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The success of classification learning has led to numerous attempts to apply it in adversarial settings such as spam and
malware detection. The core challenge in this class of applications is that adversaries are not static, but make a deliberate
effort to evade the classifiers. We investigate both the problem of modeling the objectives of such adversaries, as well
as the algorithmic problem of accounting for rational, objective-driven adversaries. We first present a general approach
based on mixed-integer linear programming (MILP) with constraint generation. This approach is the first to compute an
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attack models. We show that the retraining approach, when it converges, minimizes an upper bound on adversarial loss.
Extensive experiments demonstrate that the mixed-integer programming approach significantly outperforms several state-of-
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1. INTRODUCTION
The success of machine learning has led to its widespread use as a workhorse in a wide variety of
domains, from text and language recognition to trading agent design. It has also made significant
inroads into security applications, such as fraud detection, computer intrusion detection, and web
search [Fawcett and Provost 1997; Mahoney and Chan 2002]. The use of machine (classification)
learning in security settings has especially piqued the interest of the research community in recent
years because traditional learning algorithms are highly susceptible to a number of attacks [Barreno
et al. 2010; Barreno et al. 2008; Biggio et al. 2014; Laskov and Lippmann 2010; Nelson et al.
2011]. The class of attacks that is of interest to us are evasion attacks, in which an intelligent
adversary attempts to adjust its behavior so as to evade a classifier that is expressly designed to
detect it [Barreno et al. 2010; Lowd and Meek 2005; Karlberger et al. 2007].

Machine learning has been an especially important tool for filtering spam and phishing email,
which we treat henceforth as our canonical motivating domain. To date, there has been extensive
research investigating spam and phishing detection strategies using machine learning, most without
considering adversarial modification [Sahami et al. 1998; Ying and Jie 2012; Metsis et al. 2006].
Failing to consider an adversary, however, exposes spam and phishing detection systems to evasion
attacks. Typically, the predicament of adversarial evasion is dealt with by repeatedly relearning the
classifier. This is a weak solution, however, since evasion tends to be rather quick, and relearning
is a costly task as it requires one to label a large number of instances (in crowdsourced labeling,
one also exposes the system to deliberate corruption of the training data). Therefore, several efforts
have focused on proactive approaches of modeling the learner and adversary as players in a game
in which the learner chooses a classifier or a learning algorithm, and the attacker modifies either the
training or test data [Dalvi et al. 2004; El Ghaoui et al. 2003; Liu and Chawla 2009; Fawcett 2003;
Lowd and Meek 2005; Brückner and Scheffer 2011; Androutsopoulos et al. 2005].

While there has been considerable prior research on adversarial classifier evasion, there are sur-
prisingly few approaches for evasion-robust classification when feature spaces are binary. For ex-
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ample, Brückner and Scheffer [2009] and Brückner and Scheffer [2011] require unrestricted feature
spaces (in addition, they impose strong restrictions on the loss function and the form of adversar-
ial evasion cost). The few approaches that do consider binary features, such as Dalvi et al. [2004],
either assume that the adversary does not optimally respond to the defender’s robust classifier, or
restrict attention to zero-sum interactions where the adversary maximizes the defender’s loss [Teo
et al. 2007], which are both distinct from typical adversarial models of evasion in the literature
specifically focusing on classifier evasion attacks, and overly conservative, particularly when loss
functions are upper bounds on the zero-one loss (such as a hinge loss). The existence of this gap
is particularly remarkable given the importance of binary feature spaces in numerous actual adver-
sarial classification problems, such as spam filtering, where binary bag-of-words features are typ-
ical [Hinde 2003; Gyongi and Garcia-Molina 2005; Goodman et al. 2007; Rao and Reiley 2012],
and malware classification, where best performing classifiers often rely on binary features (e.g., in
pdf malware classification [Srndic and Laskov 2013]).

We bridge this gap in the context of a general adversarial modeling framework in which the adver-
sary trades off evasion success and cost of modifying an original malicious instance. This framework
generalizes most of the prior evasion modeling approaches, and we illustrate it using two special
cases that are closely connected to common adversarial models in prior literature. We formalize
the evasion robustness problem of the defender as adversarial loss minimization, which computes
the defender’s optimal classifier in the associated classifier-evader Stackelberg game, and propose
an exact solution using bi-level mixed-integer linear programming when the classifier is linear and
uses l1 regularization. We term the resulting approach a Stackelberg game multi-adversary model
(SMA). The baseline formulation is quite intractable, and we offer two techniques for making it
tractable: first, we cluster adversarial objectives, and second, we use constraint generation to itera-
tively converge upon an optimal solution. The principal merits of our proposed bi-level optimization
approach over the state-of-the-art are: a) it is able to capture a very general class of adversary mod-
els, including the model proposed by [Lowd and Meek 2005], as well as a novel cost function which
allows feature cross-substitution; in contrast, state-of-the-art approaches are specifically tailored to
their highly restrictive threat models; and b) it makes an implicit tradeoff between feature selection
through the use of sparse (l1) regularization and adversarial evasion (through the adversary model),
thereby solving the problem of adversarial feature selection.

To provide a more general scalable robust learning framework we then propose an iterative re-
training with adversarial examples approach, RAD, which can boost evasion robustness of arbitrary
learning algorithms using arbitrary evasion attack models. We show that RAD minimizes an up-
per bound on optimal adversarial risk. This is significant: whereas adversarial risk minimization is
a hard bi-level optimization problem with poor scalability properties (indeed, no method exists to
solve it for general attack models), RAD itself is extremely scalable in practice, as our experiments
show. We develop RAD for a more specific, but very broad class of adversarial models, offering a
theoretical connection to adversarial risk minimization even when the adversarial model is only an
approximation. Perhaps the most appealing aspect of the proposed approach is that it requires no
modification of learning algorithms: rather, it can wrap any learning algorithm “out-of-the-box.”

RAD closely relates to prior retraining approaches in machine learning [Goodman et al. 2007;
Smutz and Stavrou 2012], especially recent retraining methods proposed specifically in adversarial
learning [Teo et al. 2007; Goodfellow et al. 2014; Kantchelian et al. 2015; Kurakin et al. 2017].
Traditional retraining in machine learning is typically one-shot, either periodically ingesting new
data as the ground truth evolves (e.g., in spam detection [Goodman et al. 2007]), or by adding syn-
thetic (e.g., adversarial) instances into a data set and retraining once [Teo et al. 2007; Smutz and
Stavrou 2012]. Neither idea offers significant adversarial robustness. Approaches recently intro-
duced specifically for adversarial learning settings have proposed iterative retraining (by repeatedly
adding adversarial examples into data and retraining the classifier), but as an ad hoc procedure, for
example, interleaved with stochastic gradient descent [Goodfellow et al. 2014], with no theoretical
guarantees.
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This work significantly extends our prior publication in Neural Information Processing Sys-
tems [Li and Vorobeychik 2014]. Specifically, our contributions are:

(1) A general adversarial evasion framework on binary feature spaces based on two specific evasion
models and a novel equivalence-based cost function that explicitly accounts for feature cross-
substitution attacks, such as substitution of words by synonyms (Section 4.4; in particular, we
consider a new general framework for modeling adversarial evasion, and two specific adversar-
ial evasion models, whereas Li and Vorobeychik [2014] focused on only one of these, and did
not consider the more general modeling framework),

(2) SMA, a bi-level optimization framework and solution methods that make a principled tradeoff
between feature selection and adversarial evasion (Section 5; Li and Vorobeychik [2014] only
developed a MILP approach for one of the two adversarial evasion models),

(3) RAD, the first systematic framework for adversarial retraining with provable guarantees (not
considered by Li and Vorobeychik [2014]), and

(4) extensive experimental evaluation of SMA and RAD, including evaluation of robustness to mis-
specification of adversarial behavior (significantly extending the experimental analysis per-
formed by Li and Vorobeychik [2014]).

We illustrate the effectiveness of our methods on both spam filtering and handwritten digit recog-
nition tasks, where evasion attacks are extremely salient [Klimt and Yang 2004; LeCun and Cortes
2010].

2. RELATED WORK
Several streams of research have investigated the use of machine learning in adversarial settings in
general, as well as the design of spam filtering systems in particular. Spam detection, of course, has
received a great deal of attention (see, e.g., [Hinde 2003; Gyongi and Garcia-Molina 2005; Good-
man et al. 2007; Rao and Reiley 2012]). A common approach to spam detection involves the use of
classification learning, whereby spam and non-spam instances are labeled and a standard classifica-
tion algorithm is run to obtain a classifier that would predict a label on future observed emails [Car-
reras and Marquez 2001; Androutsopoulos et al. 2000]. While typically features of email text are
used, other approaches make use of additional characteristics, such as source addresses [Ramachan-
dran and Feamster 2006; Ramachandran et al. 2007]. More generally, machine learning systems
have been used in other malware and intrusion detection settings. For example, Lakhina et al. used
principal component analysis (PCA) for network anomaly detection [Lakhina et al. 2004].

