

Yevgeniy Vorobeychik Assistant Professor, CS & Biomedical Informatics Vanderbilt University

OUTLINE

- Games with attack graphs and plans
- Games on networks

GAMES WITH ATTACK GRAPHS AND PLANS

- Attack graphs are a common way to model threats in cyber security
- There are several notions of attack graphs which are used
- State attack graphs: nodes are states; edges are possible state transitions; attacker chooses a path from initial state to goal state
- Action attack graphs: nodes are actions; edges correspond to actions satisfying preconditions of other actions
- Dependency attack graphs, or attack trees (AND nodes, corresponding to actions, and OR nodes, corresponding to state variables or "facts")

GAMES ON ATTACK GRAPHS

- Example: Durkota et al., IJCAI 2015; using dependency attack graphs
- · Defender: hardens the network; for example, adding honeypots
- Formally: can add x_t honeypots of type (configuration) t
- Effect: increases likelihood that an attack on type t hits a honeypot (and attacker is thereby caught)
- Attacker: chooses a policy of interaction with hosts of a chosen type
- · A policy is a full contingent plan (actions can fail or succeed)
- Attacker chooses an optimal policy after observing the defender's strategy (Stackelberg game)
- Assume attack graph is monotonic (once a fact becomes true, it cannot be undone)
- Solve as an MDP

AI + PLANNING

- One of the main branches of AI is (formal/logic-based) planning
- Model the planning problem using formal logic
- Numerous heuristic planning tools and some well-accepted planning languages (STRIPS, PDDL)
- (Deterministic/Classical) Planning problem:
- The world = a set of logical variables = state (of the world)
- Start: initial state of the world (variables that are true at time 0)
- · Goal(s): variables (or Boolean expressions) that the planner wants to satisfy
- Actions: actions/steps a planner can take towards the goal
 preconditions: variables that must be true for the action to apply
- effects: variables that become true/false as a result of the action
- · A plan: a partial order of actions that achieve goals starting from the initial state

8

DPIP: CONSTRAINT GENERATION

- Use constraint generation to compute optimal interdiction
- · Can solve an IP to compute an optimal plan
- Leverage best heuristic planning tools from AI research community
- SGPLAN5: state-of-the-art heuristic partial satisfaction planner; winner of IPC

MULTI-DEFENDER GENERALIZATION

- A network is partitioned among N defenders
- Each defender chooses security configuration only for nodes allocated to them, and their utility is a function only of which nodes they own are affected by attacks
- Interdependent security games, but with complex decisions for each player
- Attacker: still chooses a subset of nodes to attack on the entire network

Smith, Lou, & V, IEEE Intelligent Systems, 2017

STRONG STACKELBERG EQUILIBRIUM?

- SSE: break ties in defender's favor
- Which defender? → Undefined!
- In fact, can lead to under-investment in security
- Suppose two defenders, two identical targets (one for each defender), and neither defender protects their target
- According to defender 1, attacker will attack target 2 (breaks ties in his favor)
- According to defender 2, attacker will attack target I (same logic)
- Neither protects their target but the attacker will attack one of these!
- Alternative: Average-Case Equilibrium (ACE); attacker breaks ties uniformly at random – but it doesn't always exist (although approximate versions typically do)

MULTI-DEFENDER GAMES

- Even with independent nodes: price of anarchy can be unbounded!
- Weakly dependent nodes: defender usually over-invests in security!
- Arms race: I want to protect my assets slightly more than the other guys
- With sufficiently interdependent nodes, defender underinvests

STEALTHY DIFFUSION

- Often, attackers would not wish to maximize the spread of malware
- · They may have specific targets in mind
- Networks are monitored, and malware may be discovered (and vulnerabilities patched) before reaching the target
- Stealthy diffusion model:
- · Defender (leader): chooses which nodes will be monitored
- Attacker (follower): chooses a subset of starting nodes (from a set of feasible nodes that can be attacked, e.g., reachable externally)
- Notice that the attacker's objective is not monotone: more nodes attacked may increase the chance of being caught!
- If attacker is just a stochastic process (not deliberate), the defender's optimization problem is submodular
- · Attacker's problem is NP-Hard, and not submodular

Haghtalab et al., KAIS, 2017

SHARING STRUCTURED DATA

Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	М	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	xxx-xx- xxxx	Caucasian	F	33301	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	М	85749	67	792.2

		QUAS	SI-IDENT	IFIE	RS		
Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	Μ	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	xxx-xx- xxxx	Caucasian	F	33301	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	м	85749	67	792.2

Quasi-identifiers: fields which, combined with other, *commonly available data*, can enable re-identification (figuring out who a particular anonymized record belongs to)

Example: voter registration data often includes name, race, sex, zip, DoB can try to match voter registration records based on race, sex, zip, DoB with patient data; if only one such patient, we have their diagnostic code

	QUASI-IDENTIFIERS						
Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
			Caucasian	М	91902	15	520.1
			African American	F	12033	85	466.11
			Caucasian	F	33301	48	512.2
			Caucasian	Μ	85749	67	792.2
Example: with zip 3	suppose vote 3301, and ag	er registration	Caucasian data has exactl	M y one	85749 Diane Sch	67 nwarz, o	792.2 caucasian, F

If there is only one person in shared data who is caucasian, F, zip 33301, age 48, we are reasonably certain it's Diane Schwarz, and we just found out her disease

	GENE	RALIZA (C	TION OF	· AT S)	TRIBU	JTES	5
Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	М	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	xxx-xx- xxxx	Caucasian	F	33301	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	Μ	85749	67	792.2

