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Abstract—For enhancing the privacy protections of databases,
where the increasing amount of detailed personal data is stored
and processed, multiple mechanisms have been developed, such
as audit logging and alert triggers, which notify administrators
about suspicious activities; however, the two main limitations in
common are: 1) the volume of such alerts is often substantially
greater than the capabilities of resource-constrained organiza-
tions, and 2) strategic attackers may disguise their actions or
carefully choosing which records they touch, making incompetent
the statistical detection models. For solving them, we introduce
a novel approach to database auditing that explicitly accounts
for adversarial behavior by 1) prioritizing the order in which
types of alerts are investigated and 2) providing an upper
bound on how much resource to allocate for each type. We
model the interaction between a database auditor and potential
attackers as a Stackelberg game in which the auditor chooses an
auditing policy and attackers choose which records to target. A
corresponding approach combining linear programming, column
generation, and heuristic search is proposed to derive an auditing
policy. For testing the policy-searching performance, a publicly
available credit card application dataset are adopted, on which it
shows that our methods produce high-quality mixed strategies as
database audit policies, and our general approach significantly
outperforms non-game-theoretic baselines.

I. INTRODUCTION

Modern computing and storage technology has made it
possible to create ad hoc database systems with the ability
to collect, store, and process extremely detailed information
about the daily activities of individuals [1]. These systems hold
great value for society, but accordingly face challenges to secu-
rity and eventually, personal privacy. Their sensitive property
attracts malicious attackers who can gain value through various
ways, such as stealing sensitive information, commandeering
computational resources, committing financial fraud, and sim-
ply shutting the system down [2]. While complex access con-
trol systems have been developed for database management, it
has been recognized that in practice no database systems will
be impervious to attack [3]. As such, prospective technical
protections need to be complemented by retrospective auditing
mechanisms [4]. Though never preventing attacks in their own
right, auditing allows for the discovery of breaches that can
be followed up on before they escalate to full blown exploits

by adversaries originating from beyond, as well as within, an
organization.

In general, auditing relies on the performance of a threat
detection and misuse tracking (TDMT) module, which raises
real-time alerts based on the actions committed to a system for
further investigation. Practically, the alert types are specifically
predefined by the administrator officials in ad hoc applications.
Through deploying TDMTs, however, security and privacy
have not been sufficiently guaranteed, the main reason of
which, lies on their nature of generating a large number of
alerts, whereas the number of actual violations tends to be
quite small. Therefore, in lieu of an efficient audit function-
ality in the database systems, TDMTs are not optimized for
detecting suspicious behavior.

Given the overwhelming volume of alerts in comparison to
available auditing resource and the need to catch attackers, the
core query function invoked by an administrator must consider
resource constraints. And, given such constraints, we must
determine which alerts should be recommended for investi-
gation. For solving it, we introduce a game-theoretical model,
in which an auditor chooses a randomized auditing policy,
while potential violators choose their victims or to refrain
from malicious behavior after observing the auditing policy.
Specifically, our model restricts the space of audit policies to
consider two dimensions: 1) how to prioritize alert categories
and 2) how much resource to allocate to each category. We
propose a series of algorithmic methods for solving it. In
addition, we develop a novel search method for computing
the amount of investigation resource for each category. We
perform an evaluation with a real dataset pertaining to credit
card eligibility decisions, the results of which demonstrate
the effectiveness of our approach compared with multiple
alternatives.

II. GAME THEORETIC MODEL OF ALERT PRIORITIZATION

By defining alert types, each suspicious event can be marked
into the corresponding audit bin. A crucial consideration is
how to prioritize alerts, choosing a subset from a vast pool
of possibilities that can be audited given a specified auditing
budget. The problem is complicated by the fact that intelligent



adversaries—that is, would-be violators of organizational ac-
cess policies—would react to an auditing policy by changing
their behavior to balance the gains from violations, and the
likelihood, and consequences, of detection. We describe a
game model between an auditor and multiple attackers.