2.1. Classifier Evasion
The problem of classifier evasion has been considered from an algorithmic perspective by casting it
as an optimization problem in which the attacker chooses an instance (a feature vector) to minimize a
cost function, penalizing deviations from an ideal attack, subject to a constraint that the new instance
is classified as benign [Dalvi et al. 2004; Lowd and Meek 2005; Nelson et al. 2011; Nelson et al.
2012a]. Formally, this evasion problem, termed adversarial classifier reverse engineering (ACRE),
has been cast in terms of a query model where the adversary has query access to the classifier
“oracle.” ACRE has been shown to be NP-Hard even when linear classifiers are used (if features
are binary), although algorithms with provable approximation guarantees have been developed first
in the context of a linear classifier [Lowd and Meek 2005] and then for general convex-inducing
classifiers [Nelson et al. 2012a]. Vorobeychik and Li [2014] studied the general problem of black-
box attacks on classifiers, showing that classifiers which can be learned in polynomial time can also
be reverse engineered to arbitrary precision in polynomial time. In much prior literature on evasion
attacks, the cost function which captures the cost to an attacker of changing features of an instance
has taken the form of an lp norm difference between an “ideal” instance and the instance chosen by
the attacker. One of our contributions is to describe the limitations of this cost function, and propose
a generalization that addresses these limitations by considering feature cross-substitution attacks.
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Evasion attacks have recently received considerable attention in the context of deep learning sys-
tems [Goodfellow et al. 2014; Papernot et al. 2016c; Nguyen et al. 2015]. Tabacof and Valle [2015]
analyzed the adversarial image space and showed that adversarial images appear in large regions
in the pixel space. Papernot et al. [2016c] studied the limitation of adversarial evasion examples
and showed that some instances are more difficult to manipulate than others. Sabour et al. [2015]
demonstrated that the attacker can change classification to an arbitrary class by malicious manipu-
lations. Even without knowing exactly the learning algorithm, several black-box attacks have been
proposed [Papernot et al. 2016a; Papernot et al. 2016b].

2.2. Evasion-Robust Classification
A number of efforts have attempted to address the issue of evasion and data poisoning attacks on
classifiers through game theoretic modeling and analysis [Parameswaran et al. 2010; Pita et al. 2011;
Dalvi et al. 2004].

In one of the earliest such efforts, Dalvi et al. [2004] played out the first two steps of best re-
sponse dynamics in this game: first, the adversary best responds to a baseline learner by computing
an optimal set of modifications, and subsequently the learner computes optimal parameters using the
adversarial model. Androutsopoulos et al. [2005] developed a two-player game between spammers
and email users to predict equilibrium strategies that could be used to tune spam filters. Vassilakis
et al. [2007] extended this model to account for human interactive proofs in conjunction with spam
filers. Similarly, Reshef and Solan [2006] consider the optimal behavior of spammers in response to
three specific strategies that can be used to combat spam: increasing email delivery costs, filtering,
and a do-not-spam registry. Globerson and Roweis [2006] considered a problem where features of a
classifier are deleted in an adversarial way at test time, and develop a learning algorithm which is ro-
bust to such feature deletion. Brückner and Scheffer [2009] focused on single-shot prediction games,
where the utility functions of learner and adversary are not necessarily antagonistic, and propose al-
gorithms to find the equilibria, including equilibrium learning algorithm parameters. Brückner and
Scheffer [2011] suggested an alternative game model, a Stackelberg game in which the learner
first sets the algorithm parameters, and the follower (attacker) would best respond by optimizing
its utility (which is connected to algorithm performance on data). Zhang et al. [2015] proposed a
general feature selection algorithm to optimize the generalization capability of both the linear and
non-linear wrapped classifier, as well as its security against evasion attacks. Liu and Chawla [2010]
formulated the interaction between a data miner and a adversary as a zero-sum Stackelberg game,
where the adversary (and not the learner) is the leader and the data miner is the follower. Zhou et al.
[2012] introduced an extension of Support Vector Machine optimization that considers attacks that
involve adding a displacement vector to each malicious instance to maximize the associated loss,
and Zhou and Kantarcioglu [2014] presented a similar extension to a Bayesian hierarchical mixtures
of experts model. Torkamani and Lowd [2013] leveraged similar ideas in developing an adversarial
learning algorithm that considers associations among labels for different objects (instances). In the
deep learning literature, a common approach to evasion defense has been to insert synthetic ad-
versarial evasion instances into training data and retraining [Goodfellow et al. 2014; Kurakin et al.
2017]. This general approach has been shown empirically to be effective, but has been integrated
into learning methods in an ad hoc way. Our proposed iterative retraining approach, in contrast, is
systematic and theoretically grounded.

2.3. Data Poisoning in Adversarial Machine Learning
In addition to the evasion attacks on classifiers, much work has focused on data poison-
ing/contamination attacks [Kearns and Li 1993; Newsome et al. 2006; Venkataraman et al. 2008;
Rubinstein et al. 2009; Huber 2011; Tyler 2008; Wagner 2004; Kloft and Laskov 2012]. Some of
the earliest treatments consider the robustness of learning algorithms to noise, including the exten-
sion of the probably approximately correct (PAC) model by [Kearns and Li 1993], as well as the
general literature on robust statistics (developing algorithms that are robust to data contamination
in a worst-case sense) [Huber 2011; Tyler 2008]. More recently, work has emerged to character-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.



Evasion-Robust Classification on Binary Domains 39:5

ize specific classes of deliberate attacks on machine learning systems. One class of attacks is red
herring attacks, which add words (features) that reduce the maliciousness score [Newsome et al.
2006; Venkataraman et al. 2008]. For example, Newsome et al. [2006] analyzed the red herring
attacks against conjunction learners. The attack introduces spurious features during training for the
learning systems. The true malicious instances, however, will lack the spurious features and thereby
bypass the filter. Rubinstein et al. [2009] have examined how an attacker can exploit the sensitivity
of PCA. Specifically, they showed that an attacker can systematically inject traffic to increase vari-
ance along the links of their target flow and mislead the anomaly detection system to require a high
computational expense (and, consequently, to significantly reduce its usability). Kloft and Laskov
[2012] demonstrated another class of attacks called boiling frog attacks on centroid anomaly detec-
tion. These attacks involve incremental contamination of systems that involve iterative re-training
(a common paradigm in machine learning applied to intrusion/spam detection) so that each incre-
mental change is sufficiently small to escape detection, but over time the attack can significantly
move the centroid. While data poisoning attacks are an important consideration, they are outside the
scope of this work.

3. PROBLEM DEFINITION
Let X ⊆ Rn be the feature space, with n the number of features. For a feature vector xi ∈ X ,
we let xij denote the jth feature. Suppose that the training set (xi, yi) is comprised of feature vec-
tors xi ∈ X generated according to some unknown distribution xi ∼ D, with yi ∈ {−1,+1} the
corresponding binary labels, where −1 means the instance xi is benign, while +1 indicates a ma-
licious instance. The learner aims to learn a classifier with parameters w, gw : X → {−1,+1},
to label instances as malicious or benign, using a training data set of labeled instance D =
{(x1, y1), ..., (xm, ym)}. Let Ibad be the subset of datapoints i with yi = +1; abusing notation,
we also use Ibad to correspond to the set of malicious feature vectors x in the training dataset. Fi-
nally, we assume that gw(x) = sgn(fw(x)) for some real-valued function fw(x). Henceforth, we
omit the subscript w where clear from context.

Traditionally, machine learning algorithms commonly minimize regularized empirical risk:

min
w
L(w) ≡

∑
i

l(f(xi), yi) + δ‖w‖pp, (1)

where l(a, y) is the loss associated with a prediction score a ∈ R when true classification is y. An
important issue in adversarial settings is that instances classified as malicious (in our convention,
corresponding to g(x) = +1) are associated with malicious agents who subsequently modify such
instances in order to evade the classifier (and be classified as benign). Conceptually, we capture such
adversarial evasion behavior as an oracleO(w, x), which returns, for a given parameter vectorw and
original feature vector (in the training data) x, an alternative feature vector x′. For the moment, the
nature of this oracle, which captures adversary’s evasion behavior, is generic. Below, we consider
the issue of adversarial modeling in greater detail.

When the adversary modifies malicious instances according to a behavior oracle O(w, x), the
resulting effective risk for the defender is no longer captured by Equation 1, but must account for
adversarial response. Consequently, the defender would seek to minimize the following adversarial
risk (on training data):

min
w
LA(w;O) =

∑
i:yi=−1

l(f(xi),−1) +
∑

i:yi=+1

l(f(O(w, xi)),+1) + δ‖w‖pp. (2)

We make several observations about the adversarial risk function. First, note that adversarial behav-
ior depends on the original malicious instance xi in the training data: effectively, we are modeling
a collection of adversaries, each behaving quite distinctly, but their behavior is completely captured
by xi (their current malicious action) and w (how they respond to the classifier). In other words, we
suppose that every instance x ∼ D corresponds to a fixed label y ∈ {−1,+1}, where a label of
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+1 indicates that this instance x was generated by an adversary. In the context of a threat model,
therefore, we take this malicious x to be an expression of revealed preferences of the adversary: that
is, x is an “ideal” instance that the adversary would generate if it were not marked as malicious (e.g.,
filtered) by the classifier. Second, adversarial risk function is the direct analog of empirical risk in
adversarial settings. In reality, this is a proxy for the expected risk which is what the learner is truly
trying to minimize. Third, we assume here, and throughout, that adversary’s response behavior is
known to the defender. Typically, this assumption is captured by using a model of the adversary’s
behavior. Essentially all prior literature in classifier evasion has made a far stronger assumption of
a particular model of adversary behavior, whereas our goal is to ultimately admit a broad class of
adversary models within this general framework. Later, we evaluate the question of robustness of
adversarial learning against mistakes in adversary modeling.

