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OUTLINE

• Games with attack graphs and plans

• Games on networks

GAMES WITH ATTACK GRAPHS AND 
PLANS

THREAT/ADVERSARY MODELING

• Basic picture in threat modeling and mitigation:

• Attacker: 

• has a set of capabilities

• can choose from a collection of “actions” (activities, exploits, attacks)

• actions can have costs (time, likelihood of detection/capture, etc)

• has a collection of goals

• goals may have different importance to the attacker/defender

• may be content to achieve a subset of goals

• constructs a plan (a sequence of actions) to achieve goals starting with capabilities

• Defender:

• system of interest has initial state (vulnerabilities, NW configuration, etc)

• mitigations: can block attack actions, initial capabilities, patch vulnerabilities, deploy honeypots/IDS

• mitigations can be costly
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ATTACK GRAPHS

• Attack graphs are a common way to model threats in cyber 
security

• There are several notions of attack graphs which are used

• State attack graphs: nodes are states; edges are possible state 
transitions; attacker chooses a path from initial state to goal 
state

• Action attack graphs: nodes are actions; edges correspond to 
actions satisfying preconditions of other actions

• Dependency attack graphs, or attack trees (AND nodes, 
corresponding to actions, and OR nodes, corresponding to state 
variables or ”facts”)

EXAMPLE OF DEPENDENCY 
ATTACK GRAPH

actions

facts

GAMES ON ATTACK GRAPHS

• Example: Durkota et al., IJCAI 2015; using dependency attack graphs

• Defender: hardens the network; for example, adding honeypots

• Formally: can add xt honeypots of type (configuration) t

• Effect: increases likelihood that an attack on type t hits a honeypot (and 
attacker is thereby caught)

• Attacker: chooses a policy of interaction with hosts of a chosen type

• A policy is a full contingent plan (actions can fail or succeed)

• Attacker chooses an optimal policy after observing the defender’s 
strategy (Stackelberg game)

• Assume attack graph is monotonic (once a fact becomes true, it cannot 
be undone)

• Solve as an MDP

AI + PLANNING

• One of the main branches of AI is (formal/logic-based) planning
• Model the planning problem using formal logic

• Numerous heuristic planning tools and some well-accepted planning languages (STRIPS, PDDL)

• (Deterministic/Classical) Planning problem:
• The world = a set of logical variables = state (of the world)

• Start: initial state of the world (variables that are true at time 0)

• Goal(s): variables (or Boolean expressions) that the planner wants to satisfy

• Actions: actions/steps a planner can take towards the goal

• preconditions: variables that must be true for the action to apply

• effects: variables that become true/false as a result of the action

• A plan: a partial order of actions that achieve goals starting from the initial state
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ATTACKER AS A PLANNER

• Initial state = attacker capabilities (expressed as logical 
variables), system vulnerabilities, initial NW config, etc

• Goals = attacker’s goals (expressed as logical variables)

• Data X exfiltrated

• Root access to machine Y

• Different goal variables may vary in importance

• Actions = attack actions

9

EXAMPLE: INITIAL CAPABILITIES

10

magnetic card boot disk

attacker has access to 
employee’s magnetic 
card

attacker has a boot disk

initial attacker capabilities

EXAMPLE: ATTACKER GOALS

11

attacker goals

website 
compromised

have DB 
access

attacker has gained 
access to a DB with 
sensitive information

attacker has made 
changes to a 
company website

High value Low value

EXAMPLE: STATE VARIABLES

12

user-
background username user-pwd

attacker has detailed 
background knowledge 
about a user

attacker has 
discovered a user’s 
username

attacker has 
discovered a user’s 
password
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EXAMPLE: ATTACK ACTION
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actionspreconditions add effects

user-
background

pwd recovery  
exploitation

username

user pwd

Common vulnerabilities & exploits: http://capec.mitre.org

(“ACTION”) ATTACK GRAPH, AND 
AN OPTIMAL PLAN FOR AN 

EXAMPLE SCENARIO
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PLAN INTERDICTION

• Defender can block some of the attack actions

• by patching vulnerabilities, introducing IDS, improving physical 
security, etc

Letchford & V,  AAMAS 2013

PLAN INTERDICTION AND 
CIRCUMVENTION
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PLAN INTERDICTION AND 
CIRCUMVENTION
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DETERMINISTIC PLAN 
INTERDICTION PROBLEM

DPIP: defender chooses an optimal subset of mitigations, accounting for attacker’s 
best response plans

(optimal: maximizing defender’s utility)

(utility = Value of goals – cost of mitigations)

18

• DPIP_DP (deterministic plan interdiction decision problem): can the 
defender achieve target utility?