A. System Model

Let E be the set of potential adversaries, some of whom
could be violators of privacy policies, and V be the set of
potential victims. We define events, as well as attacks, by
a tuple 〈e, v〉. A subset of these events will trigger alerts.
Let T be the set of alert types assigned to different kinds
of suspicious behavior. We assume each event 〈e, v〉 maps to
at most one alert type t ∈ T (with probability P t

ev). Typically,
both categorization of alerts and corresponding mapping be-
tween events and types is given (e.g. through predefined rules).
Let Ct be the cost (e.g., time) of auditing a single alert of
type t and let B be the total budget allocated for auditing.
Normal events resulting in alerts arrive based on a distribution
reflecting a typical workflow of the organization. We assume
this distribution is known, represented by Ft(n), which is the
probability that at most n alerts of type t are generated. If we
make the reasonable assumption that attacks are rare events
and that the alert logs are tamper-proof by applying certain
technique, then this distribution can be obtained from historical
alert logs. 1

B. Game Model

We model the interaction between the auditor and potential
violators as a Stackelberg game, in which the auditor chooses
a possibly randomized auditing policy, which is observed by
the prospective violators completely, who in response choose
the nature of the attack. Both decisions are made before the
alerts produced through normal workflow are generated.

In general, a specific pure strategy of the defender (auditor)
is a mapping from an arbitrary realization of alert counts of
all types to a subset of alerts that are to be inspected, abiding
by a constraint on the total amount of budget B allocated
for auditing alerts. We let pure strategies involve an ordering
ooo = (o1, o2, . . . , o|T |) (∀i, j ∈ Z+ and i, j ∈ [1, |T |],
if i 6= j, then oi 6= oj) over alert types, where the sub-
script indicates the position in the ordering, and a vector of
thresholds b = (b1, . . . , b|T |), with bt being the maximum
budget available for auditing alerts in category t. Let O be
the set of feasible orderings. We interpret a threshold bt as
the maximum budget allocated to t; thus, the most alerts of
type t that can be inspected is bbt/Ctc. The auditor is allowed
to choose a randomized policy over alert orderings, with pooo
being the probability that ordering ooo over alert types is chosen,
whereas the thresholds b are deterministic and independent of
the chosen alert priorities.

Each adversary e ∈ E may target any potential victim v ∈
V. The adversary is assumed to target at most one victim.
In addition, we assume that any given potential adversary is

1The probability that adversaries manipulate the distribution in the sensitive
practices to fool the audit model is almost zero.

actually unlikely to consider attacking. We formalize it by
introducing a probability pe that an attack by e is considered
at all (i.e., e does not even consider attacking with probability
1− pe).

Suppose we fix a prioritization ooo and thresholds b. Let o(t)
be the position of alert type t in ooo and oi be the alert type in
position i in the order. Let Bt(ooo,b,Z) be the budget remaining
to inspect alerts of type t if the order is ooo, the defender uses
alert type thresholds b, and the vector of realizations of benign
alert type counts is Z = {Z1, . . . , Z|T |}. Then we have

Bt(ooo,b,Z) =

max


B − o(t)−1∑

i=1

min {boi , ZoiCoi}

 /Ct

 , 0
 .

If the total budget that is eaten by inspecting alerts prior
to t is larger than B, Bt(ooo,b,Z) returns 0, and no alerts of
type t will be inspected. Next, we can compute the number of
alerts of type t that are audited as

nt(ooo,b,Z) = min {Bt(ooo,b,Z), bbt/Ctc , Zt} .

Then, the probability that an alert of type t generated through
an attack is detected is approximately

Pal(ooo,b, t) ≈ EZ

[
nt(ooo,b,Z)

Zt

]
. (1)

We can further approximate this probability by sampling from
the joint distribution over alert type counts Z.

The adversary does not directly choose alert types, but rather
the victim. Thus, the probability of detecting an attack 〈e, v〉
under audit order ooo and audit thresholds b is then

Pat(ooo,b, 〈e, v〉) =
∑
t

P t
evPal(ooo,b, t). (2)

Let M(〈e, v〉) denote the penalty of the adversary when
captured by the auditor, R(〈e, v〉) denote the benefit if the
adversary is not audited, and K(〈e, v〉) the cost of an attack.
The utility of the adversary e is then

Ua(ooo,b, 〈e, v〉) = Pat(ooo,b, 〈e, v〉) ·M(〈e, v〉)
+ (1− Pat(ooo,b, 〈e, v〉)) ·R(〈e, v〉)−K(〈e, v〉).