4. ADVERSARY MODELING
Generally, in prior literature evasion attacks have almost universally been modeled as optimization
problems in which attackers balance the objective of evading the classifier (by changing the label
from +1 to −1) and the cost of such evasion. We now define a very general adversarial modeling
framework which extends most of the specific models studied in prior literature [Lowd and Meek
2005; Biggio et al. 2014; Brückner and Scheffer 2011; Li and Vorobeychik 2014]. We then specialize
this framework to two important general models. Both are fundamentally optimization problems
aiming to trade off two conflicting goals: evading the classifier (trying to find an instance x′ such that
g(x′) = −1 and, perhaps, as far from the classification boundary as possible) and making minimal
changes to the original malicious instance x, as captured by the associated cost function c(x′, x).
The first model imposes a strict constraint that evasion is successful without being concerned about
precisely how benign the new malicious instance x′ appears, but instead imposes additionally a
budget constraint on the amount of change to the original feature vector x the adversary can tolerate.
In the case where no evasion is found which does not violate the cost budget, the attacker does not
undertake evasion.cover The second model explicitly trades-off evasion success and associated cost.
Our adversarial models are white-box, that is, the attacker knows the classifier, including the score
function.

Recall that we treat malicious instances in the dataset, x ∈ Ibad as ideal feature vectors capturing
behavior that the malicious actor would continue to perform if it were not for the classifier which
marks these as malicious. In both models, each such malicious feature vector x is treated as a distinct
adversary, and we call this the ideal instance xA for this adversary, and the adversary is assumed to
aspire to remain as close to this instance as possible while evading the classifier.

4.1. General Framework for Adversarial Evasion Modeling
We begin with a rather general framework for adversarial evasion modeling, formalized as Prob-
lem (3).

z = arg min
x′|h(x′)≤0

lA(x′, xA) ≡ βr(f(x′)) + ηc(x′, xA) (3)

x∗ =

{
z z ∈ C
x otherwise,

In this problem, β, η ≥ 0 are exogenously specified parameters which allow us to specialize the
model to specific sub-classes (we illustrate two general examples below). h(x′) ≤ 0 represents
certain constraint for the modified instance x′. Moreover, r(a) is a non-decreasing function of a,
which captures the key adversarial objective of appearing more benign (having a smaller f(x)).
Finally, the adversary may be constrained in the kinds of modifications they can make, and we
express this constraint as C; in the model, if the optimal evasion z is infeasible, the attacker will stay
with the original malicious instance xi.
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4.2. Cost Minimization with Budget Constraint (CMBC)
Our first specific model, which we refer to as CMBC, is a generalization of the adversarial evasion
model proposed by [Lowd and Meek 2005]. To formalize this model, consider an attacker who in
the original training data uses an ideal feature vector from xi ∼ D denoted as xA (xA ∈ Ibad). This
attacker aims to solve the following optimization problem:

min
x′∈X:g(x′)=−1

c(x′, xA) (4a)

s.t. : c(x′, xA) ≤ Bc, (4b)

where Bc is the highest cost (deviation from xA) the adversary is willing to tolerate. If no evasion
instance within the cost budget is found, the adversary is assumed to continue with the original
feature vector xA. Note that this model specializes Problem (3) when β = 0, η = 1, h(x′) ≡
f(x′) ≤ 0, and C = {x′|c(x′, xA) ≤ Bc}.

Lowd and Meek [2005] proposed an iterative approximation algorithm to solve the optimization
problem 4 which yields a 2-approximation when the cost function is a weighted l1 distance, g(x) is
linear, and feature space is binary. Moreover, they proposed a polynomial time exact algorithm for
continuous feature spaces and linear classifiers. In principle, the approximation algorithm by Lowd
and Meek [2005] can be applied with non-linear classifiers as well, although with no guarantees,
and we use a generalization of it discussed in Appendix C as a general heuristic, after making the
modifications to account for the cost constraint in our model.

4.3. Balancing Evasion Cost and Success (BECS)
In our second specific model, referred to henceforth as BECS, the adversary has two competing
objectives: 1) appear as benign as possible to the classifier, and 2) minimize modification cost.
Just as in the first model, we assume that the attacker obtains no value from a modification to the
original feature vector if the result is still classified as malicious. Formally, the adversary is solving
the following optimization problem:

min
x′∈X

min{0, f(x′)}+ c(x′, xA). (5)

We assume that c(x′, xA) ≥ 0, c(x′, xA) = 0 iff x′ = xA, and c is strictly increasing in ‖x′−xA‖2
and strictly convex in x′. Observe that this second model is, too, a special case of Problem (3), by
setting β = 1, η = 1, r(f(x′)) = min{0, f(x′)}, h(x′) ≡ 0, and C = ∅.

Because Problem (5) is non-convex, we instead minimize an upper bound:

min
x′

Q(x′) ≡ f(x′) + c(x′, xA). (6)

In addition, if f(xA) < 0, we return xA before solving Problem (6). If Problem (6) returns an
optimal solution x∗ with f(x∗) ≥ 0, we return xA; otherwise, return x∗. Problem (6) has two
advantages. First, if f(x) is convex and x is real-valued, this is a (strictly) convex optimization
problem, which has a unique solution, and we can solve it in polynomial time. An important special
case is when f(x) = wTx. The second one we formalize in the following lemma.

LEMMA 4.1. Suppose x∗ is the optimal solution to Problem (5), xi is suboptimal, and f(x∗) <
0. Let x̄ be the optimal solution to Problem (6). Then f(x̄) + c(x̄, xi) = f(x∗) + c(x∗, xi), and
f(x̄) < 0.

The following corollary then follows by uniqueness of optimal solutions for strictly convex objective
functions over a real vector space.

COROLLARY 4.2. If f(x) is convex and x continuous, x∗ is the optimal solution to Problem (5),
x̄ is the optimal solution to Problem (6), and f(x∗) < 0, then x̄ = x∗.
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A direct consequence of this corollary is that when we use Problem (6) to approximate Problem (5)
and this approximation is convex, we always return either the optimal evasion, or xi if no cost-
effective evasion is possible. An oracle O constructed on this basis will therefore return a unique
solution.

4.3.1. Coordinate Greedy. Many learning problems do not feature a convex g(x), or a continuous
feature space, so that the optimization problems which capture the attacker model above cannot be
efficiently solved. To address this, we propose to use CoordinateGreedy (CG) (Algorithm 1) to
approximate optimal attacker evasion. The key advantage of coordinate greedy is that it does not
need any specific information about the nature of the classifier or the cost function, although specific
variations, such as coordinate descent, can make use of this information. The high-level idea is to

ALGORITHM 1: CoordinateGreedy(CG): O(β, x)
1: Input: Parameter vector β, malicious instance x
2: Set k ← 0 and let x0 ← x
3: repeat
4: Randomly choose index ik ∈ {1, 2, ..., n}
5: xk+1 ←ik + ε
6: k ← k + 1

7: until lnQ(xk)

lnQ(xk−1)
≤ ε

8: if f(xk) ≥ 0 then
9: xk ← x

10: end if
11: Output: Adversarially optimal instance xk.

iteratively choose a feature, and greedily update this feature to incrementally improve the attacker’s
utility (as defined by Problem (6)).

In general, this algorithm will only converge to a locally optimal solution. Indeed, the issue of
only being able to compute an attack heuristically with respect to a model is a fundamental problem
in most prior adversarial evasion modeling efforts, excepting several which make strong assump-
tions about adversarial cost and loss functions (e.g., Brückner and Scheffer [2011]). The concern is
that using such a heuristic approach as a means for making a classifier robust will fail as it underes-
timates the true attacks (which may achieve a better quality solution to the associated optimization
problem).

We address this fundamental limitation in two ways. First, we propose a version with random
restarts: run CG from L random starting points in feature space. As long as a global optimum has
a basin of attraction with positive Lebesgue measure, or the feature space is finite, this process
will asymptotically converge to a globally optimal solution as we increase the number of random
restarts. Thus, as we increase the number of random restarts, we expect to increase the frequency
that we actually return the global optimum.

In general, however, asymptotic convergence to a global optimum through random restarts can
be exponentially slow and, consequently, of limited help. We therefore consider empirically how
effective it is in our setting. Let pL denote the probability that the oracle based on coordinate greedy
with L random restarts returns a suboptimal solution to Problem (6). In Figure 1 we investigate how
fast pL converges to zero. A key observation from this figure is that this convergence tends to be
remarkably fast, necessitating relatively few random restarts.
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(a) (b)

Fig. 1. The convergence of pL based on different number of starting points for (a) Binary, (b) Continuous feature space.