• Theorem: DPIP_DP is PSPACE-Complete

• Proof: by reduction from partial satisfaction planning

• Formulation: based on an Integer Program for computing an optimal 
partial satisfaction plan (Vossen et al., 1999; Briel et al., 2004)
• Maximize defender utility

• subject to: 

• a plan is feasible/legal

• a plan is the best plan for the attacker (by comparison to all feasible 
plans)

19

DETERMINISTIC PLAN 
INTERDICTION PROBLEM

DETERMINISTIC PLAN 
INTERDICTION PROBLEM (DPIP) DPIP FORMULATION

20
plan feasibility constraints

compute which actions are 
interdicted

attacker cannot choose 
interdicted actions

identify non-interdicted plans

choose the best non-
interdicted attack plan
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DPIP: CONSTRAINT 
GENERATION

• Use constraint generation to compute optimal interdiction

• Can solve an IP to compute an optimal plan

• Leverage best heuristic planning tools from AI research 
community

• SGPLAN5: state-of-the-art heuristic partial satisfaction 
planner; winner of IPC

OPTIMAL PLAN INTERDICTION 
EXAMPLE

22
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WHAT ABOUT UNCERTAINTY?

• DPIP assumes everything is certain/deterministic

• Usually uncertain about:

• Attacker capabilities

• Existence of vulnerabilities (of specific classes)

• Attacker goals

• Execution and effects of actions

• Attacker’s observation of the current state of the system

• Questions:

• Can we extend DPIP to accommodate all/some of this uncertainty?

• If not, how should we model it?

23

UNCERTAINTY ABOUT 
CAPABILITIES/GOALS

• Can naturally model within the DPIP framework

• Attacker has multiple types (“personalities”), each type corresponding to a set of 
capabilities/goals (Bayesian plan interdiction problem; BPIP)

• Each type computes an optimal plan in response to mitigations

• Objective now to maximize expected defender utility wrt distribution over attacker types

24



7/2/17

7

EXECUTION UNCERTAINTY

• Special case: only uncertain about whether an action succeeds or not, 
success is observable, and action can be repeated (just as in Durkota et al., 
IJCAI 2015)

• Can be done using DPIP framework by computing expected number of tries for each 
action

• Generalizing: state is observable, but action may have non-deterministic 
effects

• Example: “port scan” action (info you get is uncertain)

• Attack planning problem is an MDP

• MPD interdiction (MDPIP)

• Leverage (dual) LP for computing optimal value in an MDP

• State space explosion: must now explicitly represent all states in the system

25

FACTORED MDP INTERDICTION

• Can leverage factored state representation in MDPs, and associated 
techniques

• Dual LP formulation for factored MDPs used in the bi-level interdiction 
problem

• Requires value function approximation

• If x is a state vector, 

• V(x) = ∑i ai ji(x), where ji(x) are the basis functions

• We can use Fourier representation of Boolean functions, where the basis 
functions are parity functions (exact!)

• A parity function on a subset of variables S, cS(x) = ∏i∈ S xi

• Key challenge: choosing the “right” subsets to get a small number of basis 
functions

Panda and V, UAI 2017, to appear

GAMES ON NETWORKS

SECURITY OF NETWORKED 
SYSTEMS

• A central issue in cyber 
security is that systems that 
need to be protected are 
interconnected and 
interdependent

• Viruses spread among 
connected computing devices

• Computing systems depend 
on availability and integrity of 
one another
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NETWORK CAN MEDIATE 
CONSEQUENCES OF ATTACKS

• For example, if a node on a 
network is successfully 
attacked (e.g., infected with 
malware), it can spread it to 
others, and so on

• This process of spread can be 
modeled as a stochastic 
diffusion process

• Independent cascades: neighbors 
are affected independently with a 
predefined probability

• Attack model: attacker chooses 
a subset of nodes on a network 
to attack (starting a diffusion 
process)

V & Letchford, JAAMAS, 2015

DEFENDING AGAINST ATTACKS

• Defender chooses which nodes 
to protect

• Protection can prevent, or 
reduce consequences of, direct 
attacks
• More generally, chooses security 

configuration for all nodes, with 
attack consequences a function 
of this

• Restriction #1: defense only 
impacts direct attacks (a 
secured node can still be a part 
of a cascade if not directly 
attacked); only 1 target 
attacked
• Example: organization nodes are 

secured only against external 
intrusion

RESTRICTION #1: OPTIMAL DEFENSE VIA . 
S IMULATIONS + LP

• Cascade probabilities independent of 
decisions

• Simulate cascades from each node 
(possible attack target)