Generalization: instead of the specific value of attribute, specify a set of values it belongs to; this decreases chances someone can be uniquely matched

	GENE	RALIZA (C	TION OF	F AT S)	TRIBU	JTE	5
Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	М	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	xxx-xx- xxxx	Caucasian	F	33301	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	М	85749	67	792.2

Generalization: instead of the specific value of attribute, specify a set of values it belongs to; this decreases chances someone can be uniquely matched

	GENE	RALIZA ((TION O	F AT IS)	TRIB	UTES	5
Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	м	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	XXX-XX- XXXX	Caucasian	F	333*	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	М	85749	67	792.2

it belongs to; this decreases chances someone can be uniquely matched

Last Name	First Name	SSN	Race	Sex	Zip	Age	ICD-9 code
Doe	John	xxx-xx- xxxx	Caucasian	М	91902	15	520.1
Smith	Jane	xxx-xx- xxxx	African American	F	12033	85	466.11
Schwarz	Diane	xxx-xx- xxxx	Caucasian	F	333*	48	512.2
Rogers	Jared	xxx-xx- xxxx	Caucasian	М	85749	67	792.2

HIPAA

- Option I [Safe Harbor]: remove all direct identifiers (name, SSN, address, etc), "generalize" quasi-identifiers in a specific way (e.g., zip -> first three digits)
- Option 2 [Expert]: expert certification that data has "low risk" of being re-identified by an *anticipated recipient*

 This is not a reliability issue: there are attackers, who will respond to the specific data sharing decisions made by the data sharer

- Risk stems from the likelihood of identification given that the attacker tries to do it
- Model: attacker will attempt re-identification of a record iff they gain from this (ex ante)
- Attacker is a data recipient, who is economically motivated to reidentify the data
- This likely significantly over-estimates risk, since most data recipients would not attempt re-identification even if they can make money from it

Wan et al., PLoS One, 2015

ATTACKER MODEL

· Choose whether to attack each record in isolation

- Thus, we can just consider a separate game for each record
- Suppose the defender uses generalization strategy g (for record r)
- Binary decision: attack or do not attack $(a \in \{0,1\})$
- P(success|g,attack): probability an attack succeeds if data is shared according to g
- Attack success probability = 1 / {# equivalent records matched in external data}
- If attack succeeds, attacker gains L
- Attack is costly: pay a cost *c* for each attack
- Attacker's utility: $U_A(g, attack) = L P(success|g, attack) c$
- So: attack iff $P(success|g, attack) \ge c/L$

DATA SHARER

- Utility: $U_D(g, a) = v(g) LP(S|g, a); a = I$ iff there is an attack
- So, the defender's optimization problem is: $\max_{g} v(g) - L P(S|g, a(g))$

a(*g*): attacker's best response

The generalization hierarchy of a record is a lattice (a partial order from least to most specific)

Solution approach: lattice-based search

start at most specific and follow a sequence of local improvement steps

RECORD-LEVEL VS. DATABASE-LEVEL GENERALIZATION

- The approach described was record-level generalization
- We treated the problem of sharing each record independently (no budget constraint on adversary; external dataset used to find equivalence groups)
- Often, we prefer database-level generalization:
- The same generalization level for all records (simplify database schema / data analysis)
- · Can also use lattice-based search for this

SHARING GENOMIC DATA

- Summary statistics: for example, SNP minor-allele frequencies (MAFs)
 - MAFs would be shared for a (sub)set of SNPs over a pool of subjects in a given study (along with p-values for associations of SNPs with a phenotype)
- dbGaP (database of genotypes and phenotypes): <u>https://www.ncbi.nlm.nih.gov/gap</u>
- SPHINX database
- Existence queries: can ask about presence/absence of a specific allele in the dataset
- · Query model: one can send an arbitrary sequence of such queries
- Beacon network: <u>https://beacon-network.org/</u>

SHARING SNP SUMMARY STATISTICS

· What could possibly go wrong?

- · After all, these are summary statistics, not actual genomes or SNPs!
- A series of attacks showed that in fact one can determine whether a particular individual is in the pool for which summary statistics are shared
- · Start with the genome of this individual (e.g., employee, co-worker, sibling, spouse, child)
- House proposal would let employers demand workers' genetic test results (currently illegal under GINA): https://www.statnews.com/2017/03/10/workplace-wellness-genetic-testing/
- · Perform a statistical test (individual in pool vs. individual in reference dataset/population; etc)
- · If statistic is above some threshold, claim the individual is in the pool
- Homer et al. PLoS Genetics, 2008; Sankararaman et al., Nature Genetics, 2009; Gymrek et al., Science 2013; etc.
- Concern: identifying that a specific individual is in the pool can reveal sensitive information (e.g., pool = a study of HIV drug effectiveness)

ATTACKER'S UTILITY

- Let g be the gain from a successful attack and c the cost of the attack The expected gain from attacking a target i is:
- $gPr\{i \in D | a_i\} c = gqL_i c$
- Thus, *i* is attacked iff $L_i \ge \frac{c}{aa}$

SUMMARY

- Game theory has had a number of successful applications in cyber security and privacy
- Attack graph and plan games
- Security games on networks
- Structured data release
- · Genomic data release
- Typically, single-defender and single-attacker games, but we have explored modeling possibilities where there are multiple defenders

MOVING FORWARD

- Many open questions remain in research and practice
- What about multiple attackers?
- What is the right solution concept for multi-defender games?
- What about bounded-rational defenders and attackers?
- What are the right models for privacy-preserving data sharing?
- How can these models and solution approaches make an impact in practice?