Consequently, it is unlikely that we underestimate the attacker capability using 20 or fewer ran-
dom restarts.

4.4. Cost Function Models
Within the threat model for adversary, the cost function c(x′, xA) can have multiple formulations
in different situations. Here we will briefly discuss two general categories: the distance-based and
equivalence-based cost functions.

4.4.1. Distance-Based Cost Function. In one of the first adversarial classification models, [Lowd
and Meek 2005] proposed a natural l1 distance-based cost function which penalizes for deviations
from the ideal feature vector xA:

c(x′, xA) =
∑
i

ai|x′i − xAi |, (7)

where ai is a relative importance of feature i to the adversary. All follow-up work in the adversarial
classification domain has used either this cost function or lp-norm generalizations [Barreno et al.
2010; Barreno et al. 2008; Nelson et al. 2011; Nelson et al. 2012a].

4.4.2. Equivalence-Based Cost Function. While distance-based cost functions seem natural mod-
els of adversarial objective, they miss an important phenomenon of feature cross-substitution. In
spam or phishing, this phenomenon is most obvious when an adversary substitutes words for their
synonyms or substitutes similar-looking letters in words. These words can contain features with the
similar meaning or effect (e.g. money and cash) or differ in only a few letters (e.g clearance and
claerance). The impact is that the adversary can achieve a much lower cost of transforming an ideal
instance xA using similarity-based feature substitutions than simple distance would admit.

To model feature cross-substitution attacks, we introduce for each feature i an equivalence class
of features, Fi, which includes all admissible substitutions (e.g., k-letter word modifications or
synonyms), and generalize (7) to account for such cross-feature equivalence:

c(x′, xA) =
∑
i

min
j∈Fi|xA

j ⊕x′j=1
ai|x′j − xAi |, (8)

where ⊕ is the exclusive-or, so that xAj ⊕ x′j = 1 ensures that we only substitute between different
features rather than simply adding features. The point here is that the equivalence-based cost func-
tion significantly may reduce attack costs compared to the distance-based cost function, with the
difference increasing in the size of the equivalence class. The practical importance of this observa-
tion is that the adversary will far more frequently come under cost budget when he is able to use
such substitution attacks. Failure to capture this phenomenon therefore results in a threat model that
significantly underestimates the adversary’s ability to evade a classifier.
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In order to solve the optimization problem 4 in the context of equivalence-based cost function, we
generalize the algorithm proposed by Lowd and Meek to l1 cost and linear classifiers. The general-
ized algorithm termed FindBooleanIMAC is presented in Appendix C. Note that the algorithm
becomes identical to Lowd and Meek’s when equivalence classes Fi are singletons (i.e., the cost
function reduces to l1 cost).

5. STACKELBERG GAME MULTI-ADVERSARY MODEL (SMA)
We now offer a principled and general approach to adversarial classification in the context of evasion
attacks modeled above. For now, we restrict attention to linear classifiers where f(x) = wTx and
l1 regularization is used. These restrictions are necessary for our exact optimization algorithms, but
will be subsequently relaxed as we propose an approximate but far more general and scalable ap-
proach in Section 6. Because the resulting classifier choice is formally a Stackelberg equilibrium in
which there is a single defender (classifier) and multiple followers (evaders), we term this approach
Stackelberg game multi-adversary model (SMA).

Since adversaries correspond to feature vectors xi which are malicious (and which we interpret
as the “ideal” instances xA of these adversaries), we henceforth refer to a given adversary by the
associated index i of a malicious instance in the data. We now rewrite the optimization problem (2)
for the general SMA model as a bi-level program in which the learner first chooses the weights w
and the attackers modify malicious instances xi into alternatives, x̃i, in response:

min
w

∑
i|yi=−1

l(wTxi,−1) +
∑

i|yi=1

l(wT x̃i, 1) + δ||w||1 (9)

s.t. : ∀i : yi = 1,

zi = arg min
x|h(x;w)≤0

lA(x, xi;w)

x̃i =

{
zi zi ∈ C
xi otherwise,

where lA(x, , xi;w) is an adversarial loss function that the attacker wishes to minimize (which may
depend on the learning parameters w), subject to constraints h(x;w) ≤ 0. An example of these
constraints is h(x;w) = wTx ≤ 0, that is, the attacker wishes to ensure that they are classified as
benign. The decision of the attackers also depends on whether or not their budget constraints are
satisfied by the optimal adversarial instance (for example, whether it’s so far from the original ma-
licious instance that malicious utility is largely compromised). This is represented by the constraint
that x̃i = zi if zi ∈ C, and otherwise the attacker does not change their original feature vector xi. A
natural example of a budget constraint is C = {z|c(z, xi) ≤ Bc}.

The power of our approach and the formulation (9) is that it admits, in principle, an arbitrary
adversarial loss function lA(x, xA;w), and, consequently, an arbitrary cost function, unlike prior
approaches. The methods described below will generalize as long as we have an algorithm for
optimizing the adversary’s loss given a classifier.

In order to solve the optimization problem (9) we now describe how to formulate it as a (very
large) mathematical program, and then propose several heuristic methods for making it tractable.
The first step is to observe that the hinge loss function and ‖w‖1 can both be easily linearized using
standard methods. We therefore focus on the more challenging task of expressing the adversarial
decision in response to a classification choice w as a collection of linear constraints.

We begin by representing the adversary’s optimization problem using a collection of linear con-
straints. Define an auxiliary matrix T in which each column corresponds to a particular attack feature
vector x′, which we index using variables a; thus Tja corresponds to the value of feature j in the
attack feature vector with index a. Define another auxiliary binary matrix Q where Qai = 1 iff the
attack strategy a ∈ C for the attacker i.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.



Evasion-Robust Classification on Binary Domains 39:11

Next, define a matrix L where Lai is the loss of the strategy a to adversary i Finally, let zai be
a binary variable that selects exactly one feature vector a for the adversary i. First, we must have a
constraint that zai = 1 for exactly one strategy a:

∑
a zai = 1 ∀ i. Now, suppose that the strategy

a that is selected is the best available option for the attacker i; it may be below the cost budget, in
which case this is the strategy used by the adversary, or above budget, in which case xi is used.
We can calculate the resulting value of wT x̃i inside the loss function corresponding to adversarial
instances using

wT x̃i = ei =
∑
a

zaiw
T (QaiTa + (1−Qai)xi). (10)

This expression introduces bilinear terms zaiwT , but since zai are binary, these terms can be lin-
earized using McCormick inequalities [McCormick 1976].

To ensure that zai selects the strategy which minimizes the adversary’s loss lA(·) among all
feasible options, captured by the matrix L, we introduce constraints∑

a

zaiLai ≤ La′i +M(1− ra′),

where M is a large constant and ra′ is an indicator variable which is 1 iff h(Ta;w) ≤ 0 (that is, if
feature vector x associated with the attack a, satisfies the constraint h(x;w) ≤ 0). We calculate ra
for all a using constraints

(1− 2ra)h(Ta;w) ≤ 0.

The resulting full mathematical programming formulation is shown below.

min
w,z,r

∑
i|yi=0

max{0, 1− wTxi}+
∑

i|yi=1

max{0, 1 + ei}+ δ‖w‖1 (11)

s.t. : ∀a, i, j : zai, ra ∈ {0, 1} (12)∑
a

zi(a) = 1 (13)

∀i : ei =
∑
a

mai(QaiTa + (1−Qai)xi) (14)

∀a, i, j : −Mzai ≤ maij ≤Mzai (15)
∀a, i, j : wj −M(1− zai) ≤ maij ≤ wj +M(1− zai) (16)

∀a′, i :
∑
a

zaiLai ≤ La′i +M(1− ra′) (17)

∀a : (1− 2ra)h(Ta;w) ≤ 0. (18)

Variables mai allow us to linearize the Constraints (10), replacing them with Constraints (14)-(16).
Constraint 18 is the only non-linear constraint remaining (the hinge loss and l1 terms in the objec-
tive can be linearized using standard methods), and depends on the specific form of the function
h(Ta;w); we deal with it below in the two special cases of attack models we consider.

As is, the resulting mathematical program is intractable for two reasons: first, the best response
must be computed (using a set of constraints above) for each adversary i, of which there could be
many, and second, we need a set of constraints for each feasible attack action (feature vector) x ∈ X
(which we index by a). We tackle the first problem by clustering the “ideal” attack vectors xi into
a set of 100 clusters and using the mean of each cluster as xA for the representative attacker. This
dramatically reduces the number of adversaries and, therefore, the size of the problem. To tackle the
second problem, we use constraint generation to iteratively add strategies a into the above program
by computing optimal, or approximately optimal, attack strategy to add in each iteration.
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ALGORITHM 2: SMA(X)
T =randStrats() // initial set of attacks
X ′ ← cluster(X)
w0 ←MILP(X ′, T )
w ← w0

while T changes do
for xA ∈ I ′bad do
t =computeAttack(xA, w)
T ← T ∪ t

end for
w ←MILP(X ′, T )

end while
return w

The full SMA iterative algorithm using clustering and constraint generation is shown in Algo-
rithm 2. Here we can apply any clustering algorithm for the cluster() function, an we use K-nearest
neighbor algorithm to cluster the data [Peterson 2009]. The matrices Q and L in the mathematical
program can be pre-computed in each iteration using the matrix of strategies and corresponding T ,
as well as the set of constraints C. The computeAttack() function generates an optimal attack by
solving (often approximately) the optimization problem zi = arg min

x∈C1
lA(x, xi).