• Use resulting utilities to construct a 
compact game matrix (utility 
depends only on whether a target is 
attacked, and how it is defended)

• Solve LPs for optimal security 
configuration

Subject to:
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MORE GENERALLY

• Use stochastic local search (e.g., coordinate greedy, where 
one target configuration is optimized at a time)

• Attacker’s decision: submodular (influence maximization)
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MULTI-DEFENDER 
GENERALIZATION

• A network is partitioned among N defenders

• Each defender chooses security configuration only for 
nodes allocated to them, and their utility is a function only 
of which nodes they own are affected by attacks

• Interdependent security games, but with complex decisions for 
each player

• Attacker: still chooses a subset of nodes to attack on the 
entire network

Smith, Lou, & V, IEEE Intelligent Systems, 2017

STRONG STACKELBERG
EQUILIBRIUM?

• SSE: break ties in defender’s favor
• Which defender? à Undefined!

• In fact, can lead to under-investment in security

• Suppose two defenders, two identical targets (one for each 
defender), and neither defender protects their target

• According to defender 1, attacker will attack target 2 (breaks ties 
in his favor)

• According to defender 2, attacker will attack target 1 (same logic)

• Neither protects their target – but the attacker will attack one of 
these!

• Alternative: Average-Case Equilibrium (ACE); attacker breaks 
ties uniformly at random – but it doesn’t always exist (although 
approximate versions typically do)

MULTI-DEFENDER GAMES

• Even with independent nodes: price of anarchy can be 
unbounded!

• Weakly dependent nodes: defender usually over-invests in 
security!

• Arms race: I want to protect my assets slightly more than the 
other guys

• With sufficiently interdependent nodes, defender under-
invests

STEALTHY DIFFUSION

• Often, attackers would not wish to maximize the spread of 
malware
• They may have specific targets in mind

• Networks are monitored, and malware may be discovered (and 
vulnerabilities patched) before reaching the target

• Stealthy diffusion model:
• Defender (leader): chooses which nodes will be monitored

• Attacker (follower): chooses a subset of starting nodes (from a set 
of feasible nodes that can be attacked, e.g., reachable externally)

• Notice that the attacker’s objective is not monotone: more nodes 
attacked may increase the chance of being caught!

• If attacker is just a stochastic process (not deliberate), the 
defender’s optimization problem is submodular

• Attacker’s problem is NP-Hard, and not submodular

Haghtalab et al., KAIS, 2017
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GAME THEORY AND 
SECURITY

PART 6: GAME THEORY AND PRIVACY

OUTLINE

• Structured data sharing

• Sharing genomic data

SHARING STRUCTURED DATA

Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 33301 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

SHARING STRUCTURED DATA
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Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 33301 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

Quasi-identifiers: fields which, combined with other, commonly available data, can enable 
re-identification (figuring out who a particular anonymized record belongs to)

Example: voter registration data often includes name, race, sex, zip, DoB
can try to match voter registration records based on race, sex, zip, DoB with patient data; if 

only one such patient, we have their diagnostic code

QUASI-IDENTIFIERS

Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 33301 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

Example: suppose voter registration data has exactly one Diane Schwarz, caucasian, F, 
with zip 33301, and age 48

If there is only one person in shared data who is caucasian, F, zip 33301, age 48, we are 
reasonably certain it’s Diane Schwarz, and we just found out her disease

QUASI-IDENTIFIERS

GENERALIZATION OF ATTRIBUTES 
(COLUMNS)

Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 33301 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

Generalization: instead of the specific value of attribute, specify a set of values 
it belongs to; this decreases chances someone can be uniquely matched

Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 33301 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

Generalization: instead of the specific value of attribute, specify a set of values 
it belongs to; this decreases chances someone can be uniquely matched

GENERALIZATION OF ATTRIBUTES 
(COLUMNS)
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Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 333* 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

GENERALIZATION OF ATTRIBUTES 
(COLUMNS)

Generalization: instead of the specific value of attribute, specify a set of values 
it belongs to; this decreases chances someone can be uniquely matched

GENERALIZATION HIERARCHY

Last 
Name

First
Name

SSN Race Sex Zip Age ICD-9 code

Doe John xxx-xx-
xxxx

Caucasian M 91902 15 520.1

Smith Jane xxx-xx-
xxxx

African 
American

F 12033 85 466.11

Schwarz Diane xxx-xx-
xxxx

Caucasian F 333* 48 512.2

Rogers Jared xxx-xx-
xxxx

Caucasian M 85749 67 792.2

Generalization Hierarchy: a hierarchy of increasingly specific sets of attribute values

