENDIX A
PROOF OF LEMMA 4

Proof. By Theorem 2, Algorithm 1 will terminate when
F̂PA

T̂PA
≥ L

C . Using, Equation 5 and our assumptions, we have

(1 + 1
p )F̂PA

m
≤

(1 + 1
s )FPA

m
+ λ(m, δ)

with probability at least 1−δ. Consequently, with probability
at least 1− δ,

(1 + 1
p )F̂PA

TPA · T̂PA

≤
(1 + 1

s )FPA

TPAT̂PA

+ λ(m, δ)
m

T̂PATPA

,

and, consequently,

1 + 1
p
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· L
C
≤

(1 + 1
s )FPA
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+ λ(m, δ)
m

T̂PATPA
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Rearranging, we get
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APPENDIX B
PROOF OF THEOREM 5
Proof. Since

FPA

TPA
=
TND − TNA
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≥
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APPENDIX C
PROOF OF THEOREM 6
Proof.

UA = L ·B · TPA + FNA

TPA + FPA + FNA + TNA
.

Based on the general adversarial model, the attacker can
always choose the priority to guarantee UA∗ ≥ UA accord-
ing to Lemma 2. Therefore, when TPATNA ≥ FPAFNA,
the attacker prioritizes the positives than negatives, so
UA∗ = L ·

(
TPA + FNA

FNA+TNA
(B − TPA − FPA)

)
. Therefore

we have
UA∗

UA
= 1 +

TPATNA − FPAFNA
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= 1 +
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· FNA(
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s )− ((1 + 1
p )q L

C − λ(δ,m))

r(1 + 1
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p )q L
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=
((1− α)n+ 1) r(1 + 1
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