In the next several sections we instantiate this approach for two adversarial models described
above: CMBC and BECS. As we show below, both can be formulated as mixed-integer linear pro-
grams.

5.1. SMA for CMBC
Recall that the CMBC model minimizes the adversary’s cost c(x, xA) subject to the constraint that
wTx ≤ 0, that is, that the adversarial instance is classified as benign. Additionally, it uses the
cost constraint C = {x|c(x, xA) ≤ Bc}, which can be handled directly by the SMA mathematical
program described above.

The loss function in this case becomes lA(x, xA;w) = c(x, xA). The non-linear constraint (18),
on the other hand, now becomes (1 − 2ra)wTTa ≤ 0. While this constraint introduces bilinear
terms, these can be linearized since ra are binary. In particular, we can replace it with the following
constraints:

∀a :
∑
j

wjTaj ≤ 2
∑
j

Tajtaj

∀a, j : −Mra ≤ taj ≤Mra
∀a, j : wj −M(1− ra) ≤ taj ≤ wj +M(1− ra),

where we introduce a new variable taj to assist in linearization. The full SMA mathematical program
thus becomes a mixed-integer linear program in the context of the CMBC attack model.

Finally, we can implement the iterative constraint generation approach by executing a variant of
the Lowd and Meek algorithm in each iteration in response to the classifier w computed in previous
iteration. Specifically, Algorithm 3 computes the attacker’s best response, which in turn makes use
of Algorithm 6 FindBooleanIMAC to compute approximately optimal attack strategies in response
to a given classifier w, subject to the cost budget constraint.

5.2. SMA for BECS
In the context of the BECS evasion attack model, the attacker’s loss becomes lA(x, xA;w) =
wTx + c(x, xA) (the upper bound of the original BECS adversarial loss function). As mentioned
in Section 4.3, there is no constraint C, and h(x;w) ≡ 0, which also eliminates the non-linear con-
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ALGORITHM 3: computeAttack(CMBC) (xA, w)
Get matrix T
Generate matrix C, L based on T,Bc

Randomly select x− from Igood
t←FindBooleanIMAC(xA, x−, w)
return t

straint (18). the attacker’s best response computation computeAttack() can be calculated by using
Algorithm 1 for the BECS adversary model.

ALGORITHM 4: computeAttack(BECS) (x,w)
1: Input: Parameter vector w, malicious instance x
2: Set k ← 0 and let x0 ← x
3: repeat
4: Randomly choose index ik ∈ {1, 2, ..., n}
5: xk+1 ←ik + ε
6: k ← k + 1

7: until lnQ(xk)

lnQ(xk−1)
≤ ε

8: if f(xk) ≥ 0 then
9: xk ← x

10: end if
11: Output: Adversarially optimal instance xk.

6. SCALING UP: ADVERSARIAL LEARNING THROUGH RETRAINING
The SMA optimization approach is exact, but it suffers from three limitations: 1) it assumes specific
structure of the attack models which must be embedded in the optimization approach itself, 2) it
requires substantial modifications of the learning algorithm, and is restricted to linear classification
with l1 regularization, and 3) it suffers from significant limitations in scalability as shown in the
experiments below. Indeed, these are very general issues exhibited by a number of approaches have
been proposed for making learning algorithms more robust to adversarial evasion attacks [Dalvi
et al. 2004; Li and Vorobeychik 2014; Li and Vorobeychik 2015; Teo et al. 2007; Brückner and
Scheffer 2011]. Recently, retraining with adversarial data has been proposed as a means to increase
robustness of learning [Goodfellow et al. 2014; Kantchelian et al. 2015; Teo et al. 2007].1 How-
ever, to date, such approaches have not been systematic and have not been formally connected to
adversarial risk minimization formalized in Section 3.

Thus, we present a systematic retraining algorithm, RAD, for retraining with adversarial data (Al-
gorithm 5). Our key observation is that RAD is a principled approximation to SMA: specifically,
it minimizes an upper bound on adversarial loss. RAD systematizes some of the prior insights in-
volving adversarial examples and retraining, and enables us to provide a formal connection between
retraining with adversarial data, and adversarial risk minimization in the sense of Equation 2.

The RAD algorithm is general in terms of the adversarial models as well as the malicious in-
stances. At the high level, it starts with the original training data X and iterates between computing
a classifier and adding adversarial instances to the training data that evade the previously computed
classifier, if they are not already a part of the data. A significant enhancement in terms of the speed of
the approach can be obtained by clustering malicious instances as done for SMA: this would reduce

1Indeed, neither [Teo et al. 2007] nor [Kantchelian et al. 2015] focuses on retraining as a main contribution, but observes its
effectiveness.
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ALGORITHM 5: RAD: Retraining with ADversarial Examples
1: Input: training data X
2: Ni ← ∅ ∀ i ∈ Ibad
3: repeat
4: w ← Train(X ∪i Ni)
5: new ← ∅
6: for i ∈ Ibad do
7: x′ = O(w, xi)
8: if x′ /∈ Ni then
9: new ← new ∪ x′

10: end if
11: Ni ← Ni ∪ x′
12: end for
13: until new = ∅
14: Output: Parameter vector w

both the number of iterations, as well as the number of data points added per iteration. Experiments
(in the appendix E) show that this is indeed quite effective.

A baseline termination condition for RAD is that no new adversarial instances can be added
(either because instances generated by O have already been previously added, or because the ad-
versary’s can no longer benefit from evasion). If the range of O is finite (e.g., if the feature space
is finite), RAD with this termination condition would always terminate. In practice, our experi-
ments demonstrate that when termination conditions are satisfied, the number of RAD iterations is
quite small (between 5 and 20). Moreover, while RAD effectively increases the importance of mali-
cious instances in training, this does not appear to significantly harm classification performance in
a non-adversarial setting. In general, we can also control the number of rounds directly, or use an
additional termination condition, such as that the parameter vector w changes little between succes-
sive iterations. However, we assume henceforth that there is no fixed iteration limit or convergence
check.

6.1. Theoretical Analysis
To analyze what happens if the algorithm terminates, we define the regularized empirical risk in the
last iteration of RAD as:

LR
N (w,O) =

∑
i∈D∪N

l(fw(xi), yi) + δ||w||pp, (19)

where a set N = ∪iNi of data points has been added by the algorithm (we omit its dependence on
O to simplify notation). We now characterize the relationship between LR

N (w,O) and L∗A(O) =
minw LA(w,O), where LA(w,O) represents the loss of adversary based on any model parameters.

PROPOSITION 6.1. L∗A(O) ≤ LR
N (w,O) for all w,O.

PROOF. Let w̄ ∈ arg minw LR
N (w,O). Consequently, for any w,

LR
N (w,O) ≥ LR

N (w̄,O)

=
∑

i:yi=−1

l(fw̄(xi),−1) +
∑

i:yi=+1

∑
j∈Ni∪xi

l(fw̄(xj),+1) + δ||w̄||pp

≥
∑

i:yi=−1

l(fw̄(xi),−1) +
∑

i:yi=+1

l(fw̄(O(w̄, xi)),+1) + δ||w̄||pp

≥ min
w
LA(w;O) = L∗A(O),
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where the second inequality follows because in the last iteration of the algorithm, new = ∅ (since
it must terminate after this iteration), which means that O(w, xi) ∈ Ni for all i ∈ Ibad.

In general, retraining, systematized in the RAD algorithm, effectively minimizes an upper bound
on optimal adversarial risk.2 This offers a conceptual explanation for the previously observed ef-
fectiveness of such algorithms in boosting robustness of learning to adversarial evasion. Formally,
however, the result above is limited for several reasons. First, for many adversarial models in prior
literature, adversarial evasion is NP-Hard. While some effective approaches exist to compute op-
timal evasion for specific learning algorithms [Kantchelian et al. 2015], this is not true in general.
Although approximation algorithms for these models exist, using them as oracles in RAD is prob-
lematic, since actual attackers may compute better solutions, and Proposition 6.1 no longer applies.
Second, we assume thatO returns a unique result, but when evasion is modeled as optimization, op-
tima need not to be unique. Third, there does not exist effective general-purpose adversarial evasion
algorithms the use of which in RAD would allow reasonable theoretical guarantees.

These challenges were partially addressed by our general-purpose coordinate greedy algorithms
for computing optimal adversarial evasion: coupled with random restarts, we can naturally ensure,
with enough restarts, that we eventually obtain an optimal solution with high probability. Moreover,
we showed empirically that probability pL of computing suboptimal instances essentially vanishes
with relatively few restarts. We now generalize the above result to offer guarantees in this case as
well.