Zip: * -> 3**** -> 33***-> 333** -> 3330* -> 33301

* : effectively we remove the column/attribute (generalized to all possible values)

HIPAA

• Option 1 [Safe Harbor]: remove all direct identifiers (name, 
SSN, address, etc), “generalize” quasi-identifiers in a specific 
way (e.g., zip -> first three digits)

• Option 2 [Expert]: expert certification that data has “low 
risk” of being re-identified

HIPAA

• Option 1 [Safe Harbor]: remove all direct identifiers (name, 
SSN, address, etc), “generalize” quasi-identifiers in a specific 
way (e.g., zip -> first three digits)

• Option 2 [Expert]: expert certification that data has “low 
risk” of being re-identified by an anticipated recipient
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QUANTIFYING RISK

• This is not a reliability issue: there are attackers, who will 
respond to the specific data sharing decisions made by the data 
sharer

• Risk stems from the likelihood of identification given that 
the attacker tries to do it

• Model: attacker will attempt re-identification of a record iff
they gain from this (ex ante)
• Attacker is a data recipient, who is economically motivated to re-

identify the data

• This likely significantly over-estimates risk, since most data recipients 
would not attempt re-identification even if they can make money 
from it

Wan et al., PLoS One, 2015

DATA SHARER MODEL

• Share each record with each attribute j generalized to level 
l in the hierarchy

• Call this g, grjl = 1 if j generalized to level l for record r

• Value (positive utility): higher value to data sharer if 
attributes are shared at greater specificity (less 
generalized); additive over records

• Risk (negative utility): a loss L for every record which is 
successfully re-identified

ATTACKER MODEL

• Choose whether to attack each record in isolation

• Thus, we can just consider a separate game for each record

• Suppose the defender uses generalization strategy g (for record r)

• Binary decision: attack or do not attack (𝑎 ∈ {0,1}) 

• P(success|g,attack): probability an attack succeeds if data is shared according to g

• Attack success probability = 1 / {# equivalent records matched in external data}

• If attack succeeds, attacker gains L

• Attack is costly: pay a cost c for each attack

• Attacker’s utility: 𝑈) 𝑔, 𝑎𝑡𝑡𝑎𝑐𝑘 = 𝐿	𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑔, 𝑎𝑡𝑡𝑎𝑐𝑘 − 𝑐

• So: attack iff 𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑔, 𝑎𝑡𝑡𝑎𝑐𝑘 ≥ 𝑐/𝐿

DATA SHARER

• Utility: 𝑈8 𝑔, 𝑎 = 𝑣(𝑔) − 𝐿	𝑃 𝑆 𝑔, 𝑎 ; a = 1 iff there is an 
attack

• So, the defender’s optimization problem is:
max
@
𝑣 𝑔 − 𝐿	𝑃(𝑆|𝑔, 𝑎 𝑔 )

a(g): attacker’s best response
The generalization hierarchy of a record is a lattice (a partial 
order from least to most specific)

Solution approach: lattice-based search

start at most specific and follow a sequence of 

local improvement steps
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RECORD-LEVEL VS. DATABASE-
LEVEL GENERALIZATION

• The approach described was record-level generalization

• We treated the problem of sharing each record independently 
(no budget constraint on adversary; external dataset used to 
find equivalence groups)

• Often, we prefer database-level generalization:

• The same generalization level for all records (simplify database 
schema / data analysis)

• Can also use lattice-based search for this

OPEN-SOURCE SOFTWARE

• This approach is implemented in ARX, open-
source anonymization (de-identification) 
software

• http://arx.deidentifier.org

• Implemented both record-level and data-level 
generalization

• Using branch-and-bound search

Prasser et al.,  AMIA, 2017, to appear

SHARING GENOMIC DATA

METHODS FOR SHARING

• Summary statistics: for example, SNP minor-allele frequencies (MAFs)

• MAFs would be shared for a (sub)set of SNPs over a pool of subjects in a 
given study (along with p-values for associations of SNPs with a 
phenotype)

• dbGaP (database of genotypes and phenotypes): 
https://www.ncbi.nlm.nih.gov/gap

• SPHINX database

• Existence queries: can ask about presence/absence of a specific allele in 
the dataset

• Query model: one can send an arbitrary sequence of such queries

• Beacon network: https://beacon-network.org/
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SHARING SNP SUMMARY 
STATISTICS

• What could possibly go wrong?

• After all, these are summary statistics, not actual genomes or SNPs!