(3)

By assuming the game is zero-sum, the auditor’s goal is to
find a randomized strategy pooo and type-specific thresholds b
to minimize the expected utility of the adversary:

min
pooo,b

∑
e∈E

∑
ooo∈OOO

pooo max
v

Ua(ooo,b, 〈e, v〉). (4)

We call this optimization challenge the optimal auditing prob-
lem (OAP). The optimal auditing policy can be computed using
the following mathematical program, which directly extends
the standard linear programming formulation for computing
mixed-strategy Nash equilibria:

minb,pooo,u
∑

e∈E peue
s.t. ∀ 〈e, v〉 , ue ≥

∑
ooo∈OOO poooUa(ooo,b, 〈e, v〉)∑

ooo∈OOO pooo = 1,
∀ooo ∈ OOO, 0 ≤ pooo ≤ 1.

(5)



Indeed, if we fix the decision variables b, the formulation
becomes a linear program. Nevertheless, since the set of all
possible alert prioritizations is exponential, even this linear
program has exponentially many variables. Furthermore, in-
troducing decision variables b makes it non-linear and non-
convex.

III. SOLVING THE ALERT PRIORITIZATION GAME

The two main challenges for solving the OAP are: 1) an
exponential set of possible orderings of alert types, and 2)
a combinatorial space of possible choices for the threshold
vectors b. In this section, we develop a column generation
approach for the linear program induced when we fix a
threshold vector b. We then propose a search algorithm to
compute the auditing thresholds. 2

A. Column Generation Greedy Search

Since the number of constraints is small compared with
the exponential number of variables, only a limited number
of variables will be non-zero. Borrowing the basic idea of
column generation, we propose Column Generation Greedy
Search (CGGS), in which we iteratively solve a linear program
with a small subset of variables, and then add new variables
with a negative reduced cost.

Specifically, we begin with a small subset of alert prioritiza-
tions QQQ ⊆ OOO and solve the linear program induced after fixing
b in Equation 5, restricted to columns in QQQ. Next, we check if
there exists a column (ordering over types) that improves upon
the current best solution. By minimizing the reduced costs, we
generate one new column in each iteration and add it to the
subset of columns QQQ in the master problem. This process is
repeated until we can prove that the minimum reduced cost
is non-negative. At this point, we have solved the original
(unrestricted) linear program in a suboptimal manner.

B. Iterative Shrink Heuristic Method

Now, we develop a heuristic procedure, Iterative Shrink
Heuristic Method (ISHM), to find suboptimal alert type thresh-
olds. First, it should be recognized that

∑
t bt ≥ B; otherwise,

it would clearly waste auditing resources. Though no explicit
upper bound on the thresholds, given the distribution of the
number of alerts Zt for an alert type t, we can obtain an
approximate upper bound on bt, where Ft(bt/Ct) ≈ 1. Conse-
quently, searching for a good solution can begin with a vector
of audit thresholds, such that for each bt, Ft(bt/Ct) ≈ 1.
Leveraging this intuition, we iteratively shrink the values of
a good subset of audit thresholds according to a certain step
size ε 3.

In each atomic searching action, ISHM first makes a subset
of thresholds bt strategically shrink. Next, it checks if this
results in an improved solution. We introduce a variable lh,
which indicates the level (or the size) of the given subset of
b, and ε ∈ (0, 1), which controls the step size.

2The pseudocode for the two algorithms can be find at XXXXX.
3”Good” in this context means that shrinking thresholds within the subset

improves the value of the objective function.

TABLE I: Description of the defined alert types.

ID Alert type Description Mean Std
1 No checking account, Any purpose 370.04 15.81
2 Checking < 0, New car, Education 82.42 7.87
3 Checking > 0, Unskilled, Education 5.13 2.08
4 Checking > 0, Unskilled, Appliance 28.21 5.25
5 Checking > 0, Critical account, Business 8.31 2.96

By assigning lh = 1, we begin with shrinking each of the
audit thresholds. If the best value for the objective function
in the candidate subsets at lh = 1 after shrinking shows an
improvement, then the shrink is accepted and the shrinking
coefficient is made smaller. When no coefficient leads to
improvement, we increase lh by one, which induces tests of
threshold combinations at the same shrinking ratio. Once an
improvement occurs, the search course resets based on the
current b. The search terminates once lh > |T |.