PROPOSITION 6.2. Let B = |Ibad|. L∗A,01(O) ≤ LR
N (w,OL) + δ(p) with probability at least

1 − p, where δ(p) = B

(
pL +

√
log2 p−8BpL log p−log p

2B

)
, and LR

N (w,OL) uses any loss function

l(fw(x), y) which is an upper bound on the 0/1 loss.

PROOF. Let w̄ ∈ arg minw LR
N (w,OL). Consequently, for any w,

L∗A,01(OL) = min
w
LA,01(w;OL)

≤
∑

i:yi=−1

l01(fw̄(xi),−1) +
∑

i:yi=+1

l01(fw̄(O(w̄, xi)),+1) + α||w̄||pp.

Now, ∑
i:yi=+1

l01(fw̄(O(w̄, xi)),+1) ≤
∑

i:yi=+1

l01(fw̄(OL(w̄, xi)),+1) + δ(p)

with probability at least 1 − p, where δ(p) = BpL +

√
log2 p−8Bpl log p−log p

2 , by the Chernoff
bound, and Lemma 4.1, which assures that an optimal solution to Problem 6 can only over-estimate
mistakes. Moreover,∑

i:yi=+1

l01(fw̄(OL(w̄, xi)),+1) ≤
∑

i:yi=+1

∑
j∈Ni

l(fw̄(xj),+1),

since OL(w̄, xi) ∈ Ni for all i by construction, and l is an upper bound on l01. Putting everything
together, we get the desired result.

6.2. RAD with Stochastic Gradient Descent
RAD works particularly well with online methods, such as stochastic gradient descent. Indeed, in
this case we need only to make gradient descent steps for newly added malicious instances, which

2Note that the bound relies on the fact that we are only adding adversarial instances, and terminate once no more instances
can be added. In particular, natural variations, such as removing or re-weighing added adversarial instances to retain original
malicious-benign balance lose this guarantee.
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can be added one at a time until convergence. Note that this is different from interleaving adversarial
example generation and stochastic gradient descent steps, as suggested in prior work [Goodfellow
et al. 2014; Kurakin et al. 2017]. In fact, the latter approaches lose the theoretical guarantees de-
scribed above, particularly when original instances are replaced with synthetic adversarial exam-
ples, as suggested by Kurakin et al. [2017].

6.3. RAD and Multi-Class Classification
Discussion so far dealt entirely with binary classification. We now observe that extending it to multi-
class problems is quite direct. Specifically, while previously the attacker aimed to make an instance
classified as +1 (malicious) into a benign instance (−1), for a general label set Y , we can define a
malicious set M ⊂ Y and a target set T ⊂ Y , with M ∩ T = ∅, where every entity represented by
a feature vector x with a label y ∈ M aims to transform x so that its label is changed to T . In this
setting, let g(x) = arg maxy∈Y f(x, y). We can then use the following empirical risk function:∑

i:yi /∈M

l(f(xi), yi) +
∑

i:yi∈M
l(f(O(w, xi)), yi) + λ||w||pp, (20)

where O aims to transform instances xi so that g(O(w, xi)) ∈ T . The relaxed version of the BECS
adversarial model can then be generalized to

min
x,y∈T

−f(x, y) + c(x, xi).

Similar generalization is possible for the CMBC model.

7. EXPERIMENTS
In this section we investigate the effectiveness of the two proposed methods: the Stackelberg game
multi-adversary model (SMA) solved using mixed-integer linear programming and the adversarial
retraining framework RAD.

We consider four data sets for our evaluation: the Enron dataset [Cohen 2009], Ling-spam
dataset [Androutsopoulos et al. 2000], UCI dataset [Lichman 2013], and MNIST dataset [LeCun
and Cortes 2010]. In particular, the Enron email dataset contains approximately 500,000 emails
generated by employees of the Enron Corporation. The Ling-spam dataset includes 2412 Linguist
messages, obtained by randomly downloading digests from the archives, separating their messages,
and removing text added by the lists server. There are 481 spam messages. Attachments, HTML
tags, and duplicate spam messages received on the same day were not included. The UCI dataset
contains 4601 email instances, and about 30% of them are spam messages. MNIST is a handwritten
digits dataset containing 28 × 28 images, which represent digit 0-9 for multi-class classification
problem.

7.1. Evaluation of SMA
We draw a comparison to three baselines: 1) “traditional” machine learning algorithms (we re-
port the results in comparison with standard SVM; comparisons to Naive Bayes and Neural
Network classifiers proved similar), 2) Stackelberg prediction game (SPG) algorithm with linear
loss [Brückner and Scheffer 2011], and 3) SPG with logistic loss [Brückner and Scheffer 2011].
Both (2) and (3) are state-of-the-art alternative methods developed specifically for adversarial clas-
sification problems. Xu et al. [2009] demonstrate a connection between robustness to evasion attacks
and regularization. Since we consider adversarial cost functions based on l1 distance, the relevant
regularization in our setting is l∞. Our first set of results, shown in Figure 2, is a performance
comparison of SMA based on the CMBC threat model to four baselines, evaluated with respect to
an adversary striving to evade the classifier, subject to cost budget constraints. The four baselines
include SVM, l∞ regularized SVM (SVM-reg), and SPG with different loss functions. The results
demonstrate that SMA approaches significantly outperforms the baselines, including l∞ regularized
SVM. The intuition is two-fold: first, the connection between robustness regularization assumes
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both a zero-sum game between the learner and the attacker, and a specific l1-based adversarial cost
function, whereas our adversarial models are more general, and not zero-sum.

(a) (b) (c)

Fig. 2. Comparison of SMA based on CMBC threat model to baseline alternatives SVM, l∞ regularized SVM, and SPG
on Enron data (a), Ling-spam data (b), and UCI data(c). Row 1: distance-based cost function, Bc = 5. Row 2: distance-
based cost function, Bc = 20. Row 3: equivalence-based cost function, Bc = 5. Row 4: equivalence-based cost function,
Bc = 20.

Here we allow unlimited queries for adversaries and bound the cost budget as 5 and 20. In the
case of the Enron data, we can see, remarkably, SMA based on the CMBC threat model (purple
lines in Figure 2) exhibits dramatic performance improvement compared to alternatives in all in-
stances. Moreover, SMA is significantly better than the alternatives whether the equivalence-based
or distance-based cost function is used.

Figure 3 considers the impact of the number of clusters used in solving the SMA based on CMBC
problem on running time and error. The key observation is that with relatively few (80-100) clusters
we can achieve near-optimal performance, with significant savings in running time.

Figure 4 evaluates the SMA based on the BECS threat model by applying the coordinate descent
algorithm to generate multiple attacker strategies as a function of the cost sensitivity λ and then use
these attacker strategies to solve SMA. It is clear that with larger λ the attacker has higher cost to
modify the instances. Therefore, when λ is relatively small, there are more various attacker strategies
and SMA still outperforms the baselines. Note that while the differences appear smaller here, they
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(a) (b) (c)

Fig. 3. Row 1: Error rates of SMA based on CMBC, and Row 2: SMA running time as a function of the number of clusters.
Results are based on (a) Enron data (b) Ling data, and (c) UCI data.

(a) (b) (c)

Fig. 4. Comparison of SMA based on the BECS threat model to baseline alternatives as a function of cost sensitivity λ on
Enron data (a), Ling-spam data (b), and UCI data(c).

are substantial in percentage terms (in some cases, as much as ∼50% improvement shown by SMA
compared to state-of-the-art adversarial classifiers).

7.2. Evaluation of RAD
The theoretical results above for RAD suggest that this systematic retraining algorithm is likely to be
effective at increasing resilience to adversarial evasion. So we first offer an experimental evaluation
to compare the results of RAD and SMA, which computes an optimal defense against evasion (mod-
ulo the slight approximation induced by clustering attacks). We then simulated attacks and present
the results for the RAD framework based on the CMBC and BECS threat models, respectively. We
compare the results with SPG based on logistic loss and SVM with L∞ regularize (SVM-reg) to
demonstrate the robustness of RAD. We also show that the RAD works for both discrete and contin-
uous features. Moreover, we also show that the approach is robust to non-adversarial environments,
and the cost function and parameter misspecification for defenders.

7.2.1. Comparison of RAD to Optimal. The first comparison we draw is to SMA and RAD based
on the BECS threat model, for which we can apply the scalable Algorithm 1 to generate adversary
strategies. The main limitation of SMA is scalability. Because retraining methods use out-of-the-
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box learning tools and does not involve non-convex bi-level optimization, it is considerably more
scalable.

(a) (b)

Fig. 5. Comparison between RAD and SMA based on the BECS threat model for Enron dataset with 30 binary features. (a)
The F1 score of different algorithms corresponding to various λ; (b) the average runtime for each algorithm.

We compared SMA and RAD using Enron data [Klimt and Yang 2004]. As Figure 5(a) demon-
strates, retraining solutions of RAD are nearly as good as SMA, particularly for a non-trivial adver-
sarial cost sensitivity λ. In contrast, a baseline implementation of SVM is significantly more fragile
to evasion attacks. However, the runtime comparison for these algorithms in Figure 5(b) shows that
RAD is much more scalable than SMA.