• A series of attacks showed that in fact one can determine whether a particular individual is in the 
pool for which summary statistics are shared

• Start with the genome of this individual (e.g., employee, co-worker, sibling, spouse, child)

• House proposal would let employers demand workers' genetic test results (currently illegal 
under GINA): https://www.statnews.com/2017/03/10/workplace-wellness-genetic-testing/

• Perform a statistical test (individual in pool vs. individual in reference dataset/population; etc)

• If statistic is above some threshold, claim the individual is in the pool

• Homer et al. PLoS Genetics, 2008; Sankararaman et al., Nature Genetics, 2009; Gymrek et al., 
Science 2013; etc.

• Concern: identifying that a specific individual is in the pool can reveal sensitive information (e.g., pool 
= a study of HIV drug effectiveness)

THE DATA SHARING GAME

• Consider the data sharing process as a game between the 
publisher (who shares SNP summary statistics) and a 
recipient (who may choose to re-identify individuals if that’s 
beneficial to them)

Wan et al., AJHG, 2017

THE DATA SHARING GAME THE DATA SHARING GAME
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THE DATA SHARING GAME THE DATA SHARING GAME

MEASURING ATTACKER’S SUCCESS: 
THE LIKELIHOOD RATIO TEST

• Perhaps the most applicable statistical test is likelihood ratio test

• Likelihood that target in pool / likelihood target not in pool (pool corresponds 
to a clinical study) [Sankararaman et al., Nature Genetics, 2009]

• Attack when threshold on the test is exceeded

• More precisely, let’s take a target i with genotype ai = (ai1,…,aim), where
aij = 1 if i has the minor allele in SNP j (simplifying things a bit; in reality, 
we need to consider diploid genes, but this conveys the idea)

• Model: 

• a finite pool of SNPs is drawn from a larger population

• pool statistics are shared: for each SNP,  𝑝̂D represents MAF in the pool; 𝑝D is 
MAF in the population (determined from a large “representative” sample)

LIKELIHOOD RATIO TEST

• The likelihood ratio test for a target i is then

𝐿E =F
𝑝̂D
𝑝D

GHI 1 − 𝑝̂D
1 − 𝑝D

JKGHI�

D

• What is missing: how does this connect to attacker’s probability 
of success (which will determine their expected utility)?
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BAYESIAN MODEL

• Wish to determine the probability that target i is in a dataset (pool) D, 
given their genomic information ai

Pr 𝑖 ∈ 𝐷 𝑎E =	QR 𝑎E 𝑖 ∈ 𝐷 QR	{E∈8}
QR	{GH}

• Now, notice that Pr 𝑎E 𝑖 ∈ 𝐷 = ∏ 𝑝̂D
GHI(1 − 𝑝̂D

GHI�
D ), while 

if we assume that a is sampled iid from the population with 
statistics p, Pr{𝑎E} = ∏ 𝑝D

GHI(1 − 𝑝D
GHI�

D )

• Consequently, Pr 𝑖 ∈ 𝐷 𝑎E = 𝑞𝐿E, where q is the prior 
probability that i is in D.

ATTACKER’S UTILITY

• Let 𝑔 be the gain from a successful attack and c the cost of 
the attack The expected gain from attacking a target i is:

• 𝑔Pr 𝑖 ∈ 𝐷 𝑎E 	− 𝑐 = 𝑔𝑞𝐿E − 𝑐

• Thus, i is attacked iff 𝐿E ≥
U
@V

PUBLISHER’S UTILITY

• Publisher’s utility: 
• value of shared data (as a function of the subset of SNP statistics actually shared) –

expected loss from successful attacks on individuals in the pool

• Important issue: we don’t know attacker’s target set!
• We can assign each individual in the pool a probability that they are a part of the 

attacker’s target set

• Measure of the attacker’s strength; congruent with a natural model where the target 
set of size k is sampled randomly from the population

• Goal: to choose a subset of SNPs to share so as to balance privacy and 
security

• Solution approach: genetic algorithm to choose a subset of SNPs to share 
(for each, calculate utility based on the attacker’s decision which targets to 
attack)

SUMMARY

• Game theory has had a number of successful applications in 
cyber security and privacy

• Attack graph and plan games

• Security games on networks

• Structured data release

• Genomic data release

• Typically, single-defender and single-attacker games, but we 
have explored modeling possibilities where there are 
multiple defenders
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MOVING FORWARD

• Many open questions remain in research and practice

• What about multiple attackers?

• What is the right solution concept for multi-defender games?

• What about bounded-rational defenders and attackers?

• What are the right models for privacy-preserving data sharing?

• How can these models and solution approaches make an impact 
in practice?