IV. MODEL EVALUATION

A. Data Overview

The adopted dataset for model evaluation is the Statlog
(German Credit Data) dataset available from the UCI Machine
Learning Repository. It contains 1000 credit card applications
with 20 attributes describing the status of the applicants
pertaining to their credit risk. Before issuing a credit card,
banks would determine if it could be fraudulent. In face
of a large number of applications, it requires retrospective
audits to determine whether specific ones should be canceled.
Leveraging the provided features, we define five alert types,
which are triggered by the specific combinations of attribute
values and the purpose of application, as depicted by Table I.
The eight selected purposes of application are the ”victims”
in our audit model. In the description field, italicized words
represent the purpose of the application, while the other words
represent feature values.

We used the five alert types to label applications, excluding
any that fail to receive a label. Among these, we randomly
selected 100 applicants who may choose to ”attack” one of
the eight purposes of applications, for a total of 800 possible
events.

B. Comparison with Baseline Alternatives

The performance of the proposed audit model was inves-
tigated by comparing with several natural alternative audit
strategies as baselines. The first alternative, Audit with random
orders of alert types, is to randomize the audit order over
alert types. Though random, this strategy mimics the reality
of random reporting. In this case, we adopt the thresholds
out of the proposed model with ε = 0.1 to investigate
the performance. The second alternative, Audit with random
thresholds, is to randomize the audit thresholds. For this policy,
we assume that 1) the auditor’s choice satisfies

∑
i bi ≥ B and

2) the auditor has the ability to find the optimal audit order
after deciding upon the thresholds. The third alternative, Audit
based on benefit, is a naive greedy audit strategy, where the
auditor prioritizes alert types according to their utility loss. In



this case, the auditor investigates as many alerts of a certain
type as possible before moving on to the next type in the order.

The following performance comparisons are assessed over
a broad range of auditing budgets. For our model, we present
the values of the objective function with three different in-
stances of the step size ε in ISHM: [0.1, 0.2, 0.3]. Figures 1
summarize the performance of the proposed audit model and
three alternative audit strategies for the dataset. As expected, as
the budget increases, the auditor sustains a decreasing average
loss. It can be seen that the proposed audit model significantly
outperforms the alternative baselines. Specifically, as the au-
diting budget increases, the auditor’s loss trends towards, and
becomes, 0 in our approach. This means that the attackers are
completely deterred. For the alternatives Audit with random
thresholds outperforms other strategies. And, the strategy that
greedily audits alert types (in order of loss) tends to perform
quite poorly.
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Fig. 1: Loss of the auditor in the proposed and alternatives
audit model in the dataset.

V. RELATED WORK

The development of computational methods for raising
and subsequently managing alerts in database systems is an
active area of research. Generally speaking, there are two
main categories by which alerts are generated in a TDMT:
1) machine learning methods [5], [6], [7], and 2) rule-based
approaches [8], [9], [10], [11]. While these methods trigger
alerts for investigators, they result in a significant number of
false positives and they fail to consider the situation that smart
attackers may circumvent the prioritization and aggregation
mechanisms. Naturally, game-theoretical approaches provide
some novel points of view [12], [13]. Laszka et al. proposed a
framework for alert prioritization, which adopted an exhaustive
auditing strategy across alert types of a given order [14], which
is limited in practice. Recently, the problem of assigning alerts
to security analysts has been introduced [15], with a follow-
up effort casting it within a game theoretic framework [16];
however, it is assumed that the number of alerts is fixed, which
is not the case in practice.

VI. DISCUSSION AND CONCLUSIONS
TDMTs are usually deployed in database systems to address

a variety of attacks; however, an overwhelming alert volume

is far beyond the capability of auditors with limited resources.
Our research illustrates that policy compliance auditing can
be improved by prioritizing which alerts to focus on via a
game theoretic framework, allowing auditing policies to make
best use of limited auditing resources while simultaneously
accounting for strategic behavior of potential policy violators.
As such, the proposed model and the effective heuristics we
offer in this study fill a major gap in the field.
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