7.2.2. Effectiveness of RAD . In this section we use the Enron [Klimt and Yang 2004] and
MNIST [LeCun and Cortes 2010] datasets to evaluate the robustness of three common algorithms
in their standard implementation, and in RAD for both the CMBC and BECS threat models: logistic
regression, SVM (using a linear kernel), and neural networks (NN) with 3 hidden layers. In Enron
data, features correspond to relative word frequencies. 2000 features were used for the Enron and
784 for MNIST datasets. Throughout, we use precision, recall, and accuracy as metrics (in the plots,
we indicate accuracy measures by “-Acc”; for example, SVM-reg-Acc refers to accuracy results for
l∞ regularized SVM). We present the results for both continuous and binary feature spaces here.

Figure 6 shows the performance of RAD based on the CMBC threat model as a function of the
adversarial cost budget based on the distance-based cost function (we present the results based on
the equivalence-based cost function in appendix D). In general, the RAD framework based on CMBC
performs robustly compared with other baseline methods even there are high cost budgets; while the
traditional learning algorithms or optimized algorithms, which have taken adversarial strategies into
account, will fail to detect rapidly when the cost budget increases.

Figure 7(a) shows the performance of logistic regression, with and without retraining, on Enron
and MNIST based on continuous feature. The increased robustness of RAD based on the BECS
threat model is immediately evident: performance of RAD is essentially independent of λ on all
three measures, and substantially exceeds baseline algorithm performance for small λ. Interestingly,
we observe that the baseline algorithms are significantly more fragile to evasion attacks on Enron
data compard to MNIST: benign and malicious classes seem far easier to separate on the latter than
the former. This qualitative comparison between the Enron and MNIST datasets is consistent with
other classification methods as well (SVM, NN). These results also illustrate that the neural-network
classifiers, in their baseline implementation, are significantly more robust to evasion attacks than the
(generalized) linear classifiers (logistic regression and SVM): even with a relatively small attack cost
attacks become ineffective relatively quickly, and the differences between the performance on Enron
and MNIST data are far smaller. Throughout, however, RAD significantly improves robustness to
evasion, maintaining extremely high accuracy, precision, and recall essentially independently of λ,
datasets, adversarial models, and algorithms used.
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(a) (b) (c)

Fig. 6. Performance of baseline (adv-) and RAD (rob-) based on the CMBC threat model as a function of cost budget Bc

based on the distance-cost function for Enron dataset based on 2000 binary features testing on adversarial instances. (a)
logistic regression, (b) SVM, (c) 3-layer NN.

(a) (b) (c)

Fig. 7. Performance of baseline (adv-) and RAD (rob-) based on the BECS threat model as a function of cost sensitivity λ for
Enron (top) and MNIST (bottom) datasets with continuous features testing on adversarial instances. (a) logistic regression,
(b) SVM, (c) 3-layer NN.

Fig. 8. Example modification of digit images (MNIST data) as λ decreases (left-to-right) for logistic regression, SVM,
1-layer NN, and 3-layer NN (rows 1-4 respectively).

In Figure 8 we visualize the relative vulnerability of the different classifiers, as well as effective-
ness of our general-purpose evasion methods based on coordinate greedy. Each row corresponds
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to a classifier, and moving right within a row represents decreasing λ (allowing attacks to make
more substantial modifications to the image in an effort to evade correct classification). We can ob-
serve that NN classifiers require more substantial changes to the images to evade, ultimately making
these entirely unlike the original. In contrast, logistic regression is quite vulnerable: the digit remains
largely recognizable even after evasion attacks.

Considering now datasets with binary features, we use the Enron data with a bag-of-words fea-
ture representation, for a total of 2000 features. We compare Naive Bayes (NB), logistic regression,
SVM, and a 3-layer neural networks. Our comparison involves both the baseline, and RAD imple-
mentations based on the BECS threat model. Figure 9 confirms the effectiveness of RAD based on
discrete features: every algorithm is substantially more robust to evasion with retraining, compared
to baseline implementation. Most of the algorithms can obtain extremely high accuracy on this data
with the bag-of-words feature representation. However, a 3-layer neural network is now less robust
than the other algorithms, unlike in the experiments with continuous features. Indeed, Goodfellow
et al. [2014] similarly observe the relative fragility of NN to evasion attacks.

(a) (b)

(c) (d)

Fig. 9. Performance of baseline (adv-) and RAD (rob-) based on BECS implementations of (a) Naive Bayes, (b) logistic
regression, (c) SVM, and (d) 3-layer NN, using binary features testing on adversarial instances.

7.2.3. Experiments with Multi-class Classification. To evaluate the effectiveness of RAD, and re-
silience of baseline algorithms, in multi-class classification settings, we use the MNIST dataset and
aim to correctly identify digits based on their images. Our comparison involves SVM and 3-layer
neural network (results for NN-1 are similar). We use M = {1, 4} as the malicious class (that is,
instances corresponding to digits 1 and 4 are malicious), and T = {2, 7} is the set of benign labels
(what malicious instances wish to be classified as). The results, shown in Figure 10 are largely con-
sistent with our previous observations: both SVM and 3-layer NN perform well when retrained with
RAD, with near-perfect accuracy despite adversarial evasion attempts. Moreover, RAD significantly
boosts robustness to evasion, particularly when λ is small (adversary who is not very sensitive to
evasion costs).

Figure 11 offers a visual demonstration of the relative effectiveness of attacks on the baseline
implementation of SVM and 1- and 3-layer neural networks. Here, we can observe that a significant
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Fig. 10. Performance of baseline (adv-) and RAD (rob-) based on BECS implementations of (a) multi-class SVM and (b)
multi-class 3-layer NN, using MNIST dataset testing on adversarial instances.

Fig. 11. Visualization of modification attacks with decreasing the cost sensitivity parameter λ (from left to right), to change
1 to the set {2,7}. The rows correspond to SVM and 3-layer NN, respectively.

change is required to evade the linear SVM, with the digit having to nearly resemble a 2 after
modification. In contrast, significantly less noise is added to the neural networks in effecting evasion.

7.2.4. Oracles based on Human Evasion Behavior for RAD. To evaluate the considerable gen-
erality of RAD, we now use instances both generated by a non-optimization-based threat model,
and from the observed human evasion behavior in human subject experiments. The data for this
evaluation was obtained from the human subject experiment by [Ke et al. 2016] in which subjects
were tasked with the goal of evading an SVM-based spam filter, manipulating 10 spam/phishing
email instances in the process. In these experiments, Ke et al. developed a model of human subject
evasion behavior. We now adopt this model as the evasion oracle,O, injected in our RAD retraining
framework, executing the synthetic model for 0-10 iterations to obtain evasion examples.

Figure 12(a) shows the recall results for the dataset of 10 malicious emails (the classifiers are
trained on Enron data, but evaluated on these 10 emails, including evasion attacks). Figure 12(b)
shows the classifier performance for the Enron dataset by applying the synthetic adversarial model
as the oracle. We can make two high-level observations. First, notice that human adversaries appear

(a) (b)

Fig. 12. RAD (rob-) and baseline SVM (adv-) performance based on human subject behavior data over 20 queries, (a)
using experimental data with actual human subject experiment submissions, (b) using Enron data and a synthetic model of
human evader.
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(a) (b) (c)

Fig. 13. Performance of baseline (adv-) and RAD (rob-) based on BECS as a function of cost sensitivity λ for MNIST
dataset with continuous features testing on non-adversarial instances. (a) logistic regression, (b) SVM, (c) 3-layer NN.

significantly less powerful in evading the classifier than the automated optimization-based attacks
we previously considered. This is a testament to both the effectiveness of our general-purpose ad-
versarial evaluation approach, and the likelihood that such automated attacks likely significantly
overestimate adversarial evasion risk in many settings. Nevertheless, we can observe that the syn-
thetic model used in RAD leads to a significantly more robust classifier. Moreover, as our evaluation
used actual evasions, while the synthetic model was used only in training the classifier as a part of
RAD, this experiment suggests that the synthetic model can be relatively effective in modeling be-
havior of human adversaries. Figure 12(b) shows a more systematic study using the synthetic model
of adversarial behavior on the Enron dataset. The findings are consistent with those only consid-
ering the 10 spam instances: retraining significantly boosts robustness to evasion, with classifier
effectiveness essentially independent of the number of queries made by the oracle.

7.2.5. Evaluation of Robustness of RAD . While RAD is quite general and admits nearly arbitrary
adversary models, it still requires a specific adversary model as an oracle. All models are ultimately
approximation to real adversarial behavior, which can be complex and is not well understood. A
key question, therefore, is how robust RAD is to inaccurate assumptions about adversarial models
it uses. An orthogonal but equally important question is how well RAD performs when in fact no
evasion attacks are present: in other words, how much classification performance do we sacrifice by
trying to be robust to evasion attacks? We now explore these questions.

Performance of RAD in Non-Adversarial Environments: In order to explore whether RAD
sacrifices accuracy when no adversary is present, Figure 13 shows the performance of the baseline
algorithms and RAD on a test dataset sans evasions. Surprisingly, RAD is never significantly worse,
and in some cases better than non-adversarial baselines: adding malicious instances appears to in-
crease overall generalization ability. This is also consistent with the observation by [Kantchelian
et al. 2015].

Robustness to Cost Function and Parameter Misspecification: Our evaluation of RAD robust-
ness to adversarial model misspecification consists of two parts: first, we consider a case in which
the defender and attacker use different cost functions, and second, when the defender assumes that
the attacker has a lower tolerance for evasion cost than the attacker actually does. In both cases, we
use the BECS model.

Figure 14 shows the evaluation results based on the Enron dataset with binary features. This figure
compares efficacy of RAD when it correctly assumes that the attacker uses a quadratic cost function
(a), and in the case when it assumes the attacker’s cost to be exponential, while the attacker actually
uses a quadratic cost (b). We can see that the two plots look quite similar, with RAD nearly equally
effective in both cases.

Next, we evaluate robustness of RAD when the defender’s estimate of the parameter λ which
determines the tradeoff the attacker makes between evading the classifier and evasion cost when
under-estimates attacker’s evasion aggressiveness. In Figure 15 we show the classification results
as a function of the attacker’s value of λ when the defender uses the immediately larger λ in the
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(a) (b)

Fig. 14. Performance of baseline (adv-) and RAD (rob-) based on the BECS adversarial model as a function of cost sen-
sitivity λ for Enron dataset with binary features, after evasion attacks. (a) both defender and adversary use the quadratic
distance cost function, and (b) adversary uses quadratic cost function while defender estimates it based on exponential cost.

discretized space. We can see that even when the defender underestimate the attacker’s evasion
aggressiveness, RAD retains most of its efficacy in being robust to evasion attacks.

(a) (b) (c)

Fig. 15. Classification performance when defender and attacker use different values of λ for (a) logistic regression, (b)
SVM, (c) 3-layer NN.

8. CONCLUSIONS
We consider an adversarial evasion problem, formalized as adversarial loss minimization in which
adversaries, corresponding to maliciously labeled instances, modify the corresponding feature vec-
tors so as to evade being classified as malicious. We follow the general approach to adversarial
evasion introduced by Lowd and Meek [2005] in which evasion behavior represents a tension be-
tween replacing an “ideal” feature vector (representing behavior the adversary actually wishes to
follow) with another that is misclassified as benign, and reducing the total modification made to this
ideal feature vector. We distill a number of models that have been proposed to capture this tradeoff
into a very general framework, which we specialize into two general optimization problems for the
adversary, one following closely the Lowd and Meek [2005] framework in which deviation cost
from the ideal feature vector is minimized subject to a hard evasion constraint, and another in which
the optimization problem involves an explicit tradeoff between evasion success (in terms of distance
from classification boundary, representing how “benign” the instance appears to the classifier) and
cost.

We offer two solutions to the evasion problem for both adversarial models. The first is a princi-
pled and general Stackelberg game multi-adversary model (SMA), solved using mixed-integer linear
programming, under the assumption of linear classifiers and l1 regularization. The second is RAD,
a general-purpose systematic retraining algorithm against evasion attacks for arbitrary classifiers
(used as a “black-box”) and arbitrary oracle-based (or “black-box”) evasion models. We show that
RAD minimizes an upper bound on optimal adversarial risk. Our experiments demonstrate that the
first solution outperforms state-of-the-art adversarial classification methods, often notably. Experi-
mentally, we showed that the performance of RAD is nearly indistinguishable from optimal, whereas
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scalability is dramatically improved compared to SMA: indeed, with RAD, we are able to easily scale
the approach to thousands of features, whereas SMA scales only to dozens of features.

An important challenge in all adversarial learning approaches to date is the specific assumptions
they make on adversarial behavior. While RAD makes few specific requirements on the adversarial
model, it still requires some adversarial model to be used in training. We therefore experimentally
evaluate how robust RAD is when this model does not represent actual adversarial behavior. Our
experiments indeed demonstrate considerable robustness of RAD to several model misspecifications.
We believe that the most significant strength of RAD is that it can make use of arbitrary learning
algorithms essentially “out-of-the-box”, and effectively and quickly boost their robustness to nearly
arbitrary evasion attack models, in contrast to most prior adversarial learning methods which are
algorithm-specific.
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APPENDIX
B. COMPARISON BASED ON DIFFERENT EQUIVALENCE CLASS SIZES
To demonstrate the impact of feature cross-substitution attacks, we show comparisons for NB,
SVM with linear kernel, SVM with rbf kernel and Neural Network classifiers based on the baseline
Distance-based 16 (a) and the Equivalence-based 16 (b)-(d) cost function with Enron data.

(a) (b) (c) (d)

Fig. 16. Impacts of different equivalence class sizes for (a) Distance-based cost function, (b) Equivalence-based cost func-
tion with max-2-letter substitution, (c) Equivalence-based cost function with max-3-letter substitution, (d) Equivalence-based
cost function with max-4-letter substitution.

For the equivalence-based cost function, we applied max-2,3,4-letter substitution respectively to
form equivalence classes with increasing sizes. From the comparison results in Figure 16, it is
obvious that the feature cross-substitution attacks elevate the test error on a large scale, and such
attack gains more power when the equivalence class size increases.

C. GENERAL INSTANCE SUBSTITUTION ALGORITHM FOR EQUIVALENCE-BASED COST
FUNCTION

Here we simulate the behavior of an adversary as running an algorithm
FindBooleanIMAC(xA, x−) to substitute features from the “ideal” instance xA based on
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ALGORITHM 6: FindBooleanIMAC(xA, x−)

y ← x−

flag ← false
repeat
yprev ← y
for all i ∈ Cy do

if Fi ∩ Cy = ∅ or MatchClass(i, Cy) ≤ 0 then
toggle i in y
if c(y) = 1 then

toggle i in y
end if

end if
end for
count← 0
for all i1 /∈ Cy, i2, i3 ∈ Cy do

randomly choose i1 /∈ Cy, i2, i3 ∈ Cy and i2 6= i3
if Fi2 ∩ Cy = ∅ and Fi3 ∩ Cy = ∅; or MatchClass(i2, Cy) ≤ 0 and MatchClass(i3, Cy) ≤ 0
then

toggle i1, i2, i3 in y
count← count+ 1
if c(y) = 1 then

toggle i1, i2, i3 in y
count← count− 1

end if
end if

end for
if flag and count > 0 then
flag ← false

end if
if count = 0 and flag = false then
flag ← true
for all i1 /∈ Cy, i2 ∈ Cy, i3 ∈ Cy do

toggle i1, i2, i3 in y
if c(y) = 1 then

toggle i1, i2, i3 in y
end if

end for
end if

until yprev = y
return y

an arbitrary ham instance x− to generate the alternative instance x′ for the adversary. This is a gen-
eralization of the one proposed by Lowd and Meek, which is run only based on the distance-based
cost function, to support our proposed equivalence-based cost function.

Here c(y) represents the classifier, which maps the input to malicious (1) or benign (0). Within the
algorithm, function MatchClass(i, Cv) is used to help decide whether it is possible for a feature
i ∈ Cv to be substituted by the others from its class Fi, which leads to no cost. Here Cv denotes
the vector contains features with different values in v and xA. We employ MatchClass(i, Cv) to
guarantee that the number of original substitutable pairs from xA would not decrease, which leads
to cost as 0. This means we would only change features in Cy that cannot be substituted by features
within its class. MatchClass(i, Cv) =

∑
j∈Fi∩Cv

1 {fi ⊕ fj = 1} −
∑

j∈Fi∩Cv

1 {fi ⊕ fj = 0}.
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D. RAD BASED ON EQUIVALENCE-BASED COST FUNCTION FOR CMBC
If the feature space is continuous, the RAD framework based on CMBC can be solved optimally
using standard convex optimization methods [Boyd and Vandenberghe 2004]. If the feature space
is binary and f(x) is linear or convex-inducing, while algorithms proposed by [Lowd and Meek
2005] and [Nelson et al. 2012b]. Figure 17 shows the performance of RAD based on the optimized
adversarial strategies based on binary features for various learning models, respectively.

(a) (b) (c)

Fig. 17. Performance of baseline (adv-) and RAD (rob-) based on the CMBC threat model as a function of cost budget B
based on the equivalence-cost function for Enron dataset based on 2000 binary features testing on adversarial instances. (a)
logistic regression, (b) SVM, (c) 3-layer NN.

E. EXPERIMENTS FOR CLUSTERING MALICIOUS INSTANCES
To efficiently speed up the proposed algorithm, here we cluster the malicious instances and use
the center of each cluster to generate the potential “evasion” instances for the retraining frame-
work. Figure 18 shows that the running time can be reduced by applying the clustering algorithm to
the original malicious instances and the classification performance stays pretty stable for different
learning models.

(a) (b)

Fig. 18. Performance of different learning models based on the number of clusters for Enron dataset testing on adversarial
instances. (a) Running time, (b) classification accuracy of RAD